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SUMMARY

Synapses are found in vast numbers in the brain and
contain complex proteomes. We developed genetic
labeling and imaging methods to examine synaptic
proteins in individual excitatory synapses across all
regions of the mouse brain. Synapse catalogs were
generated from the molecular and morphological
features of a billion synapses. Each synapse subtype
showed a unique anatomical distribution, and each
brain region showed a distinct signature of synapse
subtypes. Whole-brain synaptome cartography re-
vealed spatial architecture from dendritic to global
systems levels and previously unknown anatomical
features. Synaptome mapping of circuits showed
correspondence between synapse diversity and
structural and functional connectomes. Behaviorally
relevant patterns of neuronal activity trigger spatio-
temporal postsynaptic responses sensitive to the
structure of synaptome maps. Areas controlling
higher cognitive function contain the greatest syn-
apse diversity, and mutations causing cognitive dis-
orders reorganized synaptome maps. Synaptome
technology and resources have wide-ranging appli-
cation in studies of the normal and diseased brain.

INTRODUCTION

The brain is the most complex organ, and a hallmark of this

complexity is the vast number of synapses. Synapses are also

highly complex at the molecular level, with >1,000 genes encod-

ing postsynaptic proteins in excitatory synapses (Bayés et al.,

2011, 2012, 2017; Collins et al., 2006; Distler et al., 2014; Emes

et al., 2008; Husi et al., 2000; Peng et al., 2004; Roy et al.,
Neuron 99, 781–799, Au
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2018; Trinidad et al., 2008; Uezu et al., 2016; Yoshimura et al.,

2004). The differential expression of these proteins raises the

possibility that there is high synapse diversity within the brain

(Grant, 2007; Emes et al., 2008; O’Rourke et al., 2012). Although

it is routine to examine the expression of proteins and the

morphology of individual synapses in small tissue areas (using

light and electron microscopy), there are no methods permitting

the study of single-synapse molecular composition on the scale

of thewhole brain. As a result, the extent and spatial organization

of synapse diversity across the brain are poorly understood. The

term synaptome describes the set of all synapses in the brain,

and to date, there has not been a single-synapse-resolution mo-

lecular map of the nervous system in any organism.

Synapses connect axons and dendrites into a global anatom-

ical network that is often referred to as the structural connec-

tome, whereas the functional connectome describes the activity

of this network (Bullmore and Sporns, 2009). Synaptome map-

ping could be used to ask if the spatial distribution of synapses

with different proteomes is related to connectome architecture.

If so, this would support a fundamental role for synapse diversity

in the specification of connections and systems-level organi-

zation and function. Synaptome mapping at single-synapse

resolution could also increase the anatomical resolution of the

connection matrix between brain regions.

Synapse diversity might be important for cognitive function.

The prevailing model explaining how cognitive processes are

represented in the brain is one in which each behavior is the

product of a circuit or ensemble of neurons—the connectionist

model. If circuits comprised diverse synapse types, arising

from the differential distribution of proteins controlling synapse

physiology, then this would result in functional diversity where

each synapse type would respond differently to patterns of neu-

ral activity and thereby shape the circuit activity. Thus, synapse

diversity could be an important mechanism for representing in-

formation within the brain. Identifying the synapses that express

disease-relevant proteins will also be important for understand-

ing how the more than 130 diseases arising from mutations in
gust 22, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 781
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Figure 1. Synaptome Mapping Pipeline

(A) Endogenous PSD95 and SAP102 were genetically tagged with eGFP

(green) and mKO2 (magenta), respectively. These postsynaptic proteins

assemble into signaling complexes at excitatory synapses.

(B–D) Mice were crossed, and synaptic puncta (confocal image) expressing

the fluorescent proteins were imaged in brain sections (B), analyzed (C), and

stored and distributed (D).
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postsynaptic proteins cause their phenotypes (Bayés et al.,

2011). Mutations that reorganized synapse diversity could result

in changes to circuit function and representations.

Wedevelopedmethods tocapture informationon themolecular

composition and morphology of individual synapses on the scale

of the wholemouse brain. From these data, we generated the first

synaptome molecular maps of any organism. The approach uti-

lizes mice expressing fluorescently labeled postsynaptic proteins

and a semi-automated standardized image capture and analysis

suite. We focused on two postsynaptic proteins expressed at

excitatory synapses, PSD95 (Postsynaptic Density 95) and

SAP102 (Synapse-Associated Protein 102), for the following rea-

sons. First, we have extensive experience in genome engineering

of these proteins in mice (Broadhead et al., 2016; Cuthbert et al.,

2007; Fernández et al., 2009; Migaud et al., 1998) and now report

the creation of two lines inwhichendogenousPSD95 is fusedwith

eGFP (enhanced green fluorescent protein) and endogenous

SAP102 with monomeric Kusabira Orange 2 (mKO2). In double-

homozygous knockin mice, all copies of these proteins are

labeled, which enables their visualization and quantification in

individual postsynaptic puncta throughout the brain. Second,

PSD95 and SAP102 are abundant and stable postsynaptic scaf-

folding proteins, which assemble neurotransmitter receptors,

ion channels, and structural and signaling proteins into multipro-

tein signaling complexes (Broadhead et al., 2016; Cuthbert

et al., 2007; Fernández et al., 2009, 2017; Frank et al., 2016,

2017; Husi and Grant, 2001; Husi et al., 2000; Migaud et al.,

1998). PSD95 and SAP102 are assembled into physically distinct

complexes (Frank et al., 2016), and thus imaging of these proteins

reveals the synaptic localization of these complexes. Third, these

proteins have distinct roles in shaping synaptic responses to neu-

ral activity (Carlisle et al., 2008; Cuthbert et al., 2007; Elias et al.,

2006; Migaud et al., 1998). Fourth, mutations in genes encoding

these proteins result in cognitive impairments in mice (Cuthbert

et al., 2007;Horner et al., 2018;Migaudet al., 1998;Nithiananthar-

ajah et al., 2013) and humans (Lelieveld et al., 2016; Tarpey et al.,

2004; Wang et al., 2016; Xing et al., 2016).

Here, we report that synapse diversity arising from the differ-

ential distribution of postsynaptic proteins generates a previ-

ously unanticipated synaptome architecture across scales

from single synapses to the entire brain. We provide resources

quantifying synapse types and molecular distributions across

the mouse brain (http://synaptome.genes2cognition.org) and a

suite of analysis tools, including Synaptome Explorer for viewing

individual synapses in the mouse brain. The generation and

availability of these resources will be of widespread benefit in

the neuroscience community.

RESULTS

Synaptome Mapping Pipeline and Data Resources
To label and map the molecular composition of individual synap-

ses across thewholemouse brain, we built a synaptomemapping

pipeline (SYNMAP) consisting of four main components: (1) ge-

netic tagging of synaptic proteins in knockin mice, (2) tissue imag-

ing, (3) image and data analysis, and (4) data storage and dissem-

ination (Figure 1). Because genetic tagging of endogenous

proteins assures quantitative labeling, we fused PSD95 with

http://synaptome.genes2cognition.org


A

B

F

C

GD

E

(legend on next page)

Neuron 99, 781–799, August 22, 2018 783



eGFP and SAP102 with mKO2 using gene targeting, producing

PSD95-eGFP and SAP102-mKO2 knockin mice (Figures 1A and

S1). Normal protein expression levels (Figures S2A and S2B),

regional expression (FiguresS2CandS2D;FukayaandWatanabe,

2000), postsynaptic localization (Figure S3), and absence of elec-

trophysiological perturbations (Figures S4 and S5) confirmed that

gene taggingdidnotdetectablyalter endogenousprotein function.

Both proteins labeled discrete postsynaptic puncta, and crossing

of PSD95-eGFP and SAP102-mKO2 mice enabled comparisons

of their expression patterns (Figures 1A, 2A, and S6).

Single-synapse-resolution imaging across brain sections

required high-speed spinning disk confocal microscopy (SDM),

which offers near-diffraction-limit resolution (�290 nm in xy)

(Huang et al., 2010). For each punctum, wemeasured a set of pa-

rameters, including intensity, size, and shape. The size and

shape of synaptic junctions correlate with synaptic strength, ef-

ficacy, and plasticity (Ganeshina et al., 2004; Nusser et al., 1998;

Takumi et al., 1999). Advanced computer vision and machine

learning algorithms were developed to segment individual syn-

aptic puncta, measure their spatial distribution, and classify

them in an unsupervised manner. The validity of detection and

quantification of synaptic punctum parameters by SDM was es-

tablished by the high correlation of SDM data with published

data (Broadhead et al., 2016) from laser scanning confocal

microscopy (LSCM) and super-resolution gated stimulated

emission depletion (g-STED) microscopy (Figure S7). Synapse

diversity was evident in different neuronal types and brain re-

gions; for example, hippocampal CA3 pyramidal neurons had

large PSD95-eGFP puncta (characteristic of ‘‘thorny excres-

cence’’ synapses), in contrast to the small puncta in pyramidal

neurons of the somatosensory cortex (Figure S3). Furthermore,

different brain regions showed differential distributions of

PSD95-eGFP and SAP102-mKO2 (Figure S6).

To study this synapse diversity at the whole-brain scale, we

performed synaptomemapping by imaging five coronal sections

covering 13 overarching brain areas: isocortex, olfactory areas

(OLFs), hippocampal formation (HPF), cortical subplate (CTXsp),

striatum (STR), pallidum (PAL), thalamus (TH), hypothalamus

(HY), midbrain (MB), pons (P), medulla (MY), cerebellum (CB),

and fiber tracts (FT) (Figure 2). These were further subdivided

into �800 delineated subregions over both hemispheres, repre-

senting >300 unique subregions aligned with those in the Allen

Reference Atlas (ARA) (Dong, 2008). We also developed an un-

supervised mapping strategy devoid of a priori constraints on re-

gion boundaries in which the density of synapse parameters,

type, or subtype (described below) were quantified in voxels

(19 3 19 3 0.5 mm). The sets of synaptome maps are available
Figure 2. Whole-Brain-Scale Mapping of PSD95 and SAP102

(A) PSD95 (green) and SAP102 (magenta) expression in stitched down-sampled

(B) PSD95 and SAP102 synaptome parameters in ARA anatomical subregions. Pa

intensity, mean gray value per punctum (AU 3 104); colocalization, %.

(C) Synaptome maps of delineated regions in five sections. Median punctum den

(bottom) are shown. Parameter units: density, number of puncta per 100 mm2; in

(D) PSD95 punctum intensity in delineated subregions of the hippocampus and c

(E) SAP102 punctum intensity in delineated subregions of hippocampus and cor

(F) Similarity matrix between pairs of subregions (rows and columns). White line

highlights hippocampal subregions.

(G) Dendrogram showing hierarchical organization of subregions based on their
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on our website (http://synaptome.genes2cognition.org). We

have also developed an interactive software application called

Synaptome Explorer that allows visualization of individual synap-

tic puncta and their intensities, sizes, types, and subtypes across

the five coronal sections (STAR Methods; Video S1).

Hierarchical Patterning of Synapse Parameters
A striking and distinct anatomical patterning of PSD95-eGFP

and SAP102-mKO2 puncta was observed in the low-magnifica-

tion view of brain sections (Figures 2A and S6A). High-magnifica-

tion images showed that this patterning reflected the differential

distribution of the two proteins in populations of synapses in

different brain areas (Figure S6B). Therefore, our first goal was

to quantify the punctum parameters in synapse populations

from delineated areas defined by the ARA. We observed unique

regional distributions of punctum density (number of puncta per

area), intensity (reflecting protein amount), and size (reflecting

PSD size) for each protein, as well as for the percentage of

puncta expressing both proteins (colocalization) (Figures 2B,

2C, and S8; Table S1). We also observed diversity between sub-

regions as shown in the delineated cortical layers and hippocam-

pal formation subregions (Figures 2D and 2E). These data reveal

that each region and subregion has a characteristic ‘‘synaptome

signature’’ of these parameters.

To explore the similarity of brain regions, we generated a

similarity matrix from the synaptome signatures of �800 subre-

gions (Figure 2F; Table S2). This revealed three major blocks of

synaptome signature similarity: block 1 comprised all over-

arching areas from the cerebrum (except the pallidum), block 2

comprised all areas of the brainstem (and the pallidum), and

block 3 defined the cerebellum. Strikingly, these three blocks

broadly correspond to those regions arising from the first

patterning of the nervous system, when the neural tube divides

into three primary vesicles (forebrain, midbrain, and hindbrain)

(Swanson, 2012). Moreover, each of these major blocks was

composed of smaller blocks, many of which corresponded to hi-

erarchical anatomical divisions within these regions. We exam-

ined the hierarchical organization of synaptome signatures with

a dendrogram where subregions were clustered based on their

level of similarity (Figure 2G). Subregions belonging to the

same overarching areas typically clustered together. These re-

sults indicate that there is a hierarchical anatomical architecture

to the distribution of synapse diversity in the global synaptome.

Cataloging and Mapping Synapse Diversity
To better understand synapse diversity, it is necessary to classify

or catalog synapses into different types. Presently, there are no
images of five coronal sections (S1–S5). Bregma (b) level is indicated.

rameter units are as follows: density, number of puncta per 100 mm2; size, mm2;

sity (i), intensity (ii), size (iii), and colocalization (iv) for PSD95 (top) and SAP102

tensity, mean gray value per punctum (AU); size, mm2; colocalization, %.

ortex. CA1, cornu ammonis; CX, isocortex; DG, dentate gyrus.

tex.

s outline three major blocks (cerebrum, brainstem, and cerebellum). Pink box

similarity. Branch tips represent delineated subregions, colored as in (B).

http://synaptome.genes2cognition.org
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catalogs of synapses generated frommolecular and/or morpho-

logical measurements obtained across the whole brain. Using

the molecular, size and shape parameters, we constructed a

synapse catalog using an advanced machine learning technique

developed in-house, called the weighted clustering ensemble

method. As shown by the multiple peaks in the probability den-

sity distribution of the intensity in PSD95-expressing and/or

SAP102-expressing synapses from the whole brain, cortex, or

hippocampus, heterogeneous populations of synapses were

differentially distributed in these brain regions (Figure 3A). We

next classified all synapses into three major types according to

the expression of the two proteins: type 1 express PSD95 only,

type 2 express SAP102 only, and type 3 express both PSD95

and SAP102 (Figure S9). Next, using additional punctum param-

eters (STARMethods; Figure S10A), we classified�1 billion indi-

vidual synapses across all brain regions in a purely unsupervised

manner and retrieved 37 synaptic subtypes: type 1 was divided

into 11 subtypes, type 2 was divided into 7 subtypes, and type 3

was divided into 19 subtypes (Figures S9 and S10B).

