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Bioinformatics Workflow 

Sequence data was processed using the Quantitative Insights into Microbial Ecology (QIIME) 

pipeline (version 1.9.1) [1].  

  

The following steps were performed in the QIIME Virtual Box on demultiplexed fastq files: 

#  Split Libraries using a Phred quality threshold of Q20 

split_libraries_fastq.py -i [list fastq file names] --sample_id [list 

sample IDs] --barcode_type not-barcoded -q 20 -o split_for_reads/ -m 

map.txt 

 

The following steps were performed using QIIME as implemented in Bio-Linux (version 8; 

http://environmentalomics.org/bio-linux/) via the University of Queensland High Performance 

Computing Cluster: 

# Assign Operational Taxonomic Units (OTUs) via open reference picking [2], using the 

“seq.fna” file generated from the split libraries step. The Greengenes database (version 13.8) 

was used as the reference database and a sequence similarity of 97% applied [3].  

pick_open_reference_otus.py -i $TMPDIR/seqs.fna -o $TMPDIR/output/ -r 

/usr/share/qiime/data/gg_13_8_otus/rep_set/97_otus.fasta -s 0.1 -a -O 6 

# The resulting OTU table was chimera-checked using ChimeraSlayer [4]. 

parallel_identify_chimeric_seqs.py -i 

$TMPDIR/output/pynast_aligned_seqs/rep_set_aligned.fasta -m ChimeraSlayer -

o $TMPDIR/output/chimeric_seqs.txt -a 

/usr/share/qiime/data/gg_13_8_otus/rep_set/97_otus.fasta -O 6 

 

The following steps were performed in the QIIME Virtual Box following OTU picking: 

# Filter OTU table to remove sequences not classified as Bacteria or Archaea. The output of 

the OTU picking step was used (no chimeric sequences were identified thus this table was used 

directly). 

http://environmentalomics.org/bio-linux/
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filter_taxa_from_otu_table.py -i 

otu_table_mc2_w_tax_no_pynast_failures.biom -o otu_table_micro.biom -p 

k__Bacteria,k__Archaea 

# Filter the resultant table to remove sequences with a relative abundance of less than 0.1%. 

filter_otus_from_otu_table.py -i otu_table_micro.biom -o 

otu_table_micro_filtered.biom --min_count_fraction 0.001 

# Filter to generate table with control samples only. 

filter_samples_from_otu_table.py -i otu_table_micro_filtered.biom -o 

otu_table_micro_filtered_controls.biom --sample_id_fp 

list_control_samples.txt 

biom convert -i otu_table_micro_filtered_controls.biom -o 

otu_table_micro_filtered_controls.txt --to-tsv --header-key taxonomy 

# Generate a list of specific “contaminant” OTUs present in the control samples (See “List of 

contaminant OTUs” below). Filter these specific OTUs from the small intestinal samples to 

generate an OTU table representing contamination free small intestinal sequences.  

filter_otus_from_otu_table.py -i otu_table_micro_filtered.biom -o 

otu_table_micro_filtered_nocontam.biom –e contam_otu_list.txt 

filter_samples_from_otu_table.py -i otu_table_micro_filtered_nocontam.biom 

-o otu_table_micro_filtered_controls_nocontam_samples.biom --sample_id_fp 

list_control_samples.txt --negate_sample_id_fp 

# Exclude all samples with a final read count of less than 1000 sequence reads from the OTU 

table. 

filter_samples_from_otu_table.py -i 

otu_table_micro_filtered_nocontam_samples.biom -o otu_table_final.biom –n 

1000 

biom convert -i otu_table_final.biom -o otu_table_final.txt --to-tsv --

header-key taxonomy 
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Diversity Analysis 

The following steps were performed in the QIIME Virtual Box on the final OTU table: 

# Perform multiple rarefactions (randomly subsample OTU table 100 times at a depth of 1000 

reads) 

multiple_rarefactions_even_depth.py -i otu_table_final.biom -o 

rarefied_otu_tables/ -d 1000 -n 100 

# Average out the rarefied results – sum together all the OTU tables and average the results 

(export biom table and divide all counts by 100 after merging tables). 

merge_otu_tables.py -i [list all 100 rarefied out tables] –o 

out_table_rare1000_merge.biom 

biom convert -i otu_table_rare1000_merge.biom -o 

otu_table_rare1000_merge.txt --to-tsv --header-key taxonomy 

# After generating the averaged rarefied OTU table, convert back to biom format. 

biom convert -i otu_table_rare1000_merge_average.txt -o 

out_table_rare1000_final.biom --to-hdf5 --table-type="OTU table" --process-

obs-metadata taxonomy 

# Perform alpha-diversity analysis. 

alpha_rarefaction.py -i otu_table_rare1000_final.biom -o alpha_div/ -t 

rep_set.tre -m map.txt -e 1000 –a –O 2 

 

# Perform beta-diversity analysis. 

beta_diversity_through_plots.py -i otu_table_rare1000_final.biom -o 

beta_div/ -t rep_set.tre -m map.txt –e 1000 –a –O 2 
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Statistical Analysis 

Statistical analysis on alpha diversity data 

Alpha diversity values for the Chao1 and phylogenetic diversity metrics (generated as above 

via the alpha rarefaction command) were exported from QIIME and imported into the statistical 

software Prism. The Kruskal-Wallis test was applied to determine significance between patient 

groups. 

