Supplementary Material for:

A fundamental catalytic difference between Zinc and Manganese dependent enzymes revealed in a bacterial Isatin hydrolase

Theis Sommer^{1,*}, Kaare Bjerregaard-Andersen^{2,*}, Lalita Uribe^{5,6*}, Michael Etzerodt⁴, Gregor Diezemann⁵, Jürgen Gauss⁵, Michele Cascella^{2,7}, J. Preben Morth^{1, 3}

¹ Norwegian Center for Molecular Medicine, Nordic EMBL Partnership University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway

² Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0371, Oslo, Norway

³ Institute for Experimental Medical Research, Oslo University Hospital, N-0424 Oslo, Norway

⁴ Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark

⁵ Institut für Physikalische Chemie, Johannes-Gutenberg Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany

⁶ Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128, Germany

⁷ Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Sem Saelands vei 26, 0371, Oslo, Norway

Supplementary Figure S1, Graphical view of the collective variables (CV_1 - CV_3) defined in the metal binding pocket of *la*IHA, for the QM/MM - metadynamics simulations presented in the main text.

Supplementary Figure S2, Projection of the free energy surface over the CV1-CV2 coordinates. The letters in the plot indicate: (R) the reactant state, (TI) the tetrahedral intermediate, (TS) the transition state, and (P) the isatinate product.