To gain insight into the potential role of the comparatively large

number of subtypes arising from the mapping of two postsyn-

aptic proteins, we examined their anatomical distribution. For

each subtype, we generated synaptome maps using both the

delineated regions of the ARA (Figure S11) and the unsupervised

voxel-based maps (Figure S12). These maps show discrete dis-

tributions for each subtype. For example, in the hippocampus,

subtype 20 was enriched in CA1, subtype 19 was enriched in

CA2, subtype 31 was enriched in CA3, and subtype 32 was en-

riched in DG, in contrast to subtype 23, which was ubiquitously

expressed (Figures 3B and S13). Within the caudate putamen

nucleus of the striatum, we observed patches enriched in sub-

type 16 (Figures 3Ciii and S14), whereas other subtypes, such

as subtype 9 (Figures 3Civ and S14), were enriched outside of

these patches. These SAP102-rich/PSD95-poor patches (Fig-

ure 3Ci) aligned with patches enriched in mu-opioid receptor

(MOR) expression, a marker of striosomes (Koizumi et al.,

2013), which are a sub-compartment of the striatum embedded

within the matrix compartment (Figures 3Cii and S15A–S15C).
Figure 3. Catalog of Synapse Subtypes and Synaptome Maps

(A) Probability density function of punctum intensities for PSD95 (left), SAP102

(middle), and isocortex (bottom) reveals a multimodal distribution indicative of syn

(B) Synapse subtype distribution (density per 19.2 mm 3 19.2 mm) in hippocamp

subtype (23) and region-enriched subtypes (20, 19, 31, and 32). Reciprocal tange

maps). CA, cornu ammonis; DG, dentate gyrus; gr, granular layer; mo, molecular

lucidum; so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum.

(Ci) SAP102-rich/PSD95-poor patches (white delineated) within the caudate puta

(Cii) Patches (seen in Ci) correspond to striosomes within the matrix.

(Ciii and Civ) Examples of synapse subtypes with differential densities between s

and subtype 9 is highest in the matrix (Civ).

(Cv) Synaptome dominant subtypemap showing differential expression between

subtypes.

(D) Density of the 37 synapse subtypes (rows) across 775 delineated regions (colu

regions. Key, anatomical regions as in Figure 2B.

(E) Synaptome dominant subtype maps showing subtype with highest density p

(F) Dominant subtypes and diversity maps in cortical areas (boxes in E and H). Box

TEa (temporal association area). Key, diversity in (H) and subtypes in (C).

(G) Dominant subtypes and diversity maps in hippocampus. Box 4, rostral; box 5

(H) Synaptome diversity maps showing the spatial distribution of normalized Shan
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To contrast the differential distribution of the 37 synapse sub-

types across the whole brain, we plotted the density of each in

the �800 delineated regions of the ARA (Figure 3D). This re-

vealed that each subtype has a unique distribution and that

each region has a specific signature of synaptic subtype compo-

sition. Some subtypes were ubiquitously expressed across the

brain (e.g., subtypes 6 and 7), whereas others showed more

restricted regional expression. For instance, subtypes 24 and

28 were highly expressed in most cerebrum regions but nearly

absent in the brainstem and cerebellum. Others showed prefer-

ential expression in the subregions of the cerebrum (e.g., sub-

type 32 in hippocampal formation), and multiple subtypes

defined common subregions of the isocortex (Figure 3D, red

box). We generated synaptome maps of the dominant subtype

in each region (Figures 3E and S16A). These maps show striking

patterning in cortical layers and hippocampal subregions (Fig-

ures 3F and 3G). Moreover, the cortical layers in the primary

somatosensory (SSp), primary visual (VISp), and temporal asso-

ciation areas (TEa) differed from each other and revealed bound-

aries between and within cortical layers defined by classical

cytoarchitectonic methods (Figure 3F, boxes 1–3).

The extent of synapse diversity in different brain regions is un-

known. We therefore generated unsupervised synaptome maps

of synapse diversity (Figures 3H and S16B). These showed that

the highest diversity was in the hippocampal formation, followed

by cortical regions, olfactory areas, and the striatum. In contrast

to these areas, which are involved with higher cognitive func-

tions, the brainstem, which controls basic behaviors, showed

the lowest synapse diversity. The CA1 and DG subregions

showed highest diversity within the hippocampal formation (Fig-

ure 3G), and the cortical layers in primary somatosensory, pri-

mary visual, and temporal association areas differed from each

other and exhibited previously unknown layering patterns

(Figure 3F).

These catalogs of synapse subtypes, based on the molecular

organization of the postsynaptic proteome, revealed differential

distribution of subtypes and complexity between brain regions

and previously unknown anatomical boundaries and features.
(middle), and PSD95 + SAP102 (right) in the whole brain (top), hippocampus

apse subtype populations. Intensity, mean gray value per punctum (AU3 104).

al formation. Top left: nomenclature of subregions and gradients. Ubiquitous

ntial gradients in CA1sr of subtypes 13 and 24 (see Figure S13 for all subtype

layer; po, polymorphic layer; slm, stratum lacunosum-moleculare; slu, stratum

men nucleus (white outline).

triosome and matrix compartments; subtype 16 is highest in striosomes (Ciii),

striosomes andmatrix compartment and amediolateral gradient. Key, synapse

mns). Each subtype density was normalized (0–1) to its maximal density over all

er area (19.2 mm 3 19.2 mm). Subtype color key as in (C). Scale bars, 1 mm.

1, SSp (primary somatosensory area); box 2, VISp (primary visual area); box 3,

, caudal. Key, diversity in (H) and subtypes in (C).

non information entropy per area (19.2 mm3 19.2 mm). Boxes as in (F) and (G).
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Figure 4. Synaptome and Connectome

(Ai) Two main glutamatergic inputs to ventral posterior thalamus (VP) express VGluT1 and VGlut2 in their respective presynaptic terminals. Adapted from

Graziano et al. (2008).

(Aii) Co-labeling of PSD95 (green) and SAP102 (magenta) with presynaptic proteins VGluT1 (cyan) and VGluT2 (blue) in the VP. Scale bar, 1 mm.

(Aiii) Quantification of PSD95-only (green), SAP102-only (magenta), or PSD95+SAP102 (orange) puncta juxtaposed to VGluT1 (left) or VGluT2 (right) (mean ± SD).

**p < 0.01 post hoc Tukey.

(legend continued on next page)
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As a final step in this analysis, we examined the similarity matrix

of subtype distribution between brain regions, which reveals or-

ganization within and between the classical topographic divi-

sions of the brain (Figure S17). These findings suggest synapse

cataloging and synaptome mapping are powerful techniques

for deciphering the complexity of brain architecture.

Synapse Diversity in Circuits and Connectome
Networks
The spatial distribution of synapse diversity raises the possibility

that specific circuits are composed of particular types of synap-

ses. To address this, we examined two long-range connections

that converge on the ventral posterior nucleus of the thalamus

(VP) (shown as pathways 1 and 2 in Figure 4Ai). Pathway 1, which

descends from the somatosensory cortex, forms vesicular gluta-

mate transporter 1 (VGluT1)-positive presynaptic boutons,

whereas pathway 2, which arises from the brainstem, forms

VGluT2-positive glomeruli (Graziano et al., 2008). Quadruple la-

beling of PSD95, SAP102, VGluT1, and VGluT2 was used to

investigate the postsynaptic signatures of these two types of in-

puts (Figure 4Aii). We found that VGluT1 puncta were associated

with type3puncta (i.e., expressingPSD95andSAP102; p<0.01),

whereas VGluT2 puncta were juxtaposed to type 1 (PSD95-only)

puncta (p < 0.01) (Figure 4Aiii). Furthermore, the type 1 and type 3

puncta were on the same dendrite of putative relay cells (identi-

fied by calbindin immunolabeling), revealing that two specific

long-distance projections connect to molecularly distinct synap-

ses on a single dendrite (Figures 4Aiv and 4Av).

To ask if these principles extend more broadly to long-range

connections across the entire brain, we examined the synap-

tome signatures of brain regions connected by the mesoscale

connectome atlas (Oh et al., 2014). We found a positive correla-

tion between the projection density of connections and the

density of PSD95 (R = 0.67, p < 0.0001) and SAP102 (R = 0.43,

p < 0.0001) synaptic puncta (Figure 4Bi). We next asked whether

there was a correlation between the subtype density of 104 sub-

regions and their connections at thewhole-brain scale.We found

that type 1 (PSD95-only) subtypes (1–11, except 6) had a higher

correlation (eight subtypes had R > 0.6) than type 2 (SAP102-

only) types (subtypes 12–19), whereas type 3 (colocalized) types

(subtypes 20–37) displayed both high and low correlations (Fig-

ure 4Bii). These results suggest that the synaptome architecture

is a fundamental component of connectome organization.

The structure of connectome networks is known to be

nonrandom and described by a topology with small-world
(Aiv) Co-labeling of PSD95 (green), SAP102 (magenta) and calbindin (blue) in VP. A

delineate a calbindin-positive dendrite. Scale bar, 1 mm.

(Av) Combinations of synaptic proteins define two connections: path 1, where VG

VGluT2 contacts type 1 postsynaptic puncta (PSD95 only).

(Bi) Positive correlation (p < 0.05) between mesoscale maximal normalized proje

(Bii) Correlation coefficients between densities of 37 synapse subtypes and the m

(C) Synaptome network topology. Clustering coefficient (i), modularity (ii), and sm

(D) Most significant connections (gray lines) between subregions (black circles) i

(E) Circular graph of the 5% most significant connections of the binarized similar

(F) Between-region and within-region similarity of synaptome parameters for eac

(G) The ratio of within-region to between-region similarities for synaptome param

(H) Correlation between synaptome and resting-state fMRI connectome node

(p < 0.0002).
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architecture (Backus et al., 2016; Bullmore and Sporns, 2009;

Mi�si�c et al., 2014; Stafford et al., 2014; van den Heuvel and

Sporns, 2011). We examined the global network topology of

synaptome maps built from the similarity matrix, where each

node represented a delineated brain subregion and edges

that link nodes are scored for similarity of synaptome parame-

ters (Figure 4C). Calculation of three topological properties

(clustering coefficient, modularity, and small-worldness)

showed the synaptome network had a higher clustering coeffi-

cient and modularity than random networks and high small-

worldness (Figures 4Ci–4Ciii).

Hubs, which are nodes with high numbers of connections,

are a central feature of small-world networks (Amaral et al.,

2000; Barabasi and Albert, 1999), and fMRI studies found

that the hippocampal formation was the major hub in functional

connectomes (Backus et al., 2016; Mi�si�c et al., 2014; van den

Heuvel and Sporns, 2011). We asked which brain regions

were hubs in the synaptome network by examining the

connectedness (similarity) between regions and/or subregions.

Strikingly, we found the hippocampus to be a hub using several

approaches: (1) visualization of the synaptome network super-

imposed on the anatomical map (Figure 4D) and the circular

graph (Figure 4E) showed that the subregions of the hippocam-

pal formation (CA1slm, CA2slm, CA3so, DG-mo, and DG-sg)

were frequently connected to other subregions, and (2) the hip-

pocampal formation exhibited the highest ratios of within- to

between-region similarity (Figures 4F and 4G), indicating it is

a highly connected region and major hub in the global synap-

tome network. Thus, network analysis further reinforces the

conclusion that synaptome architecture and the distribution of

synapse diversity is a fundamental property of brain circuits

and networks.

To examine the relationship between synaptome architecture

and dynamic brain activity in the global network, we turned to the

observation that whole-brain network activity measured by

resting-state fMRI (rs-fMRI) shows small-world topology. Using

mouse brain rs-fMRI data (Stafford et al., 2014), we compared

the network node degree (i.e., the number of connections linking

a region to other regions, the most fundamental parameter of

network topology) (Bullmore and Sporns, 2009) between the

synaptome and rs-fMRI networks. We found a significant corre-

lation between rs-fMRI and synaptome node degree (R = 0.49,

p < 0.0002) (Figure 4H). Collectively, these results suggest that

the global architecture of synaptome networks is central to the

structural and functional characteristics of connectomes.
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Gradients of Synapse Subtypes in the Hippocampal
Formation
The hippocampal formation plays a key role in cognitive func-

tions, including the representation of spatial information in the

pattern of nerve cell firing (O’Keefe and Dostrovsky, 1971). We

were struck by the presence of synapse subtype gradients within

the CA1 stratum radiatum (CA1sr), because an extensive litera-

ture describes gradients of synaptic electrophysiological proper-

ties (Andersen et al., 1980; Danielson et al., 2016; Igarashi et al.,

2014; Pofantis et al., 2015). The density of subtype 13 gradually

decreased along the tangential axis (toward CA2), whereas sub-

type 24 exhibited a gradient in the opposite direction (Figures 3B

and 5A). When we systematically quantified the gradients for all

subtypes, most of the type 1 (PSD95-only) subtypes showed an

increasing distal-to-proximal tangential gradient (Figures 5Ai

and 5Aii), type 2 (SAP102-only) subtypes showed a decreasing

tangential gradient (Figures 5Aiii and 5Aiv), and type 3 (colocal-

ized) subtypes showed a mixture of both gradients (Figures 5Av

and 5Avi). We extended this analysis to the perpendicular radial

gradient, thereby examining two dimensions (Figure 5B; Table

S3). Both axes also revealed distinct gradients in PSD95 and

SAP102 punctum parameters (size and intensity) (Figure 5B).

Consistent with a previous super-resolution microscopy study

(Broadhead et al., 2016), we confirmed that the distance-depen-

dent increase in PSD95 punctum size along the radial axis (deep-

to-superficial; Figure 3B) corresponded to the increase in PSD95

in spine heads of individual apical dendrites detected by dye-

filled pyramidal cells (Figure 5C). Thus, the differential distribution

of these proteins within (radially) and between (tangentially) pyra-

midal cell dendrites produces the gradients within the CA1sr.

We next asked if there was a correlation between these gradi-

ents and electrophysiological data recorded across the CA1

region (Chang and Jackson, 2006). Consistent with the major

electrophysiological function of PSD95 (Béı̈que et al., 2006;

Carlisle et al., 2008; Elias et al., 2006; Horner et al., 2018; Migaud

et al., 1998), we found correlations between gradients of PSD95

and the peak postsynaptic response amplitude (tangential:

R = 0.66, p = 0.0003; radial: R = 0.74, p = 0.05). This suggests

that the spatial responses of the CA1sr are governed by the

spatial distribution of synapse diversity of this region. Because

PSD95 and SAP102 play a crucial role in modulating excitatory

postsynaptic responses (EPSPs) to sequences of neuronal activ-

ity (Béı̈que et al., 2006; Carlisle et al., 2008; Elias et al., 2006;

Horner et al., 2018; Migaud et al., 1998; Xu, 2011; Xu et al.,

2008), we reasoned that the spatial variation in subtype compo-

sition could transform an incoming spatiotemporal pattern into a

spatial map of activated synapses. This is an exciting possibility

because it implies that synapse diversity could produce a func-

tional output from a molecularly encoded representation.

