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In this supporting notes we discuss a set of equations that describe the key aspects of the retina growth between
20 and 48hpf. We take into account balance equations that correspond to the change in number of undifferentiated
and neuron or committed precursor cells, and to how the volume growth of the retina is decomposed in cell volume
change and change in the number of cells. We then introduce a simple description of force balance in the tissue taking
into account surface tensions generated along the cellular lateral interfaces, and line tensions generated apically and
basally. Taking into account the cell division and differentiation rate, the rate of volume growth, and the change in
ratio of lateral surface tension to apicobasal line tension, allows to close the system of equations to obtain a description
of the change in time of retina volume, height, area and number of cells.

I. BALANCE EQUATIONS

We consider two cell types, undifferentiated progenitors (P) and neurons or committed precursors (N). We assume
that progenitors divide with a rate k. Each division yields two undifferentiated progenitors with probability p, two
neurons or committed precursor with probability (1 − p)α and one progenitor and one neuron/committed precursor
with probability (1− p)(1−α) (S4 Fig. A). Denoting Np and Nn the number of progenitors and neurons/committed
precursors in the retina, and Nt = Np +Nn the total number of cells, we write the following kinetic equations for the
number of cells:

dNp

dt
= kpNp − k(1− p)αNp = k(p+ αp− α)Np (1)

dNn

dt
= k(1− p)(1− α)Np + 2k(1− p)αNp = k(1− p)(1 + α)Np (2)

dNt

dt
= kNp . (3)

The cell doubling time Tcc is related to the rate of cell division k by Tcc ' ln 2/k. We find that the mean cell cycle
length is roughly constant over time, with an average cell doubling time Tcc ' 6.2h (S4 Fig. C). This corresponds to
an average rate of cell division

k ' 0.11h−1. (4)

We further make the simplifying approximation here that the number of asymmetric divisions can be neglected, α = 1.
We also assume that no neuron or committed precursor are present before 35h, as only a low number of differentiated
cells can be detected in the retina during this time. Therefore, we assume p = 1 prior to 35hpf. Adjusting for
experimental data of the number of differentiated neurons and total number of cells after this time point, we find
p ' 0.65. Specifically, we fitted experimental data of Nt(t) and Nn(t) with Nt(20hpf) and p(t > 35hpf) as free
parameters. The function p(t) is then given by:

p(t) =

{
1 t < 35hpf

0.65 t > 35hpf
. (5)

Note that here we chose to do a simple fit to the data taking into account a step function of probability p, but the
actual value of p(t) might change in time with a more complicated dynamics [1].

The average cell volume v increases due to the overall increase of volume of the tissue, and decreases because of
cell division. This can be expressed through the balance equation
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v

dv

dt
=

1

V

dV

dt
− 1

Nt

dNt

dt
(6)

where V is the total volume of the retina. We find that the change of total volume is well described by an exponential
growth with rate

g =
1

V

dV

dt
' 0.055h−1, (7)
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where the rate in Eq. 7 is obtained from a fit of experimental data to the function lnV (t) = gt + V0, with g and V0

as free parameters (S4 Fig. C).
Eq. 6 can be integrated to yield

ln
V (t)

V (t0)
= ln

Nt(t)

Nt(t0)
+ ln

v(t)

v(t0)
, (8)

with t0 = 20hpf. Different terms in Eq. 8 are plotted in Fig. 2H and S4 Fig. D from experimental data to obtain
a decomposition of tissue volume growth into average cell volume growth and cell number change. Similarly, in Fig.
2G and S4 Fig. D we plot different terms of the decomposition:

ln
V (t)

V (t0)
= ln

S(t)

S(t0)
+ ln

h(t)

h(t0)
, (9)

with S(t) the tissue average surface area and h(t) the tissue height. Here we make the simplifying assumption that
the tissue volume is linearly dependent in the tissue average area and the tissue height.

