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1 Effective two-state model for hippocampal CANN activity
We show below how the two-state model pictured in Main Text, Fig. 3B, can be derived from the
definition of the microscopic CANN model, see Main Text, Methods. The dynamical evolution of
the CANN ensures that the log probability of a configuration of activity s = {si} is given by [1]

L
(
s
)

=
∑
i<j

Jij si sj +
∑
i

(
hVi (r) + hPIi (r)

)
si + L∗ , (1)

where r if the rodent position and L∗ is a constant term such that the sum of the probabilities eL
over all 2N configurations s is normalized to unity.

For simplicity, we consider that the bump of activity consists of a×N active neurons si = 1 with
place-field centers as close as possible in a map, say, m = A, where a is the fraction of active neurons
in any time bin. This corresponds to the limiting case of zero neural noise, β →∞ [2]; calculation of
effective potentials at finite β is much more involved and requires the use of sophisticated statistical
physics techniques able to take into account the fluctuations of neural activities, see [3].

Let us define rbump as the radius of the bump, i.e. the maximal distance in environment m
between the rodent position r and the place-field centers rmi of active neurons. We have

aN =
π r2

max

δ2
, (2)

where δ2 is the elementary portion of surface per place cell, defined as the total area of the envi-
ronment, L2, over the number of place cells, N . We thus obtain the expression of the bump radius
as a function of the activity,

rmax(a) = L

√
a

π
. (3)

Contributions to log-likelihood due to inputs.
We assume that the CANN has activity localized in map m, and that the whole system is in the
conflicting phase, with PI = A and V = B. The contributions to L due to the visual (V ) and
path-integrator (PI) inputs reads, up to quadratic terms in a,

Linput = γ
∑
i

si φ
(
rMi − r

)
, (4)

where γ = γPI if m = A and γ = γV if m = B. According to the definition of the bump radius
rmax, we have

Linput = γ

∫ rmax

0

dr

δ2
φ
(
r
)

=
γ

σ2

∫ rmax

0

dr r e−r
2/(2σ2) = γ

(
1− e−r

2
max/(2σ

2)
)
. (5)

Contributions to log-likelihood due to recurrent connections.
We now consider the contribution Lrecurrent to the log-likelihood coming from the recurrent connec-
tion in the CANN. The coupling Jij between neurons i and j is the sum of one interaction specific
to map A and another one specific to map B, see Eqn. (9) in Main Text, Methods. Assuming again
that the bump of activity is localized in map m = A, we neglect the contribution to L due to the
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Supplementary Figure A. Log-likelihood of a mixed state with a fraction α of bump in state A and
a fraction 1 − α in state B. An additive constant, independent of α, is introduced such that L = 0 for
α = 0.5. Top: symmetric case γPI = γV = 0.4 for three values of γJ , showing how the intensity of
recurrent connections control the depth in log-likelihood of the mixed state. Bottom: Asymmetric case
with γJ = 0.0025 and for three values of γPI > γV . In all cases, σ/L = 0.125, a = 0.1.

interaction specific to map B. This simplifying approximation amounts to an error of the order of
a2, see [2] for more details. We obtain

Lrecurrent =
1

2
γJ

∫ rmax

0

dr

δ2

∫ rmax

0

dr′

δ2
φ
(
r− r′

)
=

γJ N

4π L2 σ2

∫ rmax

0

∫ rmax

0

dr dr′ e−(r−r′)2/(2σ2)

= γJ
2πN σ2

L2

∫ ( rmaxσ )
2

0

du I0(u)

∫ ( rmaxσ )
2

u

dv
e−v√(
v
u

)2 − 1
, (6)

where I0 is the first kind modified Bessel function of zero order.

Case of mixed state.
Assume now that a fraction α of the bump is localized in map m = A and the remaining fraction,
1 − α, is localized in map B. The log-likelihood of this mixed state is obtained by summing the
expressions of the log-likelihood in state A above with activity a → αa and of the log-likelihood
in state B above with activity a → (1 − α) a. The result is shown in Supplementary Fig. A. As
indicated in Main Text, the amplitude γJ of the recurrent connections controls the depth of the
well separating the two complete bump states (all A or all B), while the ratio γPI/γV controls the
asymmetry of the log-likelihood profile and favors one of the two states.
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2 Effects of parameters on the model properties
The CANN model is defined up to a set of parameters:

(a) the level of neural noise in the simulated activity, β; higher β corresponding to lower noise.
This parameter is formally equivalent to the inverse temperature in the Monte Carlo simula-
tion;

(b) the strength of the recurrent connectivity, γJ ;

(c) the strength of the two inputs, γV and γPI ;

(d) the spread of place fields and positional inputs, σ;

(e) the number of neurons, N .

(f) the mean activity (fraction of active neurons at any time), a.

A fully-detailed analysis of the response of the system to the each of these parameters is beyond
the scope of this paper, and previous works have fully characterized the behavior of the model in
the absence of positional inputs [1–3]. Hereafter, we show how some of these parameters control
the dynamical properties of the flickering of the cognitive map and the ability to navigate, i.e.
the correct positioning of the bump of activity in the position defined by the V and PI inputs.
These two quantities are indeed observable in the CA3 electrophysiology data, through the map
and position-decoding analysis. A characterization of their parametric dependence in the model is
therefore a necessary step to a correct quantitative modelling.

For this reason, we will here divide the parameters into two classes:

• the structural parameters, N , σ, a. The number of neurons N was varied from a few hundreds
to a few thoousands in simulations. To keep the contributions to the total in put Hi,t acting
on neuron i at time t independent of N , we scale the recurrent connection strength γJ as
1/N , see Eqn. (9) in Main Text. This ensures that the sum of local inputs over all active
neurons due to these connections has a finite, fixed value as N grows. This is why we will
compare below the value of γJ × N to the other input strengths, γV and γPI . In addition,
we have fixed the average linear size of place fields to σ/L ∼ 0.125, which sets the average
area occupied by a place field to 2π(σ/L)2 ' 10% of the environment total area, a value
comparable to experimental findings [4]. The average activity (in a time bin) was fixed to
a = 10% throughout our simulations to match the values fixed in previous works focusing on
the same model in the absence of inputs, see discussions in [2, 3].

• the control parameters (γJ , γV , γPI , β), that have a predictable influence on the behaviors
we are interested in. Note that the four control parameters are redundant, as the properties
of the model depend only on (β × γJ , β × γPI , β × γV ); we may therefore fix one of them and
let the other three vary. We now study how the model properties depend on the values of
these parameters.

Navigation of the environment
The model is explicitly designed to mimic the representation of self-location in the hippocampal
network under the influence of positional inputs. A natural question is how the values of parameters
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influence the capability of the model to actually represent the correct position in a single map, that
is, the correct centering of the neural bump around the input position. Consider the case of coherent
inputs at a certain time t, i.e. PI and V point to the same position rt in the same map , and let
us assume that the bump is correctly centered around rt. As the input position changes in the
next simulated time bin t+ ∆t, PI and V will try to activate place cells corresponding to a shifted
location, effectively pushing the bump to rt+∆t. If the positional input is too weak compared to the
recurrent network connections are too strong, the bump will fail to update to the new position, being
trapped by the strong connection with the active cells at position rt. Similarly, a very high value of
β, i.e. a low neural noise, would have the effect of enhancing the roughness of the energy landscape,
in the positional space, and of trapping the bump and imparing its motion. As a consequence, the
model would lose the ability to correctly navigate the environment. Conversely, a very low value of
β would result in the inability of the model to condensate the bump of activity [3], therefore losing
any notion of represented position.

The inverse of the mean positional error εt can be used as a proxy for the navigation ability,
and is shown in Supplementary Fig. B as a function of β and of the relative strength γV /(NγJ)
(in the balanced case γV = γPI). The navigable region (yellow) has a triangular shape that widens
with higher values of the input strength, meaning that the temperature has to be fine tuned for low
values of γV/PI , while it can take a wider set of values in the presence of strong inputs.
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Supplementary Figure B. Navigation of the environment. Dependence of the inverse mean posi-
tional error (in cm−1) on the control parameters: β and the relative strength between network connectivity
and positional inputs. γV = γPI , N = 400, a = 0.1.

Flickering of the cognitive map
As discussed above, the system acts as an effective two-state model when the two inputs are put
into conflict, i.e. point to the same position in different cognitive maps. The transition of the bump
from one map to the other happens stochastically, and its dynamical properties are controlled by the
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parameters of the model. Characterizing this dynamics in the simulated test experiment is rather
involved, since the positional inputs move at a variable speed (we use the recorded trajectory of
the real rat as input) and a fast change of the positional input can facilitate the evaporation of the
bump from one map, increasing the transition rate between maps. We here analyze the dependence
of two data-testable quantities on the parameters. The first is the statistics of permanence in the
visual-cue associated map or in the PI-associated map during the conflicting phase, as a function
of the relative strength between the two inputs, shown in Supplementary Fig. C. We see that a
ration γV /γPI close to 1 results in a mean fraction of flickers (MFF) close to 0.55. This value,
slightly different from the expected 0.5 is due to the inertia of the bump that, for few bins after the
teleportation, tends to stay in the PI-associated map. Since each simulation is carried for a finite
number of time bins after the teleportation (600), this discrepancy is explained as a consequence of
the finite-time simulated for each trial.

Next we analyze a dynamical quantity, i.e. the mean sojourn time of the activity in one of
the two maps, given a balanced value of γPI = γV , see Methods for the definition of the sojourn
time. This quantity is directly proportional to the height of the barrier described in the two-state
approximation, which is controlled by the network connectivity strength γJ and the parameter β.
High noise (small β) or weak connections (low γJ) is expected to enhance the probabiity of crossing
the barrier easy, and to make the sojourn times low. This statement is confirmed by the results
shown in the diagram in Supplementary Fig. D.

Putting together the results reported in Supplementary Figs. B and D, we see that the model
reproduces the dynamical properties of the observed data, while at the same time keeping an
accurate representation of the input position, for a range of parameters in the center of the diagrams.
In particular, we have chosen, for the simulations reported in the Main Text, β = 15 and γV =
γPI = 0.4, with no need for fine tuning these two parameters. Indeed any choice in the range
β ∈ [15, 30] and γV = γPI ∈ [0.3, 0.6] would qualitatively reproduce the behavior observed in data
in terms of flickering of the cognitive map and precision in the positional encoding.
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Supplementary Figure C. Dependence of the mean frequency of flickers (MFF) in simulated data upon
model parameters. The MFF is defined as the fraction of time bins, during the conflicting phase, in
which the hippocampal representation m differs from light cues. Simulations were performed using the real
trajectory of the rat, with N = 400 neurons, γW ∼ ∞ to hold the conflicting state to a fixed amount of
time bins (600), β = 15.
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Supplementary Figure D. Flickering behavior: Dependence of the mean sojourn time, defined as the
number of consecutive theta bin in which the bump is condensed in the same map, from the control
parameters: β and the relative strength between network connectivity and positional inputs. γV = γPI ,
N = 400, a = 0.1.

3 Relationship between sojourn time and correlation time
The correlation time τ0 (see Main Text Methods and Main Text Fig. 2B & 4C) is related to the
sojourn times of the neural bump in the cognitive maps, defined as a sequence of contiguous theta
bins that are all decoded in the same map. The relationship between correlation and sojourn time
can be established by assuming a Markovian dynamics for the 2-state model (m = A or m = B)
evolving in discrete time. The dynamics is determined by the map transition probabilities from one
time bin to the next: 

pA→A = e−1/τA

pA→B = 1− e−1/τA

pB→B = e−1/τB

pB→A = 1− e−1/τB

(7)

where τA and τB are the mean sojourn times in, respectively, map A and B. A straightforward
calculation shows that the time correlation C(τ) between the map state at times t and t + τ is
decreases exponentially with the delay τ only, with an average time equal to

τ0 = −
[

log
(
e−1/τA + e−1/τB − 1

)]−1

. (8)

Hence, the correlation time τ0 is approximately given by the smaller mean sojourn time among τA
and τB . The distribution of sojourn times in each map for experimental CA3 data [5] is shown in
Supplementary Fig. E.
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Supplementary Figure E. Sojourn times of hippocampal activity in the two cognitive maps
during the conflicting phase for CA3 recordings. Regions of consecutive theta bins whose decoded
representation disagree with the external light conditions are marked as “PI” regions. Vicevesa, if they
agree with light conditions, they are marked as “Visual”. Results obtained after application of our map
decoder to the recorded CA3 data of [5]. As shown in the bar plot and from the ANOVA comparison, the
permanence times in the two maps during the conflicting phase have roughly the same distribution. Results
obtained with map-decoding threshold L0 = 2.3.

4 Inference of path-integrator realignment times - discussion
on parameters p0 and pe

To identify the realignment times of the PI we first introduce a simple probabilistic model for the
hippocampal representation to be incoherent with the light-cue conditions (flickering time bin) as
a function of time elapsed after the switch (see Main Text Methods). This procedure needs an
input value for p0, the probability of flickering during the conflicting phase, whose consistency
can be checked a posteriori by computing the mean flickering frequency in the conflicting phase. In
Supplementary Fig. F we show that the a-posteriori average flickering frequency remains remarkably
stable, around the self-consistent choice ∼ 0.6, for any input value of p0, with a slight dependence
on the chosen L0 threshold. The same value is observed in the model when the strength of PI and
V projections are set to similar values (γPI/γV ∈ [0.95, 1.05]), see Supplementary Fig. C.
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Supplementary Figure F. Dependence of mean frequency of flickers in recorded data upon
threshold L0 and upon the mean frequency p0 used in the inference of PI-realignment time.
A self-consistent value of p0 is identified, for each value of map-decoding statistical threshold L0, as the
intersection between the corresponding curve and the y = x line (Methods). Simulations performed with
the same parameters described in Fig. 2, main text.

5 Independence of frequency of flickers from delay after light
switch: parameters p0 and pe and L0

As pointed in the main text, the constant flickering frequency hypothesis Hconstant is extremely
more likely (∆` ∼ 150) than the decaying model Hdecay. The result is robust against changes in the
parameters, see Supplementary Fig. F. For instance, we obtain ∆` ' 170 and ∆` ' 60 when the
flickering identification is done based on, respectively, a less (L0 = log 2) and more (L0 = log 100)
restrictive criterion. Similarly, the log-likelihood difference between the two hypothesis remains
very large and positive if we change the constant-rate model p0 value, e.g. ∆` ' 160 for p0 = 0.4,
∆` ' 120, 33 for pe = 0.1, 0.001, or if we extend the definition of Hdecay up to 30 seconds after
the switch (instead of 15 seconds): ∆` ' 125. In many teleportation events the flickering-dense
area is indeed too short (too few flickers) or too long (too many flickers occurring far away the
teleportation time) to be explained by the Hdecay hypothesis, see Supplementary Fig. G.
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Supplementary Figure G. Decoded maps as a function of time for all 15 light-switch events
in the test session. Same analysis in main text Fig. 1C, which was restricted to a single light switch.
PI-realignment times are marked with a dashed green line.
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6 Assessment of performances of map decoder
Our map decoder (based on the inference of an Ising model for each cognitive map) does not use
any information about the current rodent position. Its performance can be assessed against the
correlation-based decoders used in [5] (which compares the activity st to the expected activities in
maps A and B at the given rat position) by means of the classical binary-classifier theory [6–9]. The
Ising model was shown, first on retinal ganglion cell recordings, and, more recently, on prefrontal
cortex [10,11] and hippocampal data [12,13], to provide a good approximation for the distribution
of population activity configurations. The performance in the decoding task has been shown to be
superior to rate-based decoders on CA1 data [12].

The standard tool used to compute the performance of binary decoders is the Receiver Operating
Characteristic (ROC) diagram [6]. This diagram is drawn by computing the true positive rate
(TPR) and false positive rate (FPR) as a function of different thresholding values, and plotting
the resulting curve in the TPR-FPR plane. These quantities can be defined in the context of our
map decoder as follows: for each theta bin t the decoder outputs a value ∆L(t), which is then
interpreted as referring to map A or B depending on its value compared to a moving threshold Θ.
Note that this is slightly different from the map-decoding method reported in Main Text, since it
does not allow undecoded statistically-not-significant bins.

mt =

{
A if ∆L(t) > Θ ,

B if ∆L(t) < Θ .
(9)

To match the vocables used in the ROC framework we will arbitrarily follow the convention
that the output is positive if the map is decoded to be A, and negative if the map is predicted
to be B. Doing so, a True Positive is defined as a correctly-decoded environment A (with respect
to the light conditions: mt = A = light cues), while a True Negative will be a correctly-decoded
environment B. The final observable (area under the ROC curve) is symmetrical under the inversion
of this convention, which is summarized in Table 1. The decoding capability is finally assessed by
applying the decoder to two “constant” test sessions, where the environment is constantly set to A
and B, respectively. Assuming that the neural representation is stable under fixed light conditions,
we can compute the TPR and FPR of the decoder by counting how many theta bins are correctly
and falsely decoded in the two reference sessions. For a specific value of the threshold Θ, this
corresponds to a point in the FPR-TPR plane. By varying this value we then draw the curve as
the succession of the corresponding TPR-FPR values. The standard quantitative measure of the
decoding performances is the Area Under the Curve (AUC) of the ROC diagram [6]. According
to this measure, the ideal decoder has AUC = 1, while random guessing would give AUC = 0.5.
All the decoders, tested on constant test sessions, i.e. where no teleportation is performed, show
very high performances, see Supplementary Fig. H. Note, in addition, that our functional-network
based decoder is robust against the presence of correlations between the maps: it shows much
better performance than correlation-based methods for CA1 recordings, where maps are much less
orthogonal than in CA3 [12].

7 Dependence of positional-error analysis with L0

The significance of positional-error analysis as a function of the threshold L0 is shown in Supple-
mentary Fig. I.
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decoder output A B A B
light conditions A A B B
denomination True Positive False Negative False Positive True Negative

Table 1: Denominations used for the four possible events, depending on the output of the decoder and on
the environment-defining cue. The cue is not changed throughout the reference session.
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Supplementary Figure H. ROC curves for our Ising-model map decoder (blue) compared to
independent-cell decoder (specific case of Ising model, with zero couplings J , red dotted curve) and the
Pearson-correlation based decoder of [5], which used the true position of the rodent.
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Supplementary Figure I. Significance of positional-error analysis as a function L0 Mean po-
sitional error (line) and standard error (shaded area) for CA3 data reported in main text Figure 6 A
(position inferred according to the decoded map), Figure 6 B (position inferred according to the opposite
map) and Figure 6 C,D (position inferred according to the decoded/opposite map without considering flick-
ering events), for a large range of values of the threshold L0 of the map decoder used in the conflict period
identification; higher values of L0 correspond to shorter decoded conflict periods.
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