Functional Representations from Synaptome Maps
To test this hypothesis, we constructed quantitative models of

CA1sr synaptic physiology based on the molecular gradients.

Using a computational biophysical model of synaptic transmis-

sion that exhibits short-term synaptic plasticity (Tsodyks and

Markram, 1997; Varela et al., 1997), a ‘‘control’’ model was con-

structed to replicate experimentally derived EPSP amplitudes in

response to paired-pulse and theta-burst stimulation. Figure 6A
shows the responses of the control synapse to three different

input patterns, illustrating how different temporal patterns could

induce differential postsynaptic responses. To test if the molec-

ular gradients of PSD95 and SAP102 along the tangential axis of

CA1sr could result in spatially organized functional properties,

we modified a set of 101 control synapses according to the

punctum size profiles obtained from our synaptome maps (Fig-

ure 5Bii), changing their short-term plasticity characteristics.

As shown by the individual EPSP responses to two theta-burst

stimuli, five synapses interspersed along the tangential axis

show differential responses (Figure 6B). The summed amplitude

responses of each of the 101 synapses showed that alternating

strong and weak synaptic responses emerge along the tangen-

tial axis (Figure 6C).

Next, we modeled a two-dimensional synaptome map based

on theperpendicular tangential and radial gradients in hippocam-

pal CA1sr (Figure 6D). This CA1sr synaptome map responded to

an input of two theta-bursts by generating spatial zones with

distinct EPSP profiles (Figure 6D). We next asked whether this

functional mapping of patterns of activity to local zones of synap-

ses varied according to the activity pattern by simulating four

different patterns of activity, including theta and gamma fre-

quency trains or bursts (with the same number of stimuli), which

are patterns implicated in cognitive processes in the hippocam-

pus and neocortex (Sirota et al., 2008) (Figure 6E). Each pattern

of activity resulted in a unique functional synaptomemap output:

some zones showed a similar response to theta and gamma ac-

tivity patterns, whereas other zones discriminated between the

two stimuli. Bursts and trains also reveal a clear functional dichot-

omy: dramatic response zoneswere seen during theta-burst, but

not theta-frequency, stimulation and in gamma-burst, but not

gamma-frequency, stimulation (Figure 6E). These results are

comparable to experimentally determined changes seen in

short-term plasticity along the longitudinal axis of CA1, including

gradual changes over the axis, diversified patterns of responses,

response features common to all locations, and features specific

to locations (Papaleonidopoulos et al., 2017). Together, these

findings suggest that spatial organization of synapse diversity

within the CA1sr can generate a multiplicity of functional repre-

sentations from incoming patterns of neuronal activity.

Behavioral Representations from Synaptome Maps
To investigate how synaptome map outputs would respond

when animals are in different behavioral conditions, we used

neuronal spike patterns recorded during a three-choice serial re-

action time attention experiment (Kim et al., 2016) (Figure 6F).We

compared the synaptome responses to patterns of activity re-

corded during trials ending in either a correct or incorrect

response in model synapses as described above. In two-sample

statistical tests (Kolmogorov-Smirnov test and Student’s t test,

p < 0.05), the synaptome map outputs from the two responses

were significantly different. Although the number of spikes was

larger for incorrect trials, the synaptome map produced larger

outputs for the correct trials (Figure 6F). Moreover, synapses in

some zones displayed a larger differential response than in

others. These results support the view that synaptome maps

are a molecular neuroanatomical substrate for internal represen-

tations of behavioral responses involving decision-making.
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Figure 5. Synapse Gradients in the Hippocampal Formation

(A) Line plots (i, iii, and v) and heatmaps (ii, iv, and vi) of the normalized density for type 1 (PSD95-only) (i and ii), type 2 (SAP102-only) (iii and iv) and type 3

(colocalized) (v and vi) subtypes on CA1sr tangential axis. Density unit, A.U.

(B) Tangential and radial gradients of PSD95 and SAP102 punctum intensity (I and iii) and size (ii and iv) in CA1sr. Intensity, 16-bit grayscale; size, mm3.

(C) Top: Alexa-594-injected pyramidal neuron (red) in the CA1 and PSD95 punctum labeling (green). DAPI staining, blue. Scale bar, 35 mm. SLM, stratum la-

cunosum-moleculare. SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum; Bottom: PSD95 punctum volume (mm3) as a function of distance from

the soma in apical dendrites of dye-filled CA1 pyramidal neurons (mean ± SEM). Dotted lines indicates range of plotted data.
Synaptome Reprogramming
The aforementioned experiments provide support for a model

where the spatial organization of synapse diversity arising from

the expression of PSD95 and SAP102 could ‘‘store’’ or represent

information in synaptome maps, which is then ‘‘recalled’’ with
790 Neuron 99, 781–799, August 22, 2018
sequences of behaviorally relevant neural activity. This model

suggests that in animals carrying mutations in synaptic proteins,

changes in synapse diversity and synaptome maps will alter the

stored representation and thus patterns of activity will produce a

different spatiotemporal output.
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Figure 6. Computational Models of Synaptome Function

(A) EPSP amplitude depends on the temporal stimulus pattern. Synaptic responses to theta-burst (black), gamma-frequency (red), and mixed-frequency stimuli

(magenta).

(B) Differential EPSP responses using hippocampal tangential gradient data. PSD95 and SAP102 size data (bottom) were used to model amplitude parameter

values (top). Theta-burst induced EPSP responses over time are shown for five synapses (numbered 1–101) located along the CA1sr tangential axis. Circles in

lower graph indicate size values used.

(C) Normalized summed EPSP amplitude responses to theta-burst (as in B) shown for 101 synapses along the CA1sr tangential axis. Note regions of strong and

weak responses. PSD95 and SAP102 gradients illustrated in the lower graph of (B) are shown here with graded colors (PSD95, green; SAP102, magenta).

(legend continued on next page)
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To explore how mutations in synapse proteins affect synap-

tome maps, we reasoned that two main kinds of mechanisms

merit consideration. The first is the direct impact of the mutation

on the synapses that express the protein encoded by the gene.

For example, a knockout (loss-of-function) mutation of SAP102

would have a direct effect on all SAP102-positive synapses

(types 2 and 3, subtypes 12–37). Indeed, in the complete

absence of SAP102, the proteome of these synapses would be

directly altered. Thus, the catalog of synapses in the mutant

mouse would be reorganized. In the second mechanism, a mu-

tation in one postsynaptic protein causes an adaptive change

in the expression of other synaptic proteins, which we refer to

as ‘‘synaptome reprogramming.’’

To test whether synaptome reprogramming occurs, we map-

ped the PSD95-eGFP synaptome in Psd93 (also known as

Dlg2) and Sap102 (also known as Dlg3) knockout mice, which

have abnormalities in synaptic physiology and behavior (Carlisle

et al., 2008; Cuthbert et al., 2007; Nithianantharajah et al., 2013).

We crossed the PSD95-eGFPmice with those carrying knockout

mutations in Psd93 and Sap102 and compared the PSD95 syn-

aptome maps in wild-type (WT; n = 13) and mutant backgrounds

(Psd93�/�, n = 6; Sap102�/�, n = 11) in coronal sections (bregma

level �1.8 mm) (Figures 7, S18, and S19). Widespread reorgani-

zation of the PSD95 synaptome map was observed in both

mutant lines, indicating that synaptome reprogramming takes

place in both mutants (Figures 7A, S18, and S19; Table S4).

Next, we asked if the synaptome reprogramming modified the

global synaptomenetwork topology. In bothmutants, the regional

similarity matrices showed reorganization; there was increased

regional similarity in Psd93�/� mice, in contrast to a marked

reduction of similarity in Sap102�/� mice (Figure 7B). Many areas

showedmajor changes in the ratio of between-region towithin-re-

gion similarities (as in Figure 4G) in both mutants (Figure 7C). To

explore how the mutations reprogrammed the topology of the

synaptome, we examined clustering coefficient, modularity, and

small-worldness (Figure 7D). This again showed a striking dichot-

omy inwhich thePSD95synaptome topologywas reprogrammed

in opposite directions by the twomutations: the network was less

clustered andmore randomizedwith reduced small-worldness in

the Sap102�/� mice, whereas in Psd93�/� mice, it showed

increased clustering, modularity, and small-worldness. No signif-

icant differences were detected in the cell density or size of delin-

eated regions that could impact the synaptome changes

observed (Figure S20). These data show that mutations in synap-

tic proteins induce large-scale synaptome reprogramming

affecting the global topology of brain networks.
(D) EPSPs in response to two theta-bursts (as in A–C) in a two-dimensional synap

gradients in CA1sr. Normalized sumof EPSP peak amplitudeswas color coded fro

colors.

(E) Normalized summed EPSP peak amplitude responses to different spike in

dimensional synaptome map of CA1sr (as in D). Four patterns, each comprising

gamma-frequency. Amplitudes indicate normalized sum of EPSP amplitudes pe

(F) Normalized summed EPSP peak amplitude responses to spike patterns from

different spatial locations in a two-dimensional synaptome map of CA1sr (as in D

et al. (2016).

(G) Normalized summed EPSP peak amplitude responses to different spike input

dimensional synaptome map of CA1sr in Psd93�/� mice. Note that the pattern

remaining.
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To test our hypothesis that reorganization of synaptomemaps

in animals carrying mutations would change the representation

of information, we adapted our computational electrophysiolog-

ical model of the two-dimensional CA1sr synaptome map using

parameters based on electrophysiological data from Psd93�/�

mice (Carlisle et al., 2008). Thesemice show the same behavioral

phenotypes as schizophrenia patients carrying Psd93mutations

(Nithianantharajah et al., 2013). Comparison of the synaptome

map outputs in WT (Figure 6E) and Psd93�/� mice (Figure 6G)

with the four patterns of activity described above shows that

the spatial response to some patterns (theta-burst, gamma-fre-

quency) was severely reduced in the mutants, whereas the

response to other patterns was largely unaffected (theta-fre-

quency, gamma-burst). In other patterns (data not shown),

responses were increased, or there were novel responses (pos-

itive). These findings show that mutations in synaptic proteins

reorganize synaptic diversity and alter the spatial architecture

of synaptome maps at the global systems level and can change

the capacity to represent information in the hippocampal

formation.

DISCUSSION

Synapse Diversity and Proteome Complexity
The synaptome of themouse brain reveals that synapse diversity

arising from combinations of postsynaptic proteins (Figure 8A)

has the potential to generate an extraordinary number of excit-

atory synapse subtypes and synaptome maps; as few as ten

proteins could produce 1,023 types and 1011 subtypes, which

equals the total number of synapses in the mouse brain. Even

though it is clear from our data that proteins are not randomly

distributed into different synapses and the combinatorial diver-

sity will therefore be constrained, the fact that the postsynaptic

proteome contains >1,000 proteins and >200 multiprotein com-

plexes (Frank et al., 2016) suggests synapse diversity will be

vast. Moreover, we expect that posttranslational and other activ-

ity-dependent protein modifications (Coba et al., 2009; Collins

et al., 2005; Trinidad et al., 2008) will generate further diversity,

including transient and dynamic subtypes. The presynaptic

and inhibitory synapse proteomes will also be expected to

contribute to overall synaptome diversity.

Our findings suggest that synapse diversity increased in the

vertebrate brain as a result of genome duplications early in

the vertebrate lineage (Dehal and Boore, 2005; Holland et al.,

2017). These duplications expanded the families of synapse pro-

teins andmultiprotein complexes (Grant, 2016;Nithianantharajah
tome map (113 11 synapses) derived from tangential (x axis) and radial (y axis)

m blue (zero) to red (one). PSD95 and SAP102 gradients are shownwith graded

put patterns are mapped to different spatial locations and zones in a two-

eight pulses, are displayed: theta-burst, theta-frequency, gamma-burst, and

r synapse.

correct (blue surface) and incorrect (red surface) choice trials are mapped to

and E). p < 0.05, two-sample Kolmogorov-Smirnov t test. Data are from Kim

patterns (as in E) are mapped to different spatial locations and zones in a two-

specificity in WT (E) is largely lost, with only a difference in overall amplitude
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Figure 7. PSD93 and SAP102 Mutations

Reprogram the PSD95 Synaptome

(A) Cohen’s d values of changes in PSD95

punctum density (i and iv), intensity (ii and v), and

size (iii and vi) in Psd93�/� mice (i–iii, n = 6) and

Sap102�/� mice (iv–vi, n = 11) compared with

wild-type (WT) mice (n = 13). Key, increase (red)

or decrease (blue) relative to WT. Significance

calculated using Bayesian estimation analysis

with Benjamini-Hochberg correction: p < 0.05

(black asterisks), p < 0.01 (white asterisks). NA,

not applicable. Raw values for PSD95 quantifi-

cation in Table S4.

(B) Subregion similarity matrices of PSD95 syn-

aptome between pairs of subregions in WT,

Psd93�/� and Sap102�/� mice.

(C) Ratio of between-region to within-region

similarities ordered from highest to lowest for

regions in WT, Psd93�/�, and Sap102�/� mice.

(D) Clustering coefficient (left), modularity (mid-

dle), and small-worldness (right) for WT,

Psd93�/�, and Sap102�/� mice compared with a

random-controlled network with an equivalent

network complexity.
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Figure 8. The Synaptomic Model

(A) Synaptome architecture arises from a hierarchical molecular organization. Differentially expressed postsynaptic proteins are assembled into complexes

(PSD95 complexes, green; SAP102 complexes, red). Complexes are inserted into postsynaptic terminals of excitatory synapses in different proportions pro-

ducing synapse types and subtypes, which are spatially distributed (colored circles) into synaptome maps.

(B) Synaptome map function in behavior and physiology. Each perception and action is associated with a pattern of neural activity. These patterns trigger

postsynaptic responses of varying amplitudes in different synapse subtypes, producing zones and regions of differential activity in synaptome maps. As the

mouse moves through its environment, the different patterns of activity produce a continuously varying synaptome output.
et al., 2013; Ryan and Grant, 2009; Ryan et al., 2008, 2013) avail-

able for distribution into synapse types, allowing the evolution of

neuroanatomical specializations. Thus, genome evolution and

mechanisms controlling the assembly of proteins into multipro-

tein complexes provides a molecular logic to synaptome archi-

tecture in the vertebrate brain.

Each region of the brain was characterized by a signature of

synapse subtypes, and each subtype showed a unique distri-

bution pattern. The hippocampus and neocortex showed

the highest overall diversity of excitatory synapses, and

their synaptome maps revealed a plethora of previously un-
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known zones, boundaries, and gradients. The gradients of

synapse subtypes in the CA1sr corresponded to known

electrophysiological properties, and the brain-wide electro-

physiological network, measured by resting-state fMRI, corre-

sponded to the global synaptome architecture. Specific

synapse subtypes were found in discrete circuits and the con-

nected regions of the mesoscale structural connectome,

revealing that circuits across the brain are defined by their

synapse composition. In other words, the wiring diagram of

the brain connects specialized local synaptome maps into a

global brain network.