а					
		LaIHA (5nna) LaIHB (4j0h) RsIHA (5nmp) BcKynB(4cog) BaKynB(4cob) BaKyn	1 1 1 1 1 1 1 1 1 1 66		65 69 70 44 46 43 37 105 155
	IH-like	LaIHB (4J0n) RsIHA (5nmp) BcKynB(4cog) PaKynB(4cob) BaKynB(4cob) BsAHD (1r61) MjAHD (2b0A) RrHpoH	70 71 45 47 47 44 38 110	LGEHSTIFDAPHWITGKDYSDGFTDTLDVQRLIAPVNVIDCSKESAADPDFLDTADLIKAWEAEHGEIGAGEWVVMITDWDRKAGDEAAF CSEHT STIFDAPAW WITGRDYPGNSVDTIAPEN	161 162 122 123 123 123 121 104 218
		LaIHA (5nna) LaIHB (4j0n) RSIHA (5nmp) BcKynB(4cog) PaKynB(4cob) BaKynB(4cob) BsAHD (1r61) MjAHD (2b0A) RrHpoH	156 162 163 123 124 124 122 105 219	LMMRADGPHSPGPTPEAIRFLIEERNIRGFGTETVGTPAGGGAHYVPFYPAJYLLHGAGKYGLOGLANLOQLPATGAVLIAAPLKIKNGTGSPLWVLAMTE LNADETGPHSPGPTPDEAIRFLIS-KKIVGGSQCIGTAGAGAGAHYVPFYPAJYLLHGAGKYGLOGLANLOQLPATGAVLIAAPLKIKNGTGSPLWVLANKEA LNIREDGAHTPGPTQEAVEWLIGERNVHGFGVETINTDAGQSGMEPPFPAINLIHRDNCFGLASLANLOKLPAGATILAAPLKIERGTGSFLWALALAUPKA FCAVAPDTVDLLAAHGVKLIGIDFSLIPQESKTMDAHRAVRAHRWAILEGV-LDUVPPGYELIALPLKIERGTGSFLWAVLRALPAQAS FCAIAPDTVDLLAAHGVKLIGIDFSLIPQESKTMDAHRAVRAHRWAILEGV-LDUVPPGYELIALPLKIFTHLDASYVAVLRALPAQAS IPHLRADIAPFLSEKGIRLIGVDVFSVIPLDDKELAAHHQLFKHSTHILBUV-LDUVPDGYELIALPLKIFTHLDASSVAAVLRALPAQAS IFVAED	257 263 213 213 209 207 186 320
h					
0		EcAAH (4pxd) AtAAH (4pxb) BvHYD (5i4m) BmHYD (5thw) BcHYD (4wjb) GeRAC (3n5f) SkSYN (2vll)	1 1 1 1 1	MITHFRQAIEETLPWL-SSFGADPAGGMTRLLYSP 34 MESLKRFLCSIALLLISLLPSSLAQQQHESIRTMEDFSGYPIHEPGQFGSINLASSLSVDAPGLQNQIDEL-SSFSDAPSPSVTRVLYTD 91 WDAVSETARKAALDTSIKVDGRLWDSLMEV-AKIGATPKGGVCRLALTD 49 WNAVSEALKRTAIPSIKVDGRLWASLERM-AKIGATPKGGVCRLALTD 41 WRDAPASMPRVDGDRLWASLERM-AQIGATPKGGVCRLALTD 41 WIQGERLWQRLMEL-GEVGKQPSGGVTRLSFTA 32 MSKDVSSTITTVSASPDGTLNLPAAAPLSIASGRLNQTILETGSQFGGVARWGQESHEFGMRRLAGTA 68	
		EcAAH (4pxd) AtAAH (4pxb) BvHYD (5i4m) BmHYD (5thw) BcHyD (4wjb) GeRAC (3n5f) SkSYN (2vll)	35 92 50 42 33 69	EWLETQQQFKKRMAASGLETRFDEVGNLYGRLNGTEYPQEVVLSGSHIDTVVNGGNLDGQFGALAAWLAIDWLKTQYGAPLRTVEVVAMAEEBGSRFPY 133 KDVSARRYVKNLMALAGLTVREDAVGNIFGKMDGLEPNLPAVATGSHIDTVVNGGNLDGQFGALAAWLAIDWLKTQYGAPLRTVEVVAMAEEBGSRFPY 139 LDKAARDLIVGWAKAAGCTVTVDTMGNVFMRRAGRVADAAPVVTGSHADSQPTGGRFDGIYGVIGGLEVIRSLNDHGIETEHPVEVVIWTNEEGSRFAP 148 LDKAGRDLIVGWAKEAGCTVTVDTMGNVFMRRAGRVADAAPVVTGSHADSQPTGGRFDGIYGVIGGLEVIRSLNDHGIETEHPVEVVIWTNEEGSRFAP 148 LDRESRDLFVQWAREAGCTVTVDTMGNVFMRRAGRRDAAPVMTGSHADSQPTGGRYDGIYGVIGGLEVVRALNDAAIETERPVDVVIWTNEEGSRFAP 148 LDRESRDLFVQWAREAGCTVTVDTMGNVFARRAGRRDAAPVMTGSHADSQPTGGRYDGIYGVIGGLEVVRALNDAAIETERPVDVVIWTNEEGSRFAP 140 EERRAKDLVASYMREAGLEVVEDAAGNLIGRKECTNPDATVVLVGSHLDSVYNGGCFOGPLEVLAGVEVVQTMNEHGVVTHHPIEVVAFTDEEGARFFF 131 LDGAMRDWFTNECESLCCKVKVDKIGNMFAVYPGK-NGGKPTATGSHLLTQPEAGKYDGILGVIAGLEVIRFKDNNYVPNYDVCVVVWFNEGAFFAR 166	
