Supporting information for

Spatiotemporal Control of TGF-β Signaling with Light

Yuchao Li¹*, Minji Lee²*, Nury Kim⁴, Guoyu Wu¹, Difan Deng¹, Jin Man Kim^{2,#}, Xuedong Liu³, Won Do Heo^{2,4,5†}, Zhike Zi^{1†}

¹Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany.

²Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.

³Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309-0596, United States.

⁴Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.

⁵KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.

[#]Present Address: Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 03080, Republic of Korea.

*These authors contributed equally to this work.

[†] Corresponding authors. Email: wondo@kaist.ac.kr, zhike.zi@molgen.mpg.de

List of Supporting Information

Figure S1. Subcellular localization of mCerulean tagged Myr-cytTβRI-CIBN protein in HeLa cells.

Figure S2. The expression of iRFP-Smad2, Myr-T β RI-CIBN and cytT β RII-PHR-tdTomato and proteins in the optoTGFBRs-HeLa cells.

Figure S3: The optoTGFBRs system can be activated by two-photon excitation.

Figure S4: The optoTGFBRs system can induce the expression of TGF-β responsive genes.

Figure S5: Dynamics of Smad2 signaling to pulses of TGF-β and blue light stimulations.

Movie S1. Sequential activation of optoTGFBRs-HeLa cells in single cells. Supplementary movie for Figure 6.

Movie S2. Activation of optoTGFBRs-HeLa cells with single pulse of light stimulation. Supplementary movie for Figure 7A.

Movie S3. Activation of optoTGFBRs-HeLa cells with repeated light pulses every 10 min. Supplementary movie for Figure 7B.

Movie S4. Activation of optoTGFBRs-HeLa cells with repeated light pulses every 3 hours. Supplementary movie for Figure 7C.

Supplementary Figures

Figure S1: Subcellular localization of mCerulean tagged Myr-cytT β RI-CIBN protein in HeLa cells. The expression of the membrane-anchored cytT β RI protein fused with CIBN domain and mCerulean fluorescence tag (Myr-cytT β RI-CIBN-mCer) shows the plasma membrane localization in HeLa cells. Scale bar: 10 µm.

Figure S2: The expression of iRFP-Smad2, Myr-TβRI-CIBN and cytTβRII-PHR-tdTomato proteins in the optoTGFBRs-HeLa cells.

(A) Cell lysates were loaded at different amount to optimize the range where antibody signal is linear. (B) The relative expressions of iRFP-Smad2 to endogenous Smad2, optoT β RI to endogenous T β RI, and optoT β RII to endogenous T β RII were estimated from the average of two biological replicates. (C) The antibodies' fluorescence signal has a linear relationship with the amount of lysate loaded when measured with the LI-COR odyssey CLx imaging system.

Figure S3: The optoTGFBRs system can be activated by two-photon excitation. (A) optoTGFBRs-HeLa cells were excited with two-photon illumination at 860 nm to induce translocation of iRFP-Smad2 to the nucleus. Scale bar: 10 μ m. (B) Quantification of nuclear Smad2 signaling dynamics shown in panel A.

Figure S4: The optoTGFBRs system can induce the expression of TGF- β responsive genes. Quantitative PCR assay for the expression of (A) Smad7, (B) TEMPAI and (C) PAI1 genes in the optoTGFBRs-HeLa cells at 0, 1, 2 and 8 hours after blue light illumination (488 nm, 4 mW/cm²) in LED box. The averages and standard deviations from three replicates are shown.

Figure S5: Dynamics of Smad2 signaling to pulses of TGF-\beta and blue light stimulations. (A-C) Predicted dynamics of P-Smad2 response to different TGF- β pulse stimulations using a published mathematical model (Zi *et al.* Mol Syst Biol, 2011, Reference 32). (D-F) Quantification of Smad2 signaling responses to similar patterns of blue light stimulations in optoTGFBRs-HeLa cells. The 99% confidence interval is based on Student's t-distribution.

Tables S1: Summary of initial screen results with different combinations of optoT β RI and optoT β RII constructs

Combinations of constructs	Smad2 nuclear translocation upon blue light stimulation	Basal Smad2 signaling without blue light stimulation
TβRI-CIBN-mCer TβRII-PHR-mCit	No	No
Myr-cytTβRI -CIBN-mCer Myr-cytTβRII -PHR-mCit	Yes	High
Myr-cytTβRI-PHR-mCit Myr-cytTβRII-CIBN-mCer	No	No
Myr-cytTβRI-PHR-mCit Myr-cytTβRII-PHR-mCit	Yes	High
Myr-cytTβRI-CIBN Myr-cytTβRII-PHR	Yes	High
cytTβRI-CIBN-mCer cytTβRII-PHR-mCit	Yes	High
Myr-cytTβRI-CIBN-mCer cytTβRII-PHR-mCit	Yes	Low
cytTβRI-CIBN-mCer Myr-cytTβRII-PHR-mCit	Yes	High
cytTβRI-CIBN-mCherry cytTβRII-PHR-mCherry	Yes	High
Myr-cytTβRI-CIBN cytTβRII-PHR-mCherry	Yes	Low
Myr-CIBN-cytΤβRI cytTβRII-PHR-mCherry	No	No
cytTβRI-CIBN-mCherry Myr-cytTβRII-PHR	Yes	High
Myr-CIBN PHR-cytTβRII-Tdtomto	No	No
Myr-CIBN Tdtomto-PHR-cytTβRII	No	No
Myr-CIBN-cytΤβRI PHR-cytTβRII-Tdtomto	No	No
Myr-CIBN-cytTβRI Tdtomato-PHR-cytTβRII	No	No
Myr-cytTβRI-CIBN Tdtomato-PHR-cytTβRII	No	No
Myr-cytTβRI-CIBN PHR-cytTβRII-Tdtomato	No	No
Myr-cytTβRI-CIBN cytTβRII-PHR-Tdtomato	Yes (final selected construct)	Low