The Synaptome in Information Storage and Recall
We studied how synapse diversity might contribute to cognition

by focusing on the gradients of PSD95 and SAP102 found in

the CA1sr. It was striking that the pattern of neural activity,

such as a theta-burst train, generated differential EPSP re-

sponses in zones or regions and that other patterns of activity

generated distinct and overlapping spatial outputs. This is an

important finding, because it suggests that a multiplicity of rep-

resentations can be ‘‘written’’ into a synaptome by the molec-

ular composition of its synapses and that each representation

can be accessed or ‘‘read’’ by a particular pattern of activity.

The instantaneous response to changing patterns means that

the synaptome map is continuously transforming temporally

encoded information into changing spatial outputs. Thus, as

an animal moves through its environment and receives chang-

ing sensory inputs that modulates the pattern of neuronal activ-

ity, the synaptome will generate a continuous ‘‘movie’’ of func-

tional outputs (Figure 8B; Video S2). As such, synapse diversity

and short-term plasticity provides a versatile mechanism for in-

formation storage and a simple and instantaneous recall

mechanism.

This synaptomic model of cognition also raises interesting is-

sues regarding the distributed nature and complexity of repre-

sentations. Considering that some sensory stimuli are known to

produce widespread activation of neurons across many regions

(Musall et al., 2018), a global response from the synaptome

would result. The synaptome architecture would produce

distributed representations comprising a diversity of spatiotem-

poral responses. This would permit many different brain regions

to contribute to the motor and other outputs. Interestingly, the

hippocampus was found to be a hub in both the synaptome

and functional connectome architectures (Mi�si�c, 2014; van

den Heuvel and Sporns, 2011), suggesting it participates in

many representations and behaviors involving other regions

of the brain.

Synaptome Reprogramming
We asked if mutations could change the synaptome architec-

ture and found a remarkable adaptive response, which we

refer to as synaptome reprogramming. The PSD95 synaptome

was changed in mice lacking PSD93, which is an integral

component of PSD95 complexes (Frank et al., 2016). The

PSD95 synaptome was also changed in mice lacking

SAP102, which is a component of other complexes. Thus,

the PSD95 synaptome architecture was reprogrammed by

these two classes of mutations, which implies that potentially

all mutations in postsynaptic proteins could cause synaptome

reprogramming. This may be important for the more than 130

brain diseases that arise from postsynaptic mutations (Bayés

et al., 2011). In addition to synaptome reprogramming, the

loss of any synaptic protein would cause a direct effect on

synapse diversity. For example, knockout of Sap102, which

causes X-linked intellectual disability and autism (Lelieveld

et al., 2016; Tarpey et al., 2004; Xing et al., 2016), will directly

impact type 2 and 3 synapses. We also expect that mutations

impacting transcription factors and other non-synaptic pro-

teins that control expression of synaptic proteins will result

in synaptome reprogramming. Thus, it is likely that changes
in synapse diversity will be a core feature of many genetic

brain diseases.

Synaptome reprogramming had widespread effects on brain

regions and altered the synaptome network topology. There

was also a striking and unexpected dichotomy in the synaptome

reprogramming observed in the Psd93 and Sap102 mutants:

they showed opposite effects on network topology and cortical

puncta parameters, which parallels the dichotomy observed in

their higher cognitive functions and electrophysiological proper-

ties (Carlisle et al., 2008; Cuthbert et al., 2007; Nithianantharajah

et al., 2013). We also found that the Psd93 mutation altered the

conversion of activity patterns into a spatiotemporal output in

the CA1sr. Thus, this mouse model of schizophrenia has altered

representations, which may be directly relevant to the delusions

and hallucinations experienced by these patients (Silverstein and

Keane, 2011).

Synaptome Resources and Applications
We have generated brain-wide atlases of synapse numbers

and catalogs of synapse types and subtypes, and we derived

many different maps, all of which are available on our website

(http://synaptome.genes2cognition.org). We have also gener-

ated a novel Synaptome Explorer tool that can be used to inter-

actively visualize brain sections at all levels of magnification

allowing observations of individual puncta and their type and

subtype classifications at the whole-brain scale. It takes

�100 hr for imaging of two molecular markers in five coronal

sections generating �10 Tb of data, �90 hr for image analysis

(on a stand-alone workstation), and several days for manual

delineation of brain regions and registration to the ARA. We

anticipate a 20-fold improvement in throughput with ongoing

methodological modifications. The SYNMAP pipeline is suitable

for many molecular labeling methods, although we find that

knockin mice carrying genetic labels are advantageous over

antibody-based methods, because they reliably and reproduc-

ibly label every molecule and reduce the number of steps in the

protocols.

We suggest it will be useful in future experiments to report the

precise spatial coordinates of electrophysiological/optical re-

cordings of synaptic function so that results can be assigned

to the relevant synapse types/subtypes. Our study also provides

a framework for generation of systematic unbiased synapse cat-

alogs based on high-content image data and a standardized

nomenclature describing synapse diversity based on molecular

composition. The whole-brain synaptome maps reported here

are first editions in a very large library encompassing all synaptic

proteins. There will also be a need tomap reprogrammed synap-

tomes in genetic and other disease models and modifications

arising from development, aging, behavior, and experimental

manipulations.
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Béı̈que, J.C., Lin, D.T., Kang, M.G., Aizawa, H., Takamiya, K., and Huganir,

R.L. (2006). Synapse-specific regulation of AMPA receptor function by PSD-

95. Proc. Natl. Acad. Sci. USA 103, 19535–19540.

Benavides-Piccione, R., Fernaud-Espinosa, I., Robles, V., Yuste, R., and

DeFelipe, J. (2013). Age-based comparison of human dendritic spine structure

using complete three-dimensional reconstructions. Cerebral Cortex 23,

1798–1810.

Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S.,

Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., and Hess, H.F.

(2006). Imaging intracellular fluorescent proteins at nanometer resolution.

Science 313, 1642–1645.

Breiman, L. (2001). Random Forests. Mach. Learn. 45, 5–32.

Broadhead, M.J., Horrocks, M.H., Zhu, F., Muresan, L., Benavides-Piccione,

R., DeFelipe, J., Fricker, D., Kopanitsa, M.V., Duncan, R.R., Klenerman, D.,

et al. (2016). PSD95 nanoclusters are postsynaptic building blocks in hippo-

campus circuits. Sci. Rep. 6, 24626.

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoret-

ical analysis of structural and functional systems. Nat. Rev. Neurosci. 10,

186–198.

Carlisle, H.J., Fink, A.E., Grant, S.G., and O’Dell, T.J. (2008). Opposing effects

of PSD-93 and PSD-95 on long-term potentiation and spike timing-dependent

plasticity. J. Physiol. 586, 5885–5900.

https://doi.org/10.1016/j.neuron.2018.07.007
https://doi.org/10.1016/j.neuron.2018.07.007
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref1
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref1
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref2
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref2
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref2
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref3
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref3
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref3
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref4
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref4
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref4
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref5
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref5
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref5
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref6
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref6
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref7
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref7
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref7
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref7
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref8
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref8
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref8
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref8
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref9
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref9
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref9
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref10
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref10
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref10
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref11
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref11
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref11
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref11
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref12
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref12
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref12
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref12
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref13
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref14
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref14
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref14
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref14
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref15
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref15
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref15
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref16
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref16
http://refhub.elsevier.com/S0896-6273(18)30581-6/sref16


Chang, P.Y., and Jackson, M.B. (2006). Heterogeneous spatial patterns of

long-term potentiation in rat hippocampal slices. J. Physiol. 576,

427–443.

Chenouard, N., Smal, I., de Chaumont, F., Ma�ska,M., Sbalzarini, I.F., Gong, Y.,

Cardinale, J., Carthel, C., Coraluppi, S., Winter, M., et al. (2014). Objective

comparison of particle tracking methods. Nat. Methods 11, 281–289.

Coba, M.P., Pocklington, A.J., Collins, M.O., Kopanitsa, M.V., Uren, R.T.,

Swamy, S., Croning, M.D., Choudhary, J.S., and Grant, S.G. (2009).

Neurotransmitters drive combinatorial multistate postsynaptic density net-

works. Sci. Signal. 2, ra19.

Colledge, M., Snyder, E.M., Crozier, R.A., Soderling, J.A., Jin, Y.,

Langeberg, L.K., Lu, H., Bear, M.F., and Scott, J.D. (2003).

Ubiquitination regulates PSD-95 degradation and AMPA receptor surface

expression. Neuron 40, 595–607.

Collins, M.O., Yu, L., Coba, M.P., Husi, H., Campuzano, I., Blackstock, W.P.,

Choudhary, J.S., and Grant, S.G. (2005). Proteomic analysis of in vivo phos-

phorylated synaptic proteins. J. Biol. Chem. 280, 5972–5982.

Collins, M.O., Husi, H., Yu, L., Brandon, J.M., Anderson, C.N., Blackstock,

W.P., Choudhary, J.S., and Grant, S.G. (2006). Molecular characterization

and comparison of the components and multiprotein complexes in the post-

synaptic proteome. J. Neurochem. 97 (Suppl 1 ), 16–23.

Cuthbert, P.C., Stanford, L.E., Coba, M.P., Ainge, J.A., Fink, A.E., Opazo, P.,

Delgado, J.Y., Komiyama, N.H., O’Dell, T.J., and Grant, S.G. (2007).

Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific

plasticity pathways and learning strategies. J. Neurosci. 27, 2673–2682.

Danielson, N.B., Zaremba, J.D., Kaifosh, P., Bowler, J., Ladow, M., and

Losonczy, A. (2016). Sublayer-specific coding dynamics during spatial naviga-

tion and learning in hippocampal area CA1. Neuron 91, 652–665.

Dehal, P., and Boore, J.L. (2005). Two rounds of whole genome duplication in

the ancestral vertebrate. PLoS Biol. 3, e314.

Distler, U., Schmeisser, M.J., Pelosi, A., Reim, D., Kuharev, J., Weiczner, R.,

Baumgart, J., Boeckers, T.M., Nitsch, R., Vogt, J., and Tenzer, S. (2014). In-

depth protein profiling of the postsynaptic density from mouse hippocampus

using data-independent acquisition proteomics. Proteomics 14, 2607–2613.

Dong, H.-W. (2008). Allen Reference Atlas: A Digital Color Brain Atlas of the

C57black/6J Male Mouse (Wiley).

Elias, G.M., Funke, L., Stein, V., Grant, S.G., Bredt, D.S., and Nicoll, R.A.

(2006). Synapse-specific and developmentally regulated targeting of

AMPA receptors by a family of MAGUK scaffolding proteins. Neuron

52, 307–320.

Emes, R.D., Pocklington, A.J., Anderson, C.N., Bayes, A., Collins, M.O.,

Vickers, C.A., Croning, M.D., Malik, B.R., Choudhary, J.S., Armstrong, J.D.,

and Grant, S.G. (2008). Evolutionary expansion and anatomical specialization

of synapse proteome complexity. Nat. Neurosci. 11, 799–806.

Fernández, E., Collins, M.O., Uren, R.T., Kopanitsa, M.V., Komiyama, N.H.,

Croning, M.D., Zografos, L., Armstrong, J.D., Choudhary, J.S., and Grant,

S.G. (2009). Targeted tandem affinity purification of PSD-95 recovers core

postsynaptic complexes and schizophrenia susceptibility proteins. Mol.

Syst. Biol. 5, 269.

Fernández, E., Collins, M.O., Frank, R.A.W., Zhu, F., Kopanitsa, M.V.,

Nithianantharajah, J., Lemprière, S.A., Fricker, D., Elsegood, K.A.,

McLaughlin, C.L., et al. (2017). Arc requires PSD95 for assembly into postsyn-

aptic complexes involved with neural dysfunction and intelligence. Cell Rep.

21, 679–691.

Frank, R.A., Komiyama, N.H., Ryan, T.J., Zhu, F., O’Dell, T.J., and Grant, S.G.

(2016). NMDA receptors are selectively partitioned into complexes and super-

complexes during synapse maturation. Nat. Commun. 7, 11264.

Frank, R.A.W., Zhu, F., Komiyama, N.H., andGrant, S.G.N. (2017). Hierarchical

organization and genetically separable subfamilies of PSD95 postsynaptic

supercomplexes. J. Neurochem. 142, 504–511.

Fukaya, M., andWatanabe, M. (2000). Improved immunohistochemical detec-

tion of postsynaptically located PSD-95/SAP90 protein family by protease
section pretreatment: a study in the adult mouse brain. J. Comp. Neurol.

426, 572–586.

Ganeshina, O., Berry, R.W., Petralia, R.S., Nicholson, D.A., and Geinisman,

Y. (2004). Differences in the expression of AMPA and NMDA receptors

between axospinous perforated and nonperforated synapses are related

to the configuration and size of postsynaptic densities. J. Comp. Neurol.

468, 86–95.

Grant, S.G. (2007). Toward a molecular catalogue of synapses. Brain Res.

Brain Res. Rev. 55, 445–449.

Grant, S.G. (2016). The molecular evolution of the vertebrate behavioural

repertoire. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150051.

Graziano, A., Liu, X.B., Murray, K.D., and Jones, E.G. (2008). Vesicular

glutamate transporters define two sets of glutamatergic afferents to the so-

matosensory thalamus and two thalamocortical projections in the mouse.