	AAH-like	EcAAH (4pxd) AtAAH (4pxb) BvHYD (5i4m) BmHYD (5thw) BcHYD (4wjb) GeRAC (3n5f) SkSYN (2vll)	134 191 149 149 141 132 167	VFWGSKNIFGLANPDDVRN-ICDAKGNSFVDAMKACGFTLPNAPLTPRQDIKAFVELHIEQGVLSNGQSIGVVNAIVGQRRYTVTLNGES 224 SCLGSRLLAGSKELAEALK-TTVVDGQNVSFIEAARSACYAEDKDDDLSSVFLKKGSYFAFLEHIEQGFILBAECKTIGVVTAIAAPASLKVEFEGNG 288 AMVASGVFAGVFPLEYGLSRKDVDGKTIGEELARIGYAGDAPCGGRKLHAAFELHIEQGFILBAECKTIGVVTDAQGQRWYEITFTGQE 237 AMVSAGVFAGVFTLEYGLSRKDVDGKTIGEELQRIGYAGDAPCGGRPLHAAFELHIEQGFILBAECKTIGVVTDAQGQRWYEITFTGQE 237 AMVSAGVFSGVYTLEYGLSRKDVDGKTIGEELGRIGYAGAEPCGGRPLHAAFELHIEQGFILBAECKTIGVVTDAQGQRWYEITTTGQE 237 AMVSAGVFSGVYTLEYGLSRKDVDGATIGEELERIGYAGAEPVGGYPVHAAYELHIEQGAILERAGKTIGVVTAGQQQRWYEITTTGQE 237 SCTGSSVWSHDLSLEEAYGLMSVGEDKPESVYDSLKNIGYIGDTPASYKENEIDAHFELHIEQGFILBECKVIGIVTGYQAYNWQKVTVHGVG 260	
		EcAAH (4pxd) AtAAH (4pxb) BvHYD (5i4m) BmHYD (5thw) BcHYD (4wjb) GeRAC (3n5f) SkSYN (2vll)	225 289 238 238 230 224 216	NÅRGTTPMGYRRDTVYAFSRICHQSVEKAKRMG-DPLVLTFGKVEPRENTVNVVGGKTTFTIDCHHTDAAVLRDFTQQLENDMRAICDEMDIGIDI 319 GHAGAVLMPYRNDAGLAAAELALAVEKHVLESESIDTVGTVGILELHPGAINSISKSHLEIDTRDIDEARRNTVIKKIQESANTIAKKRKVKLSE 384 AHAGFTPMPRRDALGASRVVDLVNRIGLDHAP-YGCAIVGMMQVHNSRNVIPGRVFFTVDFHPDDAVLAKMDAALRDGVARIAADIGLDTAL 332 AHAGFTPMPRRDALGASRVVDLVNRIGLDHAP-YGCAIVGMMQVHNSRNVIPGRVFFTVDFHPDDAVLAKMDAALRDGVARIAADIGLDTAL 332 AHAGFTPMPRRDALGASRVVDLVNRIGLDHAP-YGCAIVGMMQVHNSRNVIPGRVFFTVDFHPDDAVLAKMDAALRDGVARIAADIGLDTAL 332 AHAGFTPMSRRDALGASRVVDLVNRIGLDHAP-YGCAIVGMMQVHNSRNVIPGRVFFTVDFHPDDAVLAQMDAALRDGVARIAADIGLDTAL 332 AHAGFTPMSLRRDALVGAARMISFVEVLGRRYAP-DARATVGMIEARPNSRNTVPGGCFFTVEFRHPDAVLDELDLAALRAGELARVADETGLGAQI 324 EHAGATPMSLRRDPMAAAQIIIVIEEEARRTGTTVGTVGQLHVYPGINVIPGRVFVLDLRDLKAEVRQVMKAIAVAAETIAKERNVRVTT 317 AHAGTTPWRLKDALLMSSKMIVAASEIAQRHNGLFTCGIIDAKPYSVNIIPGEVSFLDLRDLKAEVRDQVMKAIAVAAETIAKERNVRVT 356	
		EcAAH (4pxd) AtAAH (4pxb) BvHYD (5i4m) BmHYD (5thw) BcHYD (4wjb) GeRAC (3n5f) SkSYN (2vl1)	320 385 333 333 325 318 357	DLWMDEEPVPMN-KELVATLTELCEREK-LNYRVMHSGAGHDAQIFAPRVPTCMIFIPSINGISINPAERTNITDLAEGVKTLALMLYQLAWQK 411 FKIVNQDPPALSDKUVIKKMAEAATELN-LSHKMMISRYHDSLFMARISEMGKIFIPCXKYSYKEEPSSPEDMANGVKVSLSLTLAKLSLD 476 EQIFYYRVAPIAFDSACVAAV-RAAADRFG-YSHRDIVSGAGHDACYLAQVATSKVFVPCIDSISINEIEDATPAWIEAGANVLLHAMLSRACEPVS 426 EQIFYYRVAPDFACVQAV-REAAERFG-YPHRDIVSGAGHDACYLAQVATSKVFVPCVDSISINEIEDATPEWIEAGANVLLHAMLSRACEPVS 426 EQIFYYRVPAPDFACVQAV-REAAERFG-YPHRDIVSGAGHDACYVARVATGKIFVPCVDLSINEAEATTPEWATAGADVLLHAMLSRACEPVS 426 EQIFYYRVPYFAPRCIDTV-RDAARSLG-LSHMDIVSGAGHDACYVARVATGKIFVPCVDLSINEAEATTPEWATAGADVLLHAVLSACEPVS 416 ERLQ-EMPPVLCSDEVKRAAEAACQKLG-YPSFWLFSGAAHDSVQLAPICPIGKIFVRSQDEVSISPAEWSTKEDCAAGAEVIYHTVWQLAQGE 409 ETLQVSPAVNFHSVCIECVSRSAFAQKKDQVKQISGGGBGSCG7FAPHVTTSKIFIPSKDLSINSPAEWSTKEDCAAFVLUATVULAVNIVNIKYNIRGH 455	

