
S2 Appendix Reversible Jump MCMC.
[3] introduced RJMCMC as a means to jump between parameter spaces that have

different dimensions within an MCMC algorithm. There have been a number of different
approaches to Bayesian estimation of free knot splines using RJMCMC [4], [5], [6], [7].
For the most part, we adopt the approach of Denison et al. This approach performs well
relative to the fully Bayesian approach of DiMatteo et al. for smooth and not highly
complex functions when an appropriate adjustment is made (that was pointed out in
DiMatteo et al.). We do not expect the mean function in our model to be highly
complex, so the approach of Denison et al. is likely to perform well in our problem.

Consider the situation where we wish to estimate a regression spline in the following
setup

yi = f(xi;β) + εi,

εi
iid∼ N(0, σ2).

(1)

where the yi, i = 1, ...n are the response variable and xi, i = 1, ...n is the observed
covariate. We do not want to specify the number or location of the knots, but rather
estimate them from the data. Under the specifications of Denison et al., in RJMCMC
for free knot splines there are three possible transitions:

1. Birth of a knot

2. Death of a knot

3. Movement of a knot,

where in either of the first two transitions the dimension of the parameter space changes.
The transition that is proposed depends upon the prior for the number of knots k.
Using the notation of Denison et al., let the prior probability for k knots be p(k). Then
the probability of attempting a birth step, death step or move step are bk, dk, ηk,
respectively, where ηk = 1− bk − dk, and

bk = c×min
(

1,
p(k + 1)

p(k)

)
dk = c×min

(
1,

p(k)

p(k + 1)

)
,

(2)

where 0 ≤ c ≤ 1/2 to ensure bk + dk ≤ 1. If the birth step transition is chosen, a new
knot is proposed from the set of available new knots. Denison et al. puts a discrete
uniform prior on knot locations so that only observed locations can be knot locations. A
proposed new knot is chosen at random from the set A={xi, i = 1, ...n : xi is not
currently a knot or within `+ 1 locations of a current knot}. Here, ` is the order of the
splines, so in our case ` =3. If the death step transition is chosen, an existing knot is
picked at random and removed. If the movement transition step is chosen, a current
knot is picked at random and moved to a new location at random from the set A. Once
new knots are chosen, we construct a spline basis matrix using the observed locations
{xi, i = 1, ...n} and the positions of the knots. We then use OLS to estimate the spline
parameters β. Although we could place priors on the spline regression parameters, this
adds significant computational burden and results have been similar when comparing
estimation with OLS versus fully Bayesian estimation as long as functions are smooth
and not highly complex [7], [4]. The acceptance probability for each step is of the form
given by [3]:
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α = min(1, likelihood ratio× prior ratio× proposal ratio). (3)

Denison et al. give simplified acceptance probabilities for each of the three
transitions under a Poisson prior for number of knots and a discrete uniform prior for
knot locations. In the regression setup in Denison et al., they then sample variance
components using a Gibbs step.

The model that was fitted in [7] is simpler than our model (1) in three respects: (i)
our regression model is part of a larger hierarchical model, (ii) we have an additional
linear component in the mean function, (iii) the covariate value xi is a latent variable .
The first issue does not present much of a problem thanks to conditional independence
assumptions. For issue (ii) we propose to update the linear coefficient parameters at the
same time as we update the spline coefficient parameters, using OLS. We understand
that this is not a fully Bayesian approach, but we anticipate results to be similar with
much less computational burden.

Issue (iii) is not as simple. In the free knot spline setup in Denison et al., they have
a regression model of the form (1) where y is the observed response and x is the
observed covariate. In our case we do not observe x; rather, it is a latent variable that
we draw from its full conditional distribution using the Gibbs algorithm described in
Section 2.5.1. Because we sample the x’s via the Gibbs algorithm, the basis matrix has
to be adjusted in every iteration. We calculate the basis matrix using the current value
of the latent variables and the proposed knots. If we accept the proposal, then the
knots, spline coefficients, and consequently the estimate of s·(X

·(k),β(k)
· ) are all

updated. The challenge is what to do when we reject the candidate draw. It seems
reasonable to keep the current knot locations and the current spline regression
parameters, but keeping the current predictions of s·(X

·(k),β(k)
· ) does not make sense

because they are based on X ·(k), which is updated in every iteration. We propose the
following protocol: if we reject the RJ candidate, we keep the current knots and spline
coefficients, calculate a new basis matrix of X based on the current values of X ·(k) and
the current knots, and then compute the predicted values by multiplying the basis
matrix by the current spline coefficients. An additional complication is that X has to
do with the birth step and the set of available knots A from which to choose . We want
to pick randomly from the set of X values which we drew in the current iteration of the
MCMC, but we do not want a knot to be bigger than or smaller than the maximum or
minimum value of X. To avoid this problem, we exclude the three smallest and the
three largest values of X from A. We do not expect this to be a major constraint
because we are less concerned with flexibility of the function at its extremes and
therefore do not want to allow lots of knots at the extremes.

This algorithm is run independently for EE and ∆ES mean regression functions
because of the conditional independence assumptions. Because this algorithm is the
same for EE and ∆ES, we omit subscripts and superscripts below. The reversible jump
step that goes into our overall Gibbs algorithm is then:

1. Calculate bk and dk according to (2).

2. Select birth, death, or move step with probabilities bk, dk, 1− bk − dk respectively.

3. Knot Changes
If birth step:

(a) Select a new knot location at random from the set A and join with current
knots r(k−1) to create the proposed knot locations r∗.

If death step:
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(b) Sample one knot location from r(k−1) at random and remove it to create the
proposed knot locations r∗.

If move step:

(c) Sample one knot location from r(k−1) at random, and change it to a new knot
location at random from the set A to create the proposed knot locations r∗.

4. Calculate the spline basis matrix B∗(X(k)) using X(k) and proposed knot
locations r∗.

5. Calculate proposed spline and linear regression coefficients β∗,γ∗ by using OLS
to regress Ȳ on B∗(X·(k)) + Z

Ȳ =
{

1
J

∑J
j=1 Yij : i = 1, ..., n

}
.

6. Accept proposed knots and coefficients with probability α, with α shown below:

αbirth = min

(
1,Likelihood ratio× n− Z(k)

n

)
,

αdeath = min

(
1,Likelihood ratio× n

n− Z(k)

)
,

αmove = min (1,Likelihood ratio) ,

Otherwise set r(k) = r(k−1), β(k) = β(k−1), γ(k) = γ(k−1), and

Z(k) = 2(`+ 1) + k·(2`+ 1),

k = length(r(k−1)).

7. Compute mean function s(X(k);β(k)) using spline basis matrix B′(X(k)) and r(k)
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