J. Comp. Neurol. 507, 1258–1276.
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PMID: 1734405

N/A

peGFP-N1 vector carrying eGFP coding sequence Clontech NCBI: U55762
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Default.aspx?id=91

Just Another Gibbs Sampler SourceForge https://sourceforge.net/projects/

mcmc-jags/files/

Python 2.7.6 Python Software

Foundation

https://www.python.org/download/

releases/2.7.6/

Anaconda 1.9.2 Linux Anaconda, Inc. https://anaconda.org/anaconda

ImageMagick ImageMagick Studio https://www.imagemagick.org/script/

index.php

OpenCV 2.4.6 Intel Corporation,

Willow Garage, Itseez

https://opencv.org/

Synaptome Explorer v.1.0 This paper https://github.com/SynaptomeMapping/

SynaptomeExplorer/archive/master.zip

SDL2 Simple DirectMedia

Layer

https://www.libsdl.org

Dear ImGui GitHub https://github.com/ocornut/imgui
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Seth

Grant (seth.grant@ed.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Gene Targeting and Mouse Generation
All mouse procedures were performed in accordance with UK HomeOffice regulations and approved by Edinburgh University Direc-

tor of Biological Services. The gene targeting strategy for tagging PSD95 and SAP102 was previously described (Fernández et al.,

2009) and was used to generate the PSD95-eGFP and SAP102-mKO2 targeting constructs. The template vector pneoflox-TAP

contained mini homology arms of murine Dlg4 (GeneID: ENSMUSG00000020886) or murine Dlg3 gene (GeneID:

ENSMUSG00000000881) that were PCR amplified from BAC clones (bMQ239c12 or bMQ312G21, respectively). Enhanced green

fluorescent protein (eGFP, NCBI Accession number U55762) or mKO2 (MBL AM-V0146-NP) coding sequence, which follows a short

linker sequence encoding for four amino acids (Gly-Gly-Gly-Ser), was inserted into the open reading frame of Dlg4 or Dlg3 at the

30 end and immediately before its stop codon, respectively. The final targeting vector pTARGETER was constructed by recombin-

eering techniques using a E.coli strain EL350 expressing l phage gene products (recombinases), as a result, the final vector con-

tained a 50 homology arm and 30 homology arm of Dlg4 at the size of 6.3 kb and 2.9 kb, and for Dlg3 at the size of 2 kb (50 homology

arm) and 5.7 kb (30 homology arm) (Figure S1). All vector junctions and PCR cloned fragments were confirmed by Sanger sequencing.

Correctly targeted ES clones (E14Tg2a) were identified by long-range PCR and microinjected into blastocysts for chimera genera-

tion. F1 generation pups presenting both WT and mutant bands on genotyping were considered as germline-transmitted heterozy-

gotes. These heterozygous mice were crossed with a Cre-deleter mouse (CAG-Cre or CMV-Cre) to remove the loxP flanked neo

cassette (Figure S1). To establish the reporter mouse lines, individual heterozygotes (PSD95eGFP/+ or SAP102mKO2/+) were further

bred with C57BL/6J WT mice before interbreeding to create double-homozygous reporter mice, which were then maintained by

intercrossing.

PSD95-eGFP and SAP102-mKO2mice were genotyped by PCR using the following primer sets flanking targeted exon, FP coding

region and endogenous 30UTR. PSD95-eGFP mice genotyping primers: exon F: CAAAGTGAAACGTGTCATCGAAG; eGFP F:

AACCACTACCTGAGCACCCAGTC; 95UTR R: GAAGAAAGGCTAGGGTACGAAGG; SAP102-mKO2 mice genotyping primers:

exon F: CATCACAGGAGGGTCGTTACTAG; mKO2 F:

GCCAGATGAAGACCACCTACAAG; 102UTR R: GGGACAAGAACAGTAGTCATTTG

An adult (postnatal day 80 male) PSD95eGFP/eGFP;SAP102mKO2/mKO2 mouse was used for the mapping. The following groups of

mice were used for the study of synaptome maps in mutant mice: WT (PSD95eGFP/+), n = 13 (9 m, 4f), age mean = 94.8, SD =

15.4; PSD93mutant (PSD95eGFP/+;PSD93�/�), n = 6 (2 m, 3f), age mean = 90.3, SD = 3.4; SAP102mutant (PSD95eGFP/+;SAP102�/�),
n = 11 (3 m, 8f), age mean = 107.2, SD = 25.6. Five P70 male mice were used for cell-filling experiments.
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METHOD DETAILS

Western Blotting
Forebrain tissue was homogenized in deoxycholate buffer (50 mM Tris pH 9.0, 1% sodium deoxycholate, 50 mM NaF, 20 mM ZnCl,

1 mM Na3VO4, 1 mM PMSF and 1 tablet/10 mL protease inhibitor cocktail tablets (Roche)) and clarified by centrifugation as previ-

ously described (Fernández et al., 2009; Husi et al., 2000). Each protein sample was quantified using a bicinchoninic acid assay

(Pierce) and analyzed by SDS-PAGE. TenmL of 5%milk PBS-T was added to themembrane, to block for 1–2 h at room temperature.

Primary antibodies (PSD-95: 75-348, Mouse IgG1; Neuromab) (SAP102: 124213, Rb polyclonal; Synaptic System) used at a dilution

of 1:1000were diluted in 5mL 1%milk PBS-T and incubated on rollers at 4�Covernight. The blot waswashed for 15–20min in PBS-T.

Secondary antibody (IRDye secondary antibodies, LI-COR) was diluted in 5mL 1%milk PBS-T and incubated on rollers at room tem-

perature for 1 h. The blot was washed for 15–20min in PBS-T, followed by rinsing once in PBS for 5 min before examined by Odyssey

imaging system (LI-COR).

Electrophysiological Recordings
Electrophysiological recordings in the CA1 region of hippocampal slices were used to test for any functional consequences of eGFP

and mKO2 tag insertions. Acute hippocampal slices were prepared as previously described (Kopanitsa et al., 2006). PSD95-eGFP

animals were 2.5–4 months old and SAP102-mKO2 mice were 5.5–8.5 months old on the day of dissection. Field excitatory post-

synaptic potentials (fEPSPs) were recorded using aMEA60 electrophysiological suite (Multi Channel Systems, Reutlingen, Germany).

To record fEPSPs, a hippocampal slice was placed into the well of 5 3 13 3D MEA biochip (Qwane Biosciences, Lausanne,

Switzerland). Monopolar stimulation of Schaffer collateral/commissural fibers through array electrodes was performed by

STG4008 stimulus generator. Biphasic (positive/negative, 100 ms/a phase) voltage pulses were used. Amplitude, duration and fre-

quency of stimulation were controlled by the MC_Stimulus II software. We performed all long-term potentiation (LTP) experiments

using two-pathway stimulation of Schaffer collateral/commissural fibers (Andersen et al., 1977). A single principal recording elec-

trode in themiddle of proximal part of CA1 was chosen and two electrodes were assigned for stimulation of the control and test path-

ways on the subicular side and on the CA3 side of stratum radiatum respectively. The distance from the recording electrode to the

test stimulation electrodewas 420–510 mmand to the control stimulation electrode 316-447 mm. To evoke orthodromic fEPSPs, stim-

ulation electrodes were activated at a frequency of 0.02 Hz. Peak amplitude of the negative part of fEPSPs was used as a measure of

the synaptic response. Following at least 10–15 min of equilibration period inside an MEA well, I/O relationships were obtained and

baseline stimulation strength was set to evoke a response that corresponded to �40% of the maximal attainable fEPSP at the prin-

cipal recording electrode. Paired pulse facilitation (PPF) was observed after stimulating Schaffer collateral/commissural fibers with

a pair of pulses at baseline stimulation strength and an interpulse interval of 50 ms. PPF value was calculated as fEPSP2/

fEPSP1*100%. Average data from five paired-pulse stimulations were used for each slice. LTP was induced after 60 min period

of stable baseline responses by a theta-burst stimulation (TBS) train consisting of 10 bursts given at 5 Hz with 4 pulses given at

100 Hz per burst. Stimulus strength was not altered during LTP induction. LTP plots were scaled to the average of the first five base-

line points. To account for a possible drift of baseline conditions, peak values in the test pathwaywere normalized by peak amplitudes

in the control pathway prior to statistical comparison. LTP magnitude was assessed by averaging normalized fEPSPs in the test

pathway 60–65 min after LTP induction. As several slices were routinely recorded from every mouse, values of area under the I/O

relationship (AUCI/O), PPF and LTP in wild-type and mutant mice were compared using two-way nested ANOVA design with geno-

type (group) and mice (sub-group) as fixed and random factors correspondingly (STATISTICA v. 10, StatSoft, Tulsa, OK, USA). Sta-

tistical effects were considered significant if p < 0.05. Graph plots and normalization were performed using OriginPro 8.5 (OriginLab,

Northampton, MA, USA). Data are presented as the mean ± standard error of the mean with n and N indicating number of slices and

mice respectively.

Tissue Collection and Sectioning
Adult mice were anesthetized by an intraperitoneal injection of 0.1 mL of 20% w/v sodium pentobarbital (Euthatal, Merial Animal

Health or Pentoject, Animalcare). After complete anesthesia, 10 mL of phosphate buffered saline (PBS; Oxoid), was perfused trans-

cardially, followed by 10mL of 4% v/v paraformaldehyde (PFA; Alfa Aesar). Whole brains were dissected out and post-fixed for 3–4 h

at 4�C in 4% PFA then cryoprotected for 3 days at 4�C in 30% sucrose solution (w/v in 13 PBS; VWR Chemicals). Brains were then

embedded into optimal cutting temperature (OCT) medium within a cryomold and frozen by placing the mold in isopentane cooled-

down with liquid nitrogen. Brains were then sectioned in the coronal plane at 18-mm thickness using a NX70 Thermo Fisher cryostat,

and cryosections were mounted on Superfrost Plus glass slides (Thermo scientific) and stored at �80�C.

Histology and Immunohistochemistry
Sections were washed for 5 min in PBS, incubated for 15 min in 1 mg/mL DAPI (Sigma), washed and mounted using home-made

MOWIOL (Calbiochem) containing 2.5% anti-fading agent DABCO (Sigma-Aldrich), covered with a coverslip (thickness #1.5,

VWR international) and imaged the following day. For immunohistochemistry, sections were first washed for 5 min in PBS. For

SAP102 immunostaining experiments only, an antigen retrieval step was then carried out by incubating the section in citric acid

(2.1 g/L in distilled water, pH 6.0) and placing it in a pressure cooker at 120�C. for 30 s. For all immunostainings, sections were
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then incubated for 1 h in Tris-buffered saline (TBS) with 5%bovine serum albumin (BSA, Sigma-Alrich) and 0.5%Triton X-100 (Sigma-

Alrich) and then incubated overnight at 4�C with primary antibodies diluted in a solution of TBS, 3% BSA and 0.5% Triton X-100

(Calbindin D-28k, 1:500, Swant CB38;MOR, 1:500,Millipore AB1580-I; PSD95, 1:250, Neuromab 75-028; SAP102, 1:250, Neuromab

75-058; VGluT1, 1:250, NeuroMab 75-066; VGluT2, 1:250, Synaptic Systems 135403). Sections were then washed three times for

10 min in TBS with 0.5% Triton X-100, incubated for 2 h with secondary antibodies diluted in a solution of TBS, 3% BSA and

0.5% Triton X-100 (Cy5 anti-mouse IgG1, 1:500, Jackson laboratories 115-175-205; Cy5 anti-rabbit IgG, Jackson laboratories

711-175-152; Pacific blue anti-rabbit IgG, 1:500, Millipore P-10994) and washed three times for 10 min in TBS with 0.5% Triton

X-100 before mounting of the coverslip as described above.

Neuronal Cell Filling
Adult mouse brains (n = 5) were perfused and removed as described above and post-fixed in 4%PFA overnight at 4�C. After washing

in PBS, coronal sections (200 mm thick) were then cut with a Vibratome and prelabeled with 10�5 M 4,6 diamidino-2-phenylindole

(DAPI: Sigma D9542 St. Louis, MO, USA) to identify cell nuclei. Pyramidal cells in the CA1 region of the hippocampus were then indi-

vidually injected with Alexa Fluor 594 dye solution (Life Technologies), by continuous current until the distal tips of each cell fluo-

resced brightly, indicating that the dendrites were filled completely. After injections, sections were mounted in ProLong antifade

mounting medium (Life Technologies). Sections were then analyzed with a Zeiss LSM 710 Confocal microscope. Fluorescently

labeled profiles were examined through separate channels, using excitation peaks of 585 and 491 nm to visualize Alexa Fluor 594

and eGFP, respectively. Consecutive stacks of images (ranging from 3 to 5) were acquired at high magnification (633 oil immersion;

0.14 z-step) to capture the length, depth, and width of main apical dendrites (n = 7). For each stack of images, confocal parameters

were set so that the fluorescence signal was as bright as possible while ensuring that there were no pixels saturated within the PSDs

and spines. PSDs and spine volumes were analyzed using Imaris 7.6.5 (Bitplane AG, Zurich, Switzerland). Over 1000 manually re-

constructed PSDs and corresponding spines were reconstructed along the length of apical dendrites (see Benavides-Piccione

et al., 2013) for detailed information regarding 3D reconstruction). Measurements are reported as the mean ± SEM.

Spinning Disk Confocal Microscopy
For synaptome mapping, two types of Spinning Disk confocal Microscopy (SDM) platforms were used. The initial mapping of five

coronal sectionswas performed using the Cell Voyager 1000 (CV1000, Imsol) equippedwith a 100X lens (NA 1.4), a CSU-W1 spinning

disk (Yokogawa) with a pinhole diameter of 50 mm and a Hamamatsu back-illuminated EMCCD camera. A Z stack containing five

optical slices was acquired with an interval of 0.1 mm for a final voxel dimension of 763 763 100 nm and a depth of 16 bits. To cover

entire brain sections, several overlapping mosaic grids with a constant optical range were set-up. For the comparison of PSD95 syn-

aptome betweenWT andmutant mice, the Andor Revolution XDi was usedwith anOlympus UPlanSAPO 100X oil immersion lens (NA

1.4), a CSU-X1 spinning-disk (Yokogawa) and an Andor iXon Ultra monochrome back-illuminated EMCCD camera. Images acquired

with that system have a pixel dimension of 843 84 nm and a depth of 16 bits. A singlemosaic grid was used to cover each entire brain

section with an adaptive Z focus set-up by the user to follow the unevenness of the tissue using the Andor iQ2 software. In both sys-

tems, eGFP was excited using a 488 nm laser and mKO2 with a 561 nm laser. The CV1000 system is equipped with the following

filters: BP 525/50 nm for eGFP and BP 617/73 nm for mKO2 whereas the Andor Revolution XDi is equipped with a Quad filter (BP

440/40, BP 521/21, BP 607/34 and BP 700/45). For both systems,mosaic imagingwas set-upwith no overlap between adjacent tiles.

Computational Modeling
We used a computational biophysical model of synaptic transmission including synaptic short-term plasticity (STP) to study the rela-

tion between incoming temporal spike patterns and the resulting synaptic activation and compared activations over regions with dif-

ferences in synaptic properties. Simulations were performed using MATLAB, R2015b with a time discretization of 1 ms.

Synaptic Responses

Synaptic EPSPs evoked by an incoming event (transmitter release following a presynaptic spike) were described by a bi-exponential

function. Parameters t1 and t2 were set to reproduce a fast ionotropic synaptic AMPA-type time course.

V=Ae 3 ðexpð�t=t1Þ � expð�t=t2ÞÞ
where Ae = Pi13 Atfi 3 Atdi, t1 = 3.0 ms, t2 = 0.4 ms, i index of all preceding spikes

Short-term synaptic changes followed a formalism described by Tsodyks andMarkram (1997) and Varela et al. (1997).We included

one fast and one slow facilitating component and one depressing component, all which affected synaptic responses following the

triggering one. In all figures, amplitudes were shown normalized to the amplitude of the first response.