II. CELL SHAPE AND MECHANICAL EQUATIONS

We consider here a simple model of cell geometry where cells are described by truncated cones with apical and
basal surface area sa and sb, height h, and radius in the middle plane r (S4 Fig. B). The middle plane is defined here
as the plane with cross-sectional surface area equal to the mean apical and basal surface areas. We do not discuss the
origin of cell and tissue curvature, which is captured in a relative area parameter s = sa/sb, taken to be constant and
equal on average to ∼ 4.4 from experimental data (S4 Fig. C). The cell apical area is given by sa = πr2

a = 2s
1+sπr

2

and the basal area is given by sb = πr2
b = 2

1+sπr
2. As a result, the radii of the apical and basal cell surfaces are given

by ra =
√

2s
1+sr and rb =

√
2

1+sr, the apical and basal perimeters by pa = 2πra and pb = 2πrb, the lateral surface

area by sl = π(ra + rb)
√

(ra − rb)2 + h2. The cell volume v is given by

v =
π

3
(r2

a + r2
b + rarb)h =

2π(1 + s+
√
s)

3(1 + s)
r2h . (10)

To obtain the total average tissue area, we consider for simplicity that the retina is made of identical cells, such that:

S = Ntπr
2 =

3(1 + s)Ntv

2(1 +
√
s+ s)h

. (11)

Deviations from this ideal behaviour, for instance due to the fact that cells of the retina margin have different shapes
than cells in the central part of the retina, may be at the origin of differences between the area predicted by the
simplified model and experimentally measured areas (Fig. 5G and S4 Fig. D).

To describe cell mechanics, we consider a simple model where cells have line tensions around the apical and basal
perimeter Λa and Λb, and surface tension along their lateral surface Tl. The line tensions Λa can arise from the apical
actomyosin epithelial belt, the line tensions Λb from the basal actomyosin belt. The surface tension Tl can arise from
the actomyosin cortex exerting tension along cellular interfaces. The mechanical energy for one cell is then written

W = Λapa + Λbpb + Tlsl − P
(

2π(1 + s+
√
s)

3(1 + s)
r2h− v

)
, (12)

where geometrical quantities have been introduced above, and P is a Lagrange multiplier enforcing the volume
constraint and corresponding to the intracellular pressure. Minimizing W with respect to r, h and P , one obtains the
equilibrium cell height written here in the limit of highly columnar cells, h� r:

heq ' 2

√
sΛa + Λb

(
√
s+ 1)Tl

(13)

We further assume that dissipative contributions slow down the height relaxation on a time scale τh, such that

dh

dt
= − 1

τh
(h− heq) . (14)
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Therefore, in this simple model, the cell height is set by the ratio (
√
sΛa+Λb)

Tl
. Actin intensity measurements (Fig. 5B)

indicate that the ratio of apical and basal actin to lateral actin concentration increases after 36hpf. We assume here
that observed changes in these actin ratio lead to a change in the ratio of apicobasal line tensions and lateral surface
tensions, such that:

(
√
sΛa + Λb)

Tl
(t) =

{
67µm t < 36hpf

101µm t > 36hpf
. (15)

where these values were chosen to match the experimentally measured cell height change (Fig. 5E). Note that
actomyosin distribution has a varying spatial profiles along lateral interfaces (Figs. 4C-E), that we do not discuss
here for simplicity.

III. TISSUE GROWTH DYNAMICS

Combining the equations 1-7 and the force balance equations 13-14 with the apico-basal line tension to lateral
surface tension ratio given by equation 15, we can solve for the evolution in time of the parameters characterizing
tissue growth. We plot in Fig. 3F, Fig. 5E-5G and S4 Fig. D the resulting curves for the total number of cells and
the number of neurons, the cell and tissue volume, the tissue height and the tissue area. Parameters are determined
from fits to experimental data, except for τh which we take equal to 3h, as the data time resolution does not allow
for a more precise determination. Initial conditions at t = 20hpf are determined from experimental data or fits to
experimental data. The agreement between the simplified theory and experimental data corresponds to the following
picture of retinal growth:

• Tissue volume growth and progenitor cell division occur at a roughly constant rate.

• Before 35hpf, there is no cell differentiation, and the actomyosin distribution is maintained, such that forces
generated by the actomyosin cytoskeleton ensure a constant tissue height. Because the rate of volume growth
g ' 0.055h−1, is about twice lower than the rate of cell division k ' 0.11h−1, the cell volume is decreasing (Fig.
5F).

• After 35hpf, ∼ 35% of cell divisions lead to cell differentiation. At about the same time, the actomyosin
distribution is changing, leading to cell elongation. The relative rate of new cell production slows down, due
to terminally differentiated cells stopping division. As a result, the relative rate of cell volume decrease is also
reduced.

In Fig. 6G we plot the tissue aspect ratio calculated from the equations described in section II, as well as for a

modified model where the ratio (
√
sΛa+Λb)

Tl
does not change and is equal to 67µm. This corresponds to a situation

where the actomyosin distribution does not change, and as a result the cell height is constant. In that case the tissue
aspect ratio keeps decreasing after 36hpf (Fig. 6G).
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