Supplementary Figure S3. Complete sequence alignments of partial alignment shown in Figure 2a. a) Isatin hydrolase homologues, b) Allantoate amidohydrolase homologues. Conserved residues are highlighted in blue. Residues involved in metal coordination are indicated by a dot, residues presumed to be involved in proton transfer are indicated with an asterisk. The key GLQC/GLAS motif of IHA and IHB, indicating isatin hydrolase activity, is highlighted in green, with a similarly conserved motif in KynB homologues highlighted in red.

Supplementary Table 1.	X-ray crystallographic data col	lection and refinement stati	stics for IHA
	LaIHA:Benzylbenzoate ¹	$RsIHA^1$	LaIHA:isatinate1
PDB ID	5NNA	5NMP	5NNB
Data collection	Diamond, I02-P1	ESRF, ID30B	PETRA III
Space group	P 1	P 32 2 1	P 1
Wavelength (Å)	1.0004	0.9762	1.033
Cell dimensions <i>a</i> , <i>b</i> , <i>c</i> (Å)	37.7, 70.7, 92.9	164.8, 164.8, 275.9	38.4, 69.9, 93.5
α, β, γ (°)	108.2, 95.9, 101.5	90.0, 90.0, 120.0	108.2, 95.3, 103.8
Resolution (Å) ²	86.86 - 1.50 (1.54 - 1.50)	99.2 - 2.65 (2.65-2.72)	19.5 - 1.79 (1.9 – 1.79)
$R_{ m merge}^2$	0.073 (0.421)	0.093 (1.093)	0.052 (0.496)
$I / \sigma I^2$	10.1 (2.0)	15.6 (1.5)	7.99 (1.0)
Completeness $(\%)^2$	96.1 (93.7)	99.8 (99.4)	94.05 (94.6)
Redundancy	3.4	6.9	1.8
CC ¹ / ₂	0.995(0.937)	0.997 (0.658)	0.996 (0.816)
Model refinement			
No. observed reflections ²	461622 (32325)	867299 (64074)	263115 (41566)
Unique ²	135172(9712)	125897 (9226)	141099 (22382)
Rwork	0.149	0.152	0.1826
$R_{ m free}$	0.180	0.196	0.2332
No. atoms	9195	20605	8307
Protein	8065	20300	784
Ligand/ion	106	10	48
Water	1024	295	419
<i>B</i> -factors (Å ²)			
Protein	12.2	68.8	40.5
Water	26.9	57.0	54.0
Ligand/ion	21.1	58.6	41.5
Monomers	4	10	4
(asymmetric unit)			
R.m.s. deviations			
Bond lengths (Å)	0.006	0.008	0.007
Bond angles (°)	1.06	1.04	1.01
Ramachandran plot, residues in:			
Favored region (%)	98	96	98
Allowed regions (%)	1.6	3.5	1.6
Outlier region (%)	0.4	0.5	0.4

0	• •		4 \$7		1 4 11		"		C TTT
N 111	anlamantary		I X PON	orvetallagraph	a data aali	lootion and	rotinomont	etotietiee 1	tor III /
	плешентату	гаше	1. A-1 av	UT VNIAHOVI ADHI		еснов ано	теннешени	STATISTICS	401 111/
~ ~	,			er journogrupping					

¹ Complete diffraction data was obtained from one crystal

² Values in parentheses are for highest-resolution shell.