Depression

Adi =Ad 3 expð � Dt=tdÞ
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where

Dti is the time between the preceding event i and the present event

Ad = Ad0 3 SAd, SAd is normalized tangential PSD95 size factor*, [0, 1]

td = td0 3 STd, STd is normalized radial PSD95 size factor*, [0, 1]

Atdi = max (Si(1-Adi), 0), total depressing response was limited to positive values.

Fast facilitation, F1

Afi =Af 3 expð � Dti=tfÞ
where

Af = Af0 3 SAf, SAf is normalized tangential SAP102 size factor*, [0, 1]

tf = tf0 3 STf, STf is normalized radial SAP102 size factor*, [0, 1]

Slow facilitation, F2

Asi =As 3 expð � Dti=tsÞ
where

As =As0
ts = ts0

The total facilitatory response had a saturation at 3.3 times the unit response (Zucker and Regehr, 2002).

Atfi =min
�
1+

X
i

ðAfi +AsiÞ;3:3
�

*For Figures 6B–6G, differential model parameter values along the spatial dimension were obtained from the experimental tangential

and radial profile data of PSD95 and SAP102 normalized size data (Figure 5B). Values for the spatial locations used in themodel were

interpolated from data using cubic B-splines.
Table 1. STP Parameters

Ad0 td0 Af0 tf0 As0 ts0

control 0.25 130 4.9 13 0.45 860

PSD95 0.022 140 7.3 13 0.45 860

PSD93 0.14 40 4.4 13 0.45 860
Time constants t in unit ms and amplitudes in a.u (arbitrary units). Control parameters were set to replicate experimental data of

synaptic amplitudes in response to a 10 cycle theta-burst protocol. STP-parameters were estimated using the Nelder-Mead Simplex

method. For estimation of control model, all six parameters were free. The model was fitted to amplitude data from theta-burst ex-

periments for bursts 1, 2, 8 and 10 in a 10 burst protocol containing four pulses per burst. Verification tests showed that including a

second, potentially slower, depression factor did not significantly reduce the error (data not shown). PSD95 and PSD93 parameters

were set to replicate the respective paired-pulse facilitation fractional differences between recordings in tissues from WT and

knockout animals (IPI = 25, 50, 100, 200 ms) (Carlisle et al., 2008). For the estimation of the parameters in knockout models, only

Ad0, td0 and Af0 were allowed to change. Verification and parameter sensitivity tests showed that inclusion of three other parameters

did not significantly affect the fitting error (data not shown).

Stimulation Patterns

Theta-burst, four pulses per burst, interburst interval (IBI) = 125 ms, interpulse interval (IPI) = 25 ms

Theta, IPI = 200 ms

Gamma, IPI = 25 ms

Gamma doublets, two pulses per doublet, IBI = 300 ms, IPI = 13 ms

Mixed pattern in Figure 6C, stimulation time (ms): 25, 50, 120, 145, 205, 270, 310
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Normalized Synaptic Response

To quantify synaptic map responses, the synaptic response was defined as the sum of peak EPSP amplitudes produced by a stim-

ulating pattern. Figures 6C and 6E–6G shows the normalized sum for the values obtained for that figure, except for panels F and H,

which share the normalization.

Prefrontal Cortex Data

Data from behavioral experiments using chronic electrophysiological recordings during a 3-choice serial reaction time attention

experiment (Kim et al., 2016) were used. Neurons were identified as putative parvalbumin-positive inhibitory interneurons based

on local-field potential features (including narrow spike characteristics) as well as firing frequency (f > 10 Hz). To verify the identifi-

cation, these neuron data were compared to that obtained from optogenetically tagged and optically stimulated neurons. We

compared synaptome map responses to spike patterns recorded during trials ending in a correct response (the correct port visited)

to those ending in an incorrect response (one of the wrong ports visited). Data from 10 neurons recorded during trials ending in a

correct response (705 spikes in total) and 10 neurons from incorrect trials (917 spikes in total) were used. Data were taken from

the waiting time period, between trial onset and stimulus cue presentation, a time period defined as the sustained attention period.

Model synaptic map responses for each synapse were taken as the sum of amplitudes as described above. Responses from the two

conditions were further analyzed. For the correct responses, the ratio of largest over smallest synaptic map response was 1.7 and for

incorrect responses it was 2.4. Responses from the two conditions were further compared and found different in two-sample Kol-

mogorov-Smirnov goodness-of-fit hypothesis test as well as t test, both at 5% level of significance.

QUANTIFICATION AND STATISTICAL ANALYSIS

Detection of Synaptic Puncta
Punctum detection was carried out using image detection algorithms, Ensemble Detection developed in house. Detection of the syn-

aptic puncta is a key and fundamental step in the SYNMAP pipeline. Our synaptic punctum images were usually acquired in a low

signal-to-noise-ratio (SNR) environment and puncta were diverse in the intensity distribution, as shown in the PSD95 and SAP102

intensity PDF (Figure 3A). Existing punctum/particle detection algorithms (Chenouard et al., 2014) in fluorescence microscopy can

only process images with similar punctum intensities and background noise, or require significant fine tuning of algorithm parame-

ters. Therefore, they can only be applied to fluorescence microscopic images collected within a small area of tissue and not perform

robustly detect synaptic puncta in our data at the whole brain scale.

To address the problem, we have developed a new punctum/particle detection method based on the multi-resolution image

feature detector and supervised machine learning technique. In specific, we proposed a multi-resolution and multi-orientation

version of 2nd-order nonlocal derivative (NLD) developed in our previous work (Qiu et al., 2012) and used it to calculate intensity dif-

ferences, referred to as image features, for each of all individual puncta at different spatial resolutions and orientations. For PSD95, 33

image features were calculated per punctum and for SAP102, 105 features were used per punctum. These intensity differences were

then assembled as feature vectors of each individual puncta for classification and detection of puncta. An initial intensity threshold is

set to a very low value only to filter out extremely dim puncta and to avoid missing true synaptic puncta. The remaining candidate

puncta were finally classified as either true puncta or background noise using the corresponding feature vectors and the classifier.

The classifier was pre-trained with the training image set and machine learning algorithms (Zhou, 2012). The training set was

randomly selected from the whole-brain synapse images of over �800 delineated subregions. The puncta in these images were

then manually annotated independently by two different experts. Ensemble learning (Zhou, 2012) was selected as the classifier

learning algorithm as it has proven performance in predicting generalization error (Breiman, 2001) in machine learning and hence,

is suitable to classify puncta with diverse intensities in our dataset.

Measurement of Synaptic Parameters
After being detected and localized, all puncta were then segmented adaptively based on their individual intensity values: for each

punctum a threshold was set as 10% of the maximum pixel intensity within the punctum, so that punctum size and shape measure-

ment were independent of punctum intensity. This is in analogy with the super-resolution microscopy, where the optimal resolution

was measured as the full-width-at-half maximum of the puncta (Betzig et al., 2006). With puncta segmented and binarized, six punc-

tum parameters were then calculated including mean punctum pixel intensity, punctum size, skewness, kurtosis, circularity, and

aspect ratio. The latter four parameters were used to quantify the punctum shape: skewness was formeasuring asymmetry of puncta

intensity profiles, kurtosis was for measuring the sharpness of intensity profiles, circularity, and aspect ratio was for measuring the

roundness of the puncta (Schneider et al., 2012).

Colocalization of Synaptic Puncta
The colocalization analysis determines whether one PSD95 punctum and one SAP102 punctum were co-expressed in the same

post-synaptic density (PSD). It was measured based on the spatial distance between two puncta: puncta with the centric distance

smaller than a given distance threshold were considered as being colocalized. The threshold in our analysis was set as 500 nmbased

on the typical PSD diameter (Sheng and Kim, 2011).
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Classification of Synaptic Puncta
Unsupervised classification was applied to�1 billion individual synapses to group synaptic puncta of similar parameters into 37 sub-

types. A new classification method, weighted ensemble clustering (WEC) algorithm, was developed in order to automatically

generate a robust and validated classification results by combining clustering results from different clustering methods, each of

which often performs well only for a specific type of statistical PDF (Wiwie et al., 2015). Eight state-of-the-art clustering methods (Wi-

wie et al., 2015) were independently applied to�1 billion of puncta and each method was used by varying number of clusters from 1

to 300 for initial clustering. This gave rise to a comprehensive pool of clustering that contained 2400 different clustering results on the

same dataset. Each clustering result was then quality evaluated based on the 11 clustering validity indices (Liu et al., 2013) inmachine

learning. These indices were finally used asweights to combine 2400 clustering results: results with higher validity indexeswere given

more priority in the final clustering result, and the cluster number was selected from results of the highest validity indices. By using

WEC, we could finally generate a high-quality clustering result with algorithmically validated cluster number.

Mapping of Synaptome Parameters
After detection and segmentation, all punctum parameters were first averaged per volumetric area (19.2 mm3 19.2 mm3 0.5 mm), so

that each area was represented by one set of parameters instead of parameters of all puncta within it. For supervised mapping in

Figures 2C, 2D, 3D, and 7A, the parameters were then averaged over all volumetric areas of all delineated subregions shown in Fig-

ure 2C. Subregion delineation was performed on stitched/downsized images using polygon selection tool of Fiji software based on

the the Allen Reference Atlas of coronal adult mouse brain.

Diversity and Subtype Maps
The Synaptome Diversity map in Figure 3H was built based on normalized Shannon entropy (Mackay, 2003), where the 37 subtypes

were histogram bins for discrete random variable X, and the population per bin was the density per subtype. Shannon entropy was

normalized between 0 and 1 by dividing by log237.

The Dominant Subtype map in Figure 3E was built based on the largest densities of subtypes per volumetric area: subtype index

with the largest population per volumetric area was used as the pixel intensity in the map.

Validation of SYNMAP
The correlation between the density, intensity, and size parameters measured for PSD95 in the hippocampus from Section 3 were

correlated with previously published LSCM and g-STED microscopy data (Broadhead et al., 2016). Six hippocampal subregions

common to the two studies were used to calculate the Pearson correlation coefficient and corresponding p values using SPSS

software.

PSD95/SAP102 Juxtaposition with VGlut1/VGluT2
For imaging of PSD95/SAP102/VGluT1/VGluT2 quadruple labeling in the VP, Andor Revolution XDi SDM was used and VGluT1/

VGluT2 were labeled with Cy5/Pacific Blue and excited using 640/405 nm wavelengths, respectively. Quantification of the juxtapo-

sitions of PSD95 and SAP102 with those of VGluT1 and VGluT2 was done using Imaris software (version 8.1.2). Spot detection func-

tion was used to segment synapses expressing VGluT1, PSD95 and SAP102 puncta in 3D datasets (Z stack depth of 2 mm with 11

slices separated by 0.2 mm) from three mice (males, 4.7 months). Three-way colocalization was then measured by Imaris Triple Co-

localization plugin, developed byMichael Adams, using a distance threshold of 600 nm. Colocalization with VGluT2 wasmeasured in

two steps: first, PSD95 and SAP102 spots with an intensity above 3,000 in VGluT2 channels were filtered. Second, colocalization

between PSD95 and SAP102 within the filtered spots was measured using Imaris XT Colocalize Spots function.

Striatal Compartment Synaptome Parameters
For characterization of striatal compartments, PSD95/SAP102/MOR were labeled and imaged in the CP using Andor Revolution XDi

SDM. Pairs of closely located images from each compartment were then analyzed using the Imaris software (version 8.1.2) in brain

slices of three mice (males, 2-3 months). PSD95 and SAP102 were detected using spot detection in order to extract the number of

puncta, mean punctum intensity and mean punctum size in each image. Colocalization was then measured as for synaptome map-

ping, using a distance threshold of 300 nm. Moreover, to consider the level of colocalization that might occur by chance, colocaliza-

tion was also calculated between PSD95 and SAP102 images coming from different mice, in order to create a randomized control.

Similarity Matrices, Connectome, and Network Analysis
Each column/row in the similarity matrix in Figure 2F represents one delineated brain subregion shown in Figure 2C. Elements in the

matrix are similarities between pairs of subregions, and calculated based on the Euclidean distance (Wang et al., 2005) between stan-

dardized synaptome parameter sets, each of which consists of punctum density, intensity, size, skewness, kurtosis, circularity,

aspect ratio and colocalization percentage. A conventional Gaussian kernel function (Babaud et al., 1986) was finally applied to

convert distance to similarity. The dendrogram in Figure 2G was plotted based on the similarity measurement in Figure 2F: the mea-

surement was clustered hierarchically using unweighted average distance algorithm (Zhang et al., 2013). The similarity matrices in
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Figure 7 were also built using samemethod. The similarity matrix in Figure S17 was built as described in Figure 2F, except that matrix

elements were calculated as Pearson correlation coefficients between densities of 37 subtypes in two delineated subregions.

The projection density of the structural mesoscale connectome shown in Figure 4Bwas calculated (Rubinov et al., 2015) as division

of the projection strength by the volumetric size of the source region. All synaptome network analysis in Figures 4C–4Gwas based on

the similarity matrix in Figure 2F. The nodes used in Figure 4C-E of the brain network analysis refer to the brain subregions defined in

the ARA (Dong, 2008). The node degree of a brain subregion quantifies the average connectivity to other brain regions in the func-

tional connectome by rs-fMRI (Stafford et al., 2014) and the average similarity to other brain regions in our synaptome data. The clus-

tering coefficient (CC) in Figure 4C is calculated (Watts and Strogatz, 1998) as the fraction of triangles around a node and small-world

networks usually have high clustering compared with random network (Bullmore and Sporns, 2009). The modularity in Figure 4C

measures the degree to which the network can be decomposed into a set of non-overlapping subnets, each of which comprises

a number of densely inter-connected nodes that are sparsely connected to the noses in the other subnets (Jao et al., 2015). The small

worldness (Bullmore and Sporns, 2009) in Figure 4C is calculated as the ratio of the clustering coefficient and average path length

normalized by the random network,

s= ðCnet=CrandÞ=ðlnet=lrandÞ:
where Cnet, Crand represents the CCs of the synaptome and random network respectively, and the lnet, lrand are the path length of the

synaptome and random network, respectively.

Region Size and Cell Density
In order to check for gross anatomical changes in Psd93�/� and Sap102�/� mice compared to WT mice, the size of analyzed over-

arching areas was measured by adding together the surface area of delineated subregions that belong to this area. Moreover, cell

density wasmeasured fromDAPI counterstaining in the same sections used for synaptomemapping. The DAPI signal was imaged at

low resolution (20 3 ) using the AxioScan.Z1 (Zeiss). Images were then exported in TIFF format and processed in Fiji. First, a back-

ground subtraction step was applied using a rolling ball radius of 50 pixels. Images were then scaled by 0.302 and Image-based Tool

for Counting Nuclei (ITCN) plugin was applied using a width of 7 pixels and a minimum distance of 4 pixels. The number of counted

nuclei was then normalized to subregion area in order to obtain cell density.

Cohen’s d Formula
Cohen’s d values were used to measure the effect size of synaptome parameter changes between WT and mutant mice as follows:

d =
x1 � x2

s

where x1 and x2 are the average synaptome parameter for the mutant and WT groups, respectively, for a given subregion, and s is

pooled standard deviation, defined as follows:

s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1Þs21 + ðn2 � 1Þs22

n1 + n2 � 2

s

where s1 and s2 are the standard deviations in mutant and WT groups, respectively, and n1 and n2 are the N numbers of mutant and

WT groups, respectively.

Bayesian Analysis
Bayesian estimation was used for the analysis of mutant effects on synaptome maps (Figure 7). Posterior probabilities of model pa-

rameters were estimated from the data and these were then used to determine whether genotype dependent differences exist. Each

of the synaptome mapping parameters (e.g., intensity, density, and size) was modeled as having a t-distribution. For both studies,

major brain regions (i.e., hippocampus, cortex, medulla, and striatum) were modeled separately, while subregions (i.e., CA1so,

CA1slm and DGgrInf were contained within a single model).

The model was written in JAGS based on the script ‘Jags-Ymet-Xnom2fac-MrobustHet.R’ associated with Chapter 20.4 of

Kruschke’s textbook (Kruschke, 2014). The key modification made to the base model is that the scale parameter of the t-distribution

was adapted to depend only on one of the explanatory variables, x2 (brain region) and not x1 (genotype). All priors were left as set in

the Kruschke model. The standard deviation of the t-distribution, sj, was permitted to vary across brain regions (indexed by j) but not

with genotype, and was modeled as being gamma distributed with mode u and standard deviation ss. The values of u and ss were

themselves gamma distributed, with parameter pairs fMou;Sug and fMoss;Sssg defined based on the standard deviations found

within region/genotype groups. The modes of u and ss (Mou and Moss) was thus set equal to the median standard deviation of re-

gion/genotype groups, while Su and Sss were equal to the standard deviation of group standard deviations.

To evaluate differences between groups it was necessary to calculate the posterior probability for the mean of the t-distribution for

each region and genotype. To approximate traditional significance testing we calculated a p value based on the maximal size for the

Highest Density Region (HDI) before it would contain part of the Region of Practical Equivalence centered around zero. The Region of
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Practical Equivalence had boundaries defined as ± sj=3. As several models were generated for the major brain regions (i.e., hippo-

campus and neocortex), Benjamini-Hochberg testing was used to correct over all probabilities.

DATA AND SOFTWARE AVAILABILITY

Software
MATLAB package GraphVar used for the analysis of brain network is available at http://www.rfmri.org/GraphVar. Custom-built R

code for statistical hypothesis test can be downloaded at http://synaptome.genes2cognition.org/download_source.html.

Custom-built MATLAB code for electrophysiological modeling can be downloaded at http://synaptome.genes2cognition.org/

download_source.html.

To visualize individual puncta overlaid on delineated section images we developed an in-house visualization software, called ‘‘Syn-

aptome Explorer,’’ implemented in C++/OpenGL. The software uses several inputs: a) A stitched, downsampled section image

generated from the raw microscopic images of each of the PSD95/SAP102 scans, b) a pre-processed form of all calculated puncta

and their parameters, c) user-defined delineations provided as black-and-white overlays to the section composite image and d) a text

file describing the delineation hierarchy. The software allows interactive exploration of the mouse synaptome at individual synapse

resolution, utilizing an intuitive user interface resembling mouse-driven navigation functionality (panning, zooming) in mapping soft-

ware such as Google Maps. All delineation overlays (> 700) are efficiently packed so that any individual or group of delineations can

be visualized on the fly. Individual synaptic puncta can be displayed on top of the section image, filtered by proteins, types or sub-

types, so that users can observe the spatial distribution of any possible subset of subtypes as well as the spatial relationships of

puncta types/subtypes in any particular region. The tool is compiled as a standalone executable software including a manual file

and can be downloaded at https://github.com/SynaptomeMapping/SynaptomeExplorer/archive/master.zip

Data
The full-resolution version of all synaptome maps presented in the paper are accessible at http://synaptome.genes2cognition.org/.

Raw PSD95 and SAP102 fluorescence microscopy tiff images are very large (�10 Terabytes) and therefore are available upon

request by contacting Seth Grant, seth.grant@ed.ac.uk. Synaptome data (�5Gb) of individual synaptic puncta used in the manu-

script can be downloaded at https://doi.org/10.7488/ds/2366. The data include parameters of billions of individual synapses across

the 5 coronal section, including the position, intensity, size, shape, type, and subtype for each individual synaptic punctum. They can

be loaded and visualized with the Synaptome Explorer. An instructional video is given by synaptome_explorer.mp4 and a detailed

manual file is included the software package.

Regional densities, sizes, and colocalization for SAP102 and PSD95 presented in Figure 2B can be found in Table S1. Raw values

of the similarity matrix presented in Figure 2F can be found at Table S2. Tangential and Radial gradient presented in Figure 5 can be

found at Table S3. Electrophysiological modeling data presented in Figure 6 can be found at Table 1 in section Computational

modeling, above. PSD95 parameters quantified for the mutation experiments in Figure 7 can be found at Table S4.
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Supplementary Figures (S1-20) 
 

Figure S1. 

 
 
Figure S1 related to Figure 1. Gene targeting strategy for generation of PSD95-
eGFP and SAP102-mKO2 mice. 
The wildtype genomic loci of murine Dlg4 (PSD95) and Dlg3 (SAP102) genes showing 

exon structure and STOP codon is shown with the corresponding Targeting vectors 

(dotted lines show regions of homology). The vectors contain a cDNA encoding their 

respective fluorescent protein (eGFP, mKO2), a neomycin positive selection cassette 

(neor) flanked by LoxP sites and a Diptheria Toxin A (DTA) negative selection cassette. 

Homologous recombination of the targeting vector with the wildtype locus results in 

integration of the sequence encoding the fluorescent protein and the neomycin selection 

cassette into the genome (targeted allele). The loxP-flanked neomycin cassette was 

removed by crossing with Cre-deleter mice. 

 

 
  



2 

Figure S2. 

 
 
D 

 
 
Figure S2 related to Figure 1. Normal expression of PSD95-eGFP and SAP102-
mKO2 proteins. 
A-B. Western blot analysis of forebrain extracts from wild-type, heterozygous and 

homozygous mice for the PSD95-eGFP (A) or SAP102-mKO2 (B) allele, using antibodies 

against PSD95 (A) or SAP102 (B). All lanes are from the same blot. Molecular weight 

(MW) indicated by size markers (kDa, kilodalton). Note that the lower band (~72 kD) in 

PSD95 blots has been reported previously (Morabito et al., 2004; Colledge et al, 2003; 

Frank et al, 2017) and is either a different isoform of PSD95 or an N-terminal cleavage 

product of PSD95. This product is also labelled by our PSD95-eGFP-knockin mice.  
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C. Comparable subregional patterns of labelling are obtained in the hippocampus 

between PSD95-eGFP and PSD95 antibody staining and between SAP102-mKO2 and 

SAP102 antibody staining. Scale bar: 500 μm. Note that immunolabelling of SAP102 

requires antigen retrieval, which produces variability in the signal (Fukaya and Watanabe, 

2000). The pattern of expression of PSD95-eGFP and SAP102-mKO2 is nonetheless 

very similar to previously published results (Fukaya and Watanabe, 2000). 

D. Correlation between the expression intensity in hippocampal formation regions using 

immunohistochemistry and genetic labelling. A significant positive correlation between 

the two staining methods was observed (PSD95, R = 0.75, P = 0.0022; SAP102, R = 

0.77, P = 0.0014).  
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Figure S3. 
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Figure S3 related to Figure 1. Postsynaptic localization of PSD95-eGFP and 
SAP102-mKO2 proteins in dendritic spines. 
A. Dendritic segment of CA1 pyramidal neuron (110–160 microns from the soma) filled 

with Alexa fluor 594 (red) showing the surface of the dendritic shaft and spines relative 

to the location of PSD95eGFP (green).  

i. Image showing the Alexa fluor 594-injected apical dendritic segment (110–160 

microns from the soma; red) and the punctuate PSD95 labelling (green).  

ii. Same dendritic segment as in (i), showing only the information from the red channel.  

iii. Shows the information in (i) but including an artificial surface that fitted (by 

thresholding) the surface of the real dendrite of both the dendritic shaft and spines 

(blue).  

iv. Image processing to obtain a new green channel with the information contained 

within the dendritic surface created, by appling a mask to the green channel that set 

the voxels outside the surface to 0. Thus, by combining the new green channel and 

the real dendrite, the relative location of PSD95 (green) could be established with 

respect to the surface of the dendrite (red).   

v. Shows the information in (iv) but including only the green channel.  

vi. Shows the information in (iv) but including an artificial surface represented the 

estimated dendritic shaft volume (blue).  

vii. Same image processing as in (iv) to obtain a new green channel with the 

information contained within the dendritic shaft, that reveals the relative location of 

PSD95 with respect to the dendritic shaft.  

viii. Shows the information in (vii) but including only the green channel.  

ix. Image processing to obtain a new green channel with the information contained on 

the surface of the dendritic spines, by applying a mask to the green channel that set 

the voxels on the surface representing the estimated dendritic shaft (shown in vii) to 

0. Thus, by combining the new green channel and the real dendrite, the relative 

location of PSD95 (green) could be established with respect to the dendritic spines.  

x. Shows the information in (ix) but including only the green channel. Scale Bar = 2.5 

μm. 
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B. PSD95-eGFP (green) localization to spine heads in dye-filled dendrites from principal 

neurons (red) in the somatosensory cortex. Scale bars are 2 μm (left panel) and 1 μm 

(right panel). 

C. PSD95-eGFP (green) localization to spine heads in dye-filled dendrites from principal 

neurons (red) in the CA3 subfield of the hippocampus. Note the large thorny 

excrescence synapses, typical of the CA3 stratum lucidum, compared to the more 

classical smaller spines in the cortex (panel B). Scale bars are 2 μm (left panel) and 

1 μm (right panel). 

D. PSD95-eGFP puncta (top left panel, green) and SAP102-mKO2 puncta (bottom left 

panel, magenta) are juxtaposed to the presynaptic terminal (VGluT1) puncta (middle 

panels, blue) as shown on merged images (right panels, top: PSD95+VGluT1, bottom: 

SAP102+VGLuT1) from layer 1 of the somatosensory cortex. Scale bar: 2 μm. 

E. PSD95-eGFP puncta (green) of CA3 thorny excrescence synapses are juxtaposed to 

the presynaptic VGluT1 puncta (blue) as shown on merged image (PSD95+VGluT1). 

Scale Bar: 6 μm. 
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Figure S4. 

 
 
Figure S4 related to Figure 1. Normal synaptic physiology in PSD95-eGFP mice. 
A. Input-output relationships (i) illustrate averaged fEPSP amplitudes in slices from 

PSD95-eGFP (n = 19; N = 6) and WT mice (n = 18; N = 6) in response to stimulation 

of Schäffer collaterals by biphasic voltage pulses of 0.1 – 4.2 V. Representative 

families of fEPSP traces are given in (ii). Comparison of areas under the input-output 

curve revealed no significant effect of genotype (F(1,8.93) = 3.019; P = 0.117; two-way 

nested ANOVA). Similarly, maximum fEPSPs did not differ significantly in mutant and 

WT mice (F(1,9.44) = 0.79; P = 0.396).  
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B. Paired-pulse facilitation (i) was not significantly different (F(1,8.96) = 0.351; P = 0.568) in 

PSD95-eGFP animals (n = 19; N = 6) as compared to their WT littermates (n = 18; N 

= 6). Representative fEPSP sweeps are given in ii.  

C. Theta-burst stimulation elicited pathway-specific long-term potentiation of synaptic 

transmission in hippocampal CA1 area (i). Normalised magnitude of this potentiation 

60-65 min after LTP induction in mutant mice (178 ± 6%; n = 19; N = 6) and their wild 

type counterparts was not significantly different (187 ± 6%; n = 18; N  = 6; F(1,7.55) = 

1.48; P = 0.26). Examples of test pathway fEPSP traces immediately before and 1 h 

after theta-burst stimulation are presented in (ii). Data are expressed as mean ± s.e.m. 

Statistical significance of differences of mean values between the two genotypes was 

determined by two-way nested ANOVA with Satterthwaite’s correction (main genotype 

effect). 
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Figure S5. 

 
 
Figure S5 related to Figure 1. Normal synaptic physiology in SAP102-mKO2 mice. 
A. Input-output relationships (i) illustrate averaged fEPSP amplitudes in slices from 

SAP102-mKO2 (n = 28; N = 7) and WT mice (n = 29; N = 7) in response to stimulation 

of Schäffer collaterals by biphasic voltage pulses of 0.1 – 4.2 V. Representative 

families of fEPSP traces are given in (ii). Comparison of areas under the input-output 

curve revealed no significant effect of genotype (F(1,11.27) = 1.83; P = 0.203; two-way 

nested ANOVA). Similarly, maximum fEPSPs did not differ significantly in mutant and 

WT mice (F(1,11.46) = 1.44; P = 0.255).  
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B. Paired-pulse facilitation (i) was not significantly different (F(1,11.31) = 0.253; P = 0.624) 

in SAP102-mKO2 animals (n = 28; N = 7) as compared to their WT littermates (n = 29; 

N = 7). Representative fEPSP sweeps are given in (ii).  

C. Theta-burst stimulation elicited pathway-specific long-term potentiation of synaptic 

transmission in hippocampal CA1 area (i). Normalized magnitude of this potentiation 

60–65 min after LTP induction in mutant mice (161 ± 4%; n = 24; N = 6) and their wild 

type counterparts (171 ± 3%; n = 29; N = 7) was not significantly different (F(1,10.44) = 

3.02; P = 0.111). Examples of test pathway fEPSP traces immediately before and 1 h 

after theta-burst stimulation are presented in ii. Data are expressed as mean ± s.e.m. 

Statistical significance of differences of mean values between the two genotypes was 

determined by two-way nested ANOVA with Satterthwaite’s correction (main genotype 

effect). 
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Figure S6. 
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Figure S6 related to Figure 2. Comparison of expression of PSD95eGFP and 
SAP102mKO2 

A. As in Figure 2A, the expression pattern of PSD95 (grey in top row, green in bottom 

row) and SAP102 (grey in second row, magenta in bottom row) in the stitched down-

sampled images from thousands of high-resolution (75 nm/pixel) images for 5 coronal 

sections: Section 1 (S1) is located at bregma (β) level +2.3 mm, Section 2 (S2) at β 

+0.8 mm, Section 3 (S3) at β -1.9 mm, Section 4 (S4) at β -3.1 mm, Section 5 (S5) at 

β -5.8 mm.  

