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S1 Analysis of sFCS data

Pre-processing and �tting of the sFCS data

Using the empirically determined scanning-frequencies and the pixel dwell times, the sFCS
data were loaded and correlated using the FoCuS-scan software.20 Initial bleaching was
removed by cropping o� the �rst 10 seconds of all measurements. To further reduce
the bias due to bleaching the photobleaching correction by local averaging (16 seconds
interval) was applied as described before.20 Following temporal cropping, the correlation
curves were then �tted using the described software package. The data for free and
trapped di�usion simulations, as well as all experimental data were �tted to a single
component 2D-di�usion model as follows.

G(τ) =
1

N
· 1

(1 + τ/τD)
+Of (1)

τ denotes the correlation time not to be confused with the absolute measurement time
t. O�set Of , amplitude (given as inverse average number of particles in the observation
volume) 1/N and transit time τD were �tting parameters. Fitting was performed in the
range of 0.5 ms to 4000 ms. To obtain robust �ts and an adequate error measure the data
were bootstrapped 20 times. Data were exported and saved as Excel-sheets containing
all �tted parameters and additionally the standard deviations and signal-to-noise values
(based on S/N = G(τ)/var(G(τ))0.5).20

The sFCS data for hindered hop di�usion comprising two processes with two di�erent
correlation times were �tted with a two-component model following as previously used in
camera based FCS analysis:11

G(τ) =
1

N
·
(
A1 ·

1

(1 + τ/τD,1)
+ A2 ·

1

(1 + τ/τD,2)

)
+Of , (2)

where A1 and A2 denote the amplitudes of the two process with characteristic correlation
times of τD,1 and τD,2.

Statistical analysis of transit time histograms

Statistical analysis of the sFCS data was performed on the basis of the empirical �nding
that all histograms of transit times from freely di�using molecules were lognormally distri-
buted as previously outlined.20 The lognormal nature of the sFCS data was a consequence
of an inherent bias in the data correlation resulting in a larger error for larger transit ti-
mes. All quantitative analysis was executed using custom-written scripts in MATLAB
(MathWorks, USA).

Lognormal distributed data are described by the Lognormal function that exists in three
analytical forms in its linear, cumulative, and logarithmic representation. The linear
single lognormal function fsLogn,lin(Xlin|µ, σ) is given by:

fsLogn,lin(Xlin|µ, σ) =
1

Xlinσ
√

(2π)
exp−(ln(Xlin)− µ)2

2σ2
, (3)
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with two characteristic parameters µ and σ.

The single cumulative Lognormal function fsLogn,cum(Xcum|µ, σ) is de�ned as:

fsLogn,cum(Xcum|µ, σ) =
1

2
+

1

2
erf

(ln(Xcum)− µ)√
2σ

, (4)

where erf denotes the error function.

The �nal third presentation of the single Lognormal function fsLogn,log(Xlog|µ̃, σ̃):

fsLogn,log(Xlog|µ̃, σ̃) =
1

σ̃
√
2π

exp
−(Xlog − µ̃)2

2σ̃2
(5)

Notably, the third presentation originates from the property that data Xlin were lognor-
mally distributed with the logarithm Xlog = ln(Xlin) being normally distributed with
µ̃ = µ+ 1

2
(σ2 − σ4) and σ̃ = σ2.

Our analysis pipeline exploited these three representations of the Lognormal function.
First, the data were read into MATLAB and pre-processed by applying a cuto� value to
remove very large transit time values, accounting for bleaching and noise. To compute
the sFCS histograms, the data sets were binned into 50 equally distributed bins, and
then normalized to probability distribution functions (pdfs) for the linear and logarithmic
representