
Appendix A 

Introduction to causal graphs  

Here, we only give a brief introduction to causal graphs. A thorough treatment of graphs 

can be found in Pearl (2009), Hernán & Robins (2014), or Spirtes, Glymour & Scheines (2001). 

A causal graph consists of nodes that are linked by directed edges (arrows). The nodes 

represent measured or unmeasured variables like X1, X4, Z or Y in Figure 1(1) and the arrows 

represent direct causal relations between two variables. The absence of an arrow implies the 

absence of a direct causal relation. For instance, X1 causally affects Z and Y, while X4 has a 

causal effect on Z only. Since X1 causally affects Z, X1 is called a parent of Z, and Z is called a 

child of X1. For the diagram to be causal all common causes (also called confounders) of any 

two variables need to be shown in the graph. Common causes are either explicitly included as 

nodes with corresponding arrows from the parent node to the children (like X1, X2, and X3 which 

are common causes of Z and Y) or as bidirected dashed arrows indicating unknown or 

unobserved common causes (in Figure 1(1), the bidirected dashed arrows between U1, U2, and 

U3 indicate an association because of some unknown common causes). Since the dashed arrows 

are not directed, that is, the causal relation is not explicitly defined, the graph in Figure 1(1) is, 

strictly speaking, no longer a causal graph (we would obtain a causal graph if we would 

explicitly insert the nodes for the common causes or direct the dashed arrows). A graph that only 

contains directed edges (arrows) but no cycles (loops) is called a directed acyclic graph (DAG). 

Thus, the graph in Figure 1(1) is acyclic but not directed. 

A path between two variables is an unbroken and nonintersecting sequence of arrows that 

may go along or against the direction of the arrows. For instance, Z  X1 Y and Z  X1  

U1 U3 X3 Y are two paths connecting Z and Y in Figure 1(1). A directed path is a path 
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that goes along the direction of arrows (e.g., U4 X4 Z Y). If there is a directed path 

between two variables, say X4 and Y, then X4 is said to be an ancestor or predecessor of Y, and Y 

is called a descendant of X4. A variable is a collider (or inverted fork) on a path if two arrows 

point to or “collide” in it. For instance, Y is a collider on the path Z  X1 Y  X5. A path is 

said to be blocked either if one conditions on a variable on the path, which must not be a collider, 

or if the path contains a collider which has not been conditioned on (and no conditioning on a 

descendant of the collider occurred either). For instance, the path Z  X1 Y can be blocked by 

conditioning on X1. Conditioning on X1 blocks the flow of information along the path Z  X1 

Y (conditioning corresponds to considering conditional distributions). Conditioning on a variable 

is frequently visualized by drawing a box around the conditioning variable: Z   X1  Y. Path Z 

 X1 Y  X5 is naturally blocked because it contains a collider. There is only information 

flowing into Y, but no information flows out of Y. If one would condition on Y the naturally 

blocked path would be unblocked (opened) and the originally independent variables X1 and X5 

would become dependent conditional on Y. The association resulting from conditioning on a 

collider is called collider bias and drawn as a dashed path (see Elwert, 2013, Elwert & Winship, 

in press, or Pearl, 2009, for the effect of conditioning on a collider). Thus, after conditioning on 

Y we obtain the correspondingly altered path: Z  X1  Y  X5 (note that conditioning on Y 

would produce several other associations between variables X and U in Figure 1(1)). 

Two variables are d-separated if all paths between them are blocked. If not all paths 

between two variables are blocked they are said to be d-connected. Consider the two variables Z 

and Y in Figure 1(1) which are connected by a total of five paths: one direct path Z Y, and four 

indirect paths Z  X1 Y, Z  X2 Y, Z  X3 Y, and Z  X1  U1 U3 X3 Y. 

Note that all four indirect paths are open because they are not naturally blocked by a collider and 
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that they contain an arrow into Z. By conditioning on X1, X2, and X3 we can block all four 

indirect paths but Z and Y remain d-connected because we cannot block the direct path Z Y (no 

variable on the path Z Y is available for blocking). However, since our interest is in 

identifying the direct causal effect of treatment Z on outcome Y we want to let the direct path Z 

Y open but block all the indirect paths because they confound (bias) the treatment-effect 

relationship. The indirect paths from Z to Y are also called confounding paths, biasing paths or 

back-door paths. They are called back-door paths because they can be viewed as entering Z 

through the back-door (via the arrows pointing into Z). Since X1, X2, and X3 are not descendants 

of Z and since conditioning on X1, X2, and X3 blocks all the confounding back-door paths, 

variables X1, X2, and X3 are said to satisfy the back-door criterion which implies that the causal 

effect of Z on Y is identifiable. 