B. High-resolution images comparing the expression of PSD95-eGFP and SAP102-

mKO2 puncta in different brain regions: isocortex (ISO), layer 1 (Bi); hippocampal 

formation (HPF), CA1 statum radiatum (CA1sr, Bii), CA3 stratum lucidum (CA3slu, 

Biii) and Dentate Gyrus molecular layer (DGmo, Biv); striatum (STR) caudate putamen 

(CP, Bv); thalamus (TH) reticular nucleus (RT, Bvi); hypothalamus (HY) arcuate 

nucleus (Arc, Bvii); midbrain (MB) superior colliculus (SC, Bviii); nucleus prepositus 

(Bix); cerebellum (CB), molecular layer (mol, Bx). 
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Figure S7. 

 
 
Figure S7 related to Figure 2. Validation of Spinning Disk Confocal microscopy 
(SDM) quantifications.  
Correlations of PSD95-eGFP puncta parameters quantified from the Yokogawa CV1000 

SDM with data (Broadhead et al., 2016) from the Leica SP5 Laser Scanning Confocal 

Microscope (LSCM, A) or Leica SP5 gated-Stimulation Emission Depletion (g-STED, B) 

systems. High positive correlations (see Pearson coefficient R for each panel) are 
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observed from both systems for the three main parameters: PSD95 punctum density (Ai, 

Bi), intensity (Aii, Bii) and size (Aiii, Biii).  
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Figure S8. 

Figure S8 related to Figure 2. Synaptome maps of PSD95 and SAP102 
A high-resolution image of synaptome maps from Figure 2C, which shows the spatial and 

anatomical distribution of median punctum density (i), intensity (ii), size (iii) and 
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colocalization (iv) for PSD95 (upper panels) and SAP102 (lower panels) in delineated 

subregions. Parameter units: density, number of puncta per 100 µm2; intensity, mean 

grey value per punctum (AU ´ 104); size, µm2; colocalization, %. 
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Figure S9. 

 
Figure S9 related to Figure 3. Catalog of the 37 synapse subtypes identified and 
their parameters. 
Median value of the synaptome parameters (intensity, size, skewness, kurtosis, 

circularity, aspect ratio) for PSD95 (left side) and SAP102 (right side), for each of three 

types of synapses (PSD95-only; SAP102-only; Colocalized) that are further divided into 

37 subtypes. Values are normalized for each parameter.  
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Figure S10. 

 
Figure S10 related to Figure 3. Absence of correlation between the different 
parameters measured from individual puncta. 
A. The different synaptome parameters show low correlations at the level of individual 

synapses for PSD95 (left panel) and SAP102 (middle panel), and between PSD95 

and SAP102 (right panel). 

B. Probability density functions of each of the 12 synaptome parameters (left, PSD95 

parameters; right, SAP102 parameters) for each 37 subtypes of synapses. Subtypes 

indicated by key. 
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Figure S11. 
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Figure S11 related to Figure 3. Supervised synaptome maps of synaptic subtypes.  
Median density distribution of each of the 37 synapse subtypes across the 5 coronal 

sections within defined anatomical subregions of the ARA. Subtypes #01–11 correspond 

to PSD95-only synapses (type 1), subtypes #12–18 correspond to SAP102-only 

synapses (type 2) and subtypes #19–37 correspond to colocalized synapses (type 3). 
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Figure S12. 
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Figure S12 related to Figure 3. Unsupervised synaptome maps of synaptic 
subtypes. 
Density distribution of each of the 37 synapse subtypes across the 5 coronal sections, 

independent of anatomical delineations. Subtypes #01–11 correspond to PSD95-only 

synapses (type 1), subtypes #12–18 correspond to SAP102-only synapses (type 2) and 

subtypes #19–37 correspond to colocalized synapses (type 3). 
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Figure S13. 

 
Figure S13 related to Figure 3. Spatial distribution of synapse subtypes in the 
hippocampus. 
Density distribution of each of the 37 synapse subtypes in the dorsal hippocampus, 

independent of anatomical delineations. Top left panel shows the nomenclature of 

hippocampal subregions and gradients. Subtypes #01–11 correspond to PSD95-only 

synapses, subtypes #12–18 correspond to SAP102-only synapses and subtypes #19–37 

correspond to colocalized synapses. Density values are normalized between 0 – 1 for the 

hippocampus. 
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Figure S14. 

 
Figure S14 related to Figure 3. Spatial distribution of synapse subtypes in the 
striatum. 
Density distribution of each of the 37 synapse subtypes in the caudate putamen (CP) 

independent of anatomical delineations. First panel shows boundaries between the 
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striosomes/matrix compartments and CP outlines, which are represented by yellow lines 

in all other panels. Subtypes #01–11 correspond to PSD95-only synapses, subtypes #12–

18 correspond to SAP102-only synapses and subtypes #19-37 correspond to colocalized 

synapses. Density values are normalized between 0 – 1 for the striatum. 
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Figure S15. 
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Figure S15 related to Figure 3. Distribution of PSD95 and SAP102 between striatal 
compartments. 
A. Low magnification images (20X) showing the expression pattern of PSD95 (green), 

SAP102 (magenta) and mu opioid receptor (MOR, cyan) in the striatum reveal that 

SAP102-rich/PSD95-poor patches match regions enriched in MOR, which correspond 

to striosomes (arrows). Insets are zoomed-in images of the striosome demarcated by 

the yellow box. Scale bars: 250 μm and 100 μm for insets.  

B. High magnification images (100X) showing the differential expression of PSD95 

(green) and SAP102 (magenta) at the level of individual synaptic puncta in matrix (left 

panels) and striosome compartments (right panels). Scale bar is 2 μm.  

C. Quantification of punctum density, intensity, size and colocalization in the matrix 

compartment (yellow) and striosomes (orange). Significance was measured using 

paired t-tests between juxtaposed matrix and striosome compartments for N = 3 mice: 

* p<0.05, ** p<0.01. For colocalization, significance was also compared by paired t-

test with a random (rand) control, using mismatched images between the two 

channels. Graphs are mean ± standard deviation. 
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Figure S16. 

 
Figure S16 related to Figure 3. Synaptome Diversity and Dominant subtype maps. 
A. Synaptome Diversity Map, as in Figure 3H, showing the spatial distribution of 

normalized Shannon information entropy per unit area (19.2µm ´ 19.2µm), which 

reflects the inequality in density between subtypes independent of anatomical 

delineations in the five coronal sections in 3H. Scale of normalized entropy indicated. 

Scale bars: 1 mm. 

B. Synaptome Dominant Subtype Map, as in Figure 3E, showing the spatial distribution 

of the subtype with the highest density per area unit (19.2µm ´ 19.2µm) independent 

of anatomical delineations in the coronal sections. Subtype key indicated. Scale bars: 

1 mm. 
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Figure S17. 

 
Figure S17 related to Figure 3. Similarity matrix of subtype distribution between 
brain subregions. 
Matrix representing the level of similarity between pairs of subregions based on their 

density distributions of the 37 synapse subtypes. The similarity is calculated using the 

Pearson correlation coefficient, ranging from -1 to 1, where 1 indicates perfect similarity 

(yellow).  
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Figure S18. 
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Figure S18 related to Figure 7.  PSD95-eGFP expression pattern in wild-type and 
Psd93−/− mice.  
A. Low resolution images of PSD95-eGFP expression in wild-type (WT) and Psd93−/− 

mutant mice. Scale bar: 500 µm.  

B. High magnification images (100X) of PSD95-eGFP expression in WT and Psd93−/− 

mice in the isocortex:  primary somatosensory area (SSp), barrel field layers I to VI.  

C. High magnification images (100X) of PSD95-eGFP expression in WT and Psd93−/− 

mice in the hippocampal formation (HPF): CA1 stratum radiatum (CA1sr), CA1 

stratum lacunosum-moleculare (CA1slm), CA3 stratum oriens (CA3so), CA3 stratum 

lucidum (CA3slu) and dentate gyrus molecular layer (DGmo). 

D. High magnification images (100X) of PSD95-eGFP expression in WT and Psd93−/− 

mice in other regions: the Caudate Putamen (CP) nucleus of the striatum (STR), the 

Lateral Amygdala nucleus (LA) of the cortical subplate (CS), layer 3 of the Piriform 

cortex (PIR3) of the olfactory areas (OLF), the Lateral Posterior nucleus (LP) of the 

thalamus (TH) and the Zona Incerta (ZI) of the hypothalamus (HY). Scale bars (B-D): 

2 µm. 
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Figure S19. 
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Figure S19 related to Figure 7. PSD95-eGFP expression pattern in wild-type and 
Sap102−/− mice.  
A. Low resolution image of PSD95-eGFP expression in wild-type (WT) and Sap102−/− 

mice. Scale bar: 500 µm.  

B. High magnification pattern (100X) of PSD95-eGFP expression in WT and Sap102−/− 

mice in the isocortex:  primary somatosensory area (SSp), barrel field layers I to VI. 

C. High magnification pattern (100X) of PSD95 expression in WT and Sap102−/− mice in 

the hippocampal formation(HPF): CA1 stratum radiatum (CA1sr), CA1 stratum 

lacunosum-moleculare (CA1slm), CA3 stratum oriens (CA3so), CA3 stratum lucidum 

(CA3slu) and dentate gyrus molecular layer (DGmo). 

D. High magnification pattern (100X) of PSD95 expression in WT and Sap102−/− mice in 

other regions: the Caudate Putamen (CP) nucleus of the striatum (STR), the Lateral 

Amygdalar nucleus (LA) of the cortical subplate (CS), layer 3 of the Piriform cortex 

(PIR3) of the olfactory areas (OLF), the Lateral Posterior nucleus (LP) of the thalamus 

(TH) and the Zona Incerta (ZI) of the hypothalamus (HY). Scale bars (B-D): 2 µm. 
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Figure S20. 

 
Figure S20 related to Figure 7. Region size and cell density are unchanged in 
Psd93−/− and Sap102−/− mice.  

All graphs are mean ± standard deviation. 

A. No significant difference in region size was observed in any of the overarching areas 

analyzed between WT mice (dark blue, N=4) and Psd93−/− mice (light blue, N=6).  
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B. No significant difference in region size was observed in any of the overarching areas 

analyzed between WT mice (dark pink, N=9) and Sap102−/− mice (light pink, N=11).  

C. No significant difference in cell density was observed in any of the subregions of the 

hippocampus (HIP), fiber tracts (FT), cortical subplate (CS), thalamus (TH), striatum 

(STR), pallidum (PAL), olfactory areas (OLF), isocortex (CTX) nor hypothalamus (HY) 

between WT mice (dark blue, N=4) and Psd93−/− mice (light blue, N=6). Significance 

was assessed using the Bayesian estimation method with Benjamini-Hochberg 

correction. Subregions listed below. 

D. No significant difference in cell density was observed in any of the subregions of the 

HIP, FT, CS, TH, STR, PAL, OLF, CTX nor HY between WT mice (dark pink, N=9) 

and Sap102−/− mice (light pink, N=11). Significance was assessed using the Bayesian 

estimation method with Benjamini-Hochberg correction. Subregions listed below. 
 

Subregion abbreviations: alv: alveus; amc: amygdalar capsule; AUDd: Auditory area, 

dorsal part; AUDp: Auditory area, primary part; AUDv: Auditory area, ventral part;  BLAa: 

Basolateral Amygdalar nucleus, anterior part; BLAp: Basolateral Amygdalar nucleus, 

posterior part; BLAv: Basolateral Amygdalar nucleus, ventral part; BMAp: Basomedial 

Amygdalar nucleus, posterior part; CA1slm: Cornu Ammonis 1, stratum lacunosum-

moleculare; CA1so: Cornu Ammonis 1, stratum oriens; CA1sp: Cornu Ammonis 1, 

stratum pyramidale; CA1sr: Cornu Ammonis 1, stratum radiatum; CA2slm: Cornu 

Ammonis 2, stratum lacunosum-moleculare; CA2so: Cornu Ammonis 2, stratum oriens; 

CA2sp: Cornu Ammonis 2, stratum pyramidale; CA2sr: Cornu Ammonis 2, stratum 

radiatum; CA3slm: Cornu Ammonis 3, stratum lacunosum-moleculare; CA3slu: Cornu 

Ammonis 3, stratum lucidum; CA3so: Cornu Ammonis 3, stratum oriens; CA3sp: Cornu 

Ammonis 3, stratum pyramidale; CA3sr: Cornu Ammonis 3, stratum radiatum; cc: corpus 

callosum; CEA: Central Amygdalar nucleus; cing: cingulum bundle; COApl1: Cortical 

Amygdalar area, posterior part, lateral zone, layer 1; COApl2: Cortical Amygdalar area, 

posterior part, lateral zone, layer 2; COApl3: Cortical Amygdalar area, posterior part, 

lateral zone, layer 3; CP: Caudate Putamen; cpd: cerebral peduncle; df: dorsal fornix; 

DGgrInf: Dentate Gyrus, granular layer, inferior blade; DGgrSup: Dentate Gyrus, granular 

layer, superior blade; DGmoInf: Dentate Gyrus, molecular layer, inferior blade; 
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DGmoSup: Dentate Gyrus, molecular layer, superior blade; DGpo: Dentate Gyrus, 

polymorphic cell layer; ECT: Ectorhinal area; ENTl: Entorhinal area, lateral part; EPd: 

Endopiriform nucleus, dorsal part; EPv: Endopiriform nucleus, ventral part; FC1: Fasciola 

Cinerea, layer 1;  FC2: Fasciola Cinerea, layer 2;  FC3: Fasciola Cinerea, layer 3;  fi: 

fimbria; GPe: Globus Pallidus, external segment; GPi: Globus Pallidus, internal segment; 

IA: Intercalated Amygdalar nucleus; int: internal capsule; LA: Lateral Amygdalar nucleus; 

MEA: Medial Amygdalar nucleus; MOp: Primary motor area; MOs: secondary Motor area; 

opt: optic tract; PAA1: Piriform-Amygdalar Area, molecular layer; PAA2: Piriform-

Amygdalar Area, pyramidal layer; PAA3: Piriform-Amygdalar Area, polymorph layer; 

PERI: Perirhinal area; PIR1: Piriform area, layer 1; PIR2: Piriform area, layer 2; PIR3: 

Piriform area, layer 3; RSPd: Retrosplenial area, dorsal part; RSPv: Retrosplenial area, 

ventral part; SI: primary Somatosensory cortex; SSp-bfd: primary Somatosensory area, 

barrel field; SSp-tr: primary Somatosensory area, trunk; stInf: stria terminalis, inferior part; 

stSup: stria terminalis, superior part; TEa: Temporal association areas. 
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