Statistical analysis on beta diversity data 

The distance matrix (generated as above via the beta diversity command) for the weighted 

Unifrac metric was exported from QIIME and uploaded to the online microbiome analysis tool 

Calypso (http://cgenome.net/wiki/index.php/Calypso) [5], along with a mapping file 

(containing patient/sample metadata) and the corresponding OTU table (otu_table_final.biom, 

generated as above). The ADONIS metric was implemented, adjusting for sex, age, body mass 

index (BMI), proton pump inhibitor (PPI) use and diagnosis. 

Analysis of relative abundance 

A mapping file (containing patient/sample metadata) and the corresponding OTU table 

(otu_table_final.biom, generated as above) were uploaded to the online microbiome analysis 

tool Calypso (http://cgenome.net/wiki/index.php/Calypso) [5]. Data was normalised using this 

program via total sum scaling and then centred-log ratio transformation. Significant differences 

between patient groups were assessed using Kruskal-Wallis (KW) with False Discovery Rate 

(FDR) correction for multiple comparisons. Linear discriminant analysis effect size (LEfSe) 

was also performed on this data. In addition, the raw read count data (directly from uploaded 

biom file) was analysed using the ALDEx2 function (Wilcoxon test with Benjamini-Hochberg 

corrected p value). 

Multivariate model generation 

The final OTU table was filtered to include only samples representing current or never smokers, 

and only patients with FD and/or ID. This table, along with a mapping file (containing 

patient/sample metadata) were uploaded to the Mixomics [6] web interface available through 

the University of Queensland/Queensland Facility for Advanced Bioinformatics (QFAB) 

(mixomics.qfab.org). The OTU table was normalised via total sum scaling and then centred-

http://cgenome.net/wiki/index.php/Calypso
http://cgenome.net/wiki/index.php/Calypso
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log ratio transformation. Sparse partial least squares discriminant analysis (sPLS-DA) was 

performed using default settings (via the “tune” and “splsda” functions), with the model 

validated using leave-one-out cross validation (repeated 30 times). This model was then tested 

on a second data set. Specifically, the final OTU table was filtered to include only samples 

representing current or never smokers, and only patients with CD. The OTU table was 

normalised via total sum scaling and then centred-log ratio transformation. The “predict” 

function was used to classify the patients in regards to smoking status within the CD cohort, 

based on the model generated with the FD-ID cohort. 

Batch Checking 

The Illumina sequencing for this study was performed across 2 separate sequencing runs (with 

identical methods used for both; at the same facility). The generated data was processed as a 

single complete dataset during all bioinformatics procedures. A principal coordinate plot was 

generated to test for any batch effect resulting from the sequencing runs. As per the figure 

below, there was no significant difference between the two sequencing runs (ADONIS p=0.2). 

Open circles: sequencing run 1; orange circles, sequencing run 2. 
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List of contaminant OTUs 

This list was generated from the out_table_micro_filtered_controls.txt table, in which any OTU 

observed in at least one control sample, at a relative abundance of greater than 1% on average 

across the reagent controls, or greater than 2% relative abundance in at least two reagent 

controls was included. This criteria ensured all significant contaminants could be removed from 

the patient samples. A total of 18 reagent control samples were included for the study. 

List of contaminant OTUs removed from OTU table: 

OTU 
(Greengenes Number) Taxonomy 

179312 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; 
f__Cellulomonadaceae; g__Cellulomonas 

4481506 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__S24-7 

334761 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__S24-7 

346267 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__S24-7 

442846 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__S24-7 

224486 k__Bacteria; p__Cyanobacteria; c__Oscillatoriophycideae 

New.ReferenceOTU26271 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Paenibacillaceae; 
g__Paenibacillus 

1090059 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; 
f__Staphylococcaceae; g__Staphylococcus 

1111582 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; 
f__Streptococcaceae 

354097 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales 

1105860 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; 
f__Erysipelotrichaceae; g__Allobaculum 

274912 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; 
f__Erysipelotrichaceae; g__Allobaculum 

New.ReferenceOTU38018 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; 
f__Erysipelotrichaceae; g__Allobaculum 

558740 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; 
f__Bradyrhizobiaceae; g__Afipia 

788519 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; 
o__Burkholderiales; f__Alcaligenaceae 
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1061429 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; 
o__Burkholderiales; f__Comamonadaceae 

816420 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; 
o__Burkholderiales; f__Comamonadaceae 

1024520 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; 
o__Burkholderiales; f__Comamonadaceae; g__Comamonas 

335466 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; 
o__Burkholderiales; f__Oxalobacteraceae 

341936 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; 
o__Burkholderiales; f__Oxalobacteraceae 

783719 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; 
o__Burkholderiales; f__Oxalobacteraceae; g__Ralstonia 

510057 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 
o__Pseudomonadales 

1097359 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 
o__Pseudomonadales; f__Moraxellaceae; g__Acinetobacter; s__lwoffii 

1041394 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 
o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas 

928406 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 
o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas 

560075 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 
o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas 

912967 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 
o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas 

928829 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 
o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas 

818369 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 
o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas 

780261 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 
o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas 

New.ReferenceOTU1025 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 
o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas 

1083508 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 
o__Xanthomonadales; f__Xanthomonadaceae; g__Stenotrophomonas 
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