The concept of compatibility links a causal graph to the joint probability distribution of 

the variables in the graph. A causal graph is compatible with the variables’ probability 

distribution if the (conditional) independencies encoded in the graph also hold for the joint 

probability distribution. That is, if two variables can be d-separated by set of variables X, then 

the two variables must be conditionally independent with respect to the conditional probability 

distribution (given X). Finally, the faithfulness assumption (also called stability assumption) 

requires that the (conditional) independencies implied by the joint probability distribution remain 

invariant to changes in the parameters of the data generating process. A faithful probability 

distribution guarantees that none of its embedded independence relations occurs coincidentally 

or deliberately by choosing parameter settings such that two variables are seemingly independent 

though they are d-connected (this would happen if two associations cancel each other out, for 

instance). Faithfulness is not necessarily required but it helps in avoiding “pathological” or 
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unnatural data generating processes which may cause theoretical problems. In practice, however, 

putting (deterministic) constraints on data or the data generating process might easily result in an 

unfaithful distribution (Mansournia, Hernán, Greenland, 2013). Matching on the propensity score 

is an example. 

 

Conditioning on a variable vs. conditioning on a value of a variable (selecting a 

subpopulation) 

For causal graphs it is important to distinguish between (i) conditioning on a variable, 

say, X1, which we symbolize by drawing a box around X1 and (ii) conditioning on a single value 

of a variable X1 = x1, which corresponds to restricting the data to the subpopulation with X1 = x1. 

While the former results in an altered joint distribution for the overall population (with possibly 

new (in)dependence relations), the latter looks at the conditional distribution of a specific 

subpopulation. Since the conditional distribution and implied independence structure might 

differ across subpopulations with 11 xX ′=  and *
11 xX =  (with *

11 xx ≠′ ), the conditional graphs 

will vary accordingly and need to be drawn for each subpopulation separately. The graph for a 

subpopulation selected on the basis of a single value of a variable,  X1 = x1 (as opposed to a range 

of values, e.g., X1 = [x1 – 1, x1 + 1]), does not need to show the variable X1, neither any arrows 

into X1 nor any arrows leaving X1 because X1 is held constant. Thus, X1’s parents do not cause 

any variation in X1 = x1, and X1 = x1 itself no longer causes any variation in its children. This is 

also reflected by the corresponding structural causal model and the conditional distribution. After 

conditioning on X1 = x1 in Figure 1(1), the structural equation )( 11
1

X
i

X
ii UfX =  is no longer 

required because it is degenerate and so is the distribution of X1 (a probability distribution is 

degenerated if a random variable only takes a single value). The structural equation 
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) , ,,,,( 5321
Y
ii

Y
ii UZXXXXfY =  reduces to ) , ,,,( 532

Y
ii

Y
ii UZXXXfY ′=  where the effect of X1 = 

x1 is now absorbed in the error term Y
iU ′ . After conditioning on X1 = x1, the joint distribution 

then refers to the remaining variables and no longer depends on X1. However, note that any 

collider bias due to conditioning on a subpopulation needs to be drawn in the subpopulation 

graph (as dashed path). If one would not drop variable X1 and its ingoing and outgoing arrows 

from the causal graph, identification results for the subpopulation would be incorrect (for 

instance, in the RD design, without dropping A and its in- and outgoing arrows from the causal 

graph for A = a, the graph would suggest that ATE is identified according to the back-door 

criterion though ATE is actually unidentifiable for any value of the assignment variable A = a). 

Thus, conditioning on a single value requires redrawing the graph for the corresponding 

subpopulation and dropping the conditioning variable. Conditioning on a variable is graphically 

indicated by drawing a box around the conditioning variable (Elwert, 2013; Hernán & Robins, 

2014).  

The same holds for conditioning on a limiting value X1 → x1, that is, conditioning on the 

interval  [ ]εε +− 11  , xx  with ε → 0. X1 and all its ingoing and outgoing arrows can be removed if 

all the structural functions that depend on X1 are continuous at x1. If one of the structural 

functions, say, ),,,( 41
Z
i

Z
ii UXXfZ = , is discontinuous at x1, then X1 and the outgoing arrow X1 

Z cannot be removed because even in the limit X1 causes variation in Z. 

Finally note that conditioning on a specific value of a variable, X1 = x1, is different to the 

thought intervention of Pearl’s do-operator, do(X1 = x1), where X1 is set to x1 for the entire 

population (Pearl, 2009). Thus, the subgraphs or “manipulated graphs” used in the do-calculus 

are different to the conditional graphs for subpopulations.  
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Appendix B 

Proof 1. For the compliers, we prove that the average effect of the IV on Y is given by Cτ : 
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where the third line with the potential outcomes follows from the independence of Z and X. 
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we obtain )()()()0|()1|( CSPDSPCSPIVZEIVZE ===−===−=  because P(S = 

D) = 0 due to the monotonicity assumption. 
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and 
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we obtain the average effect of the IV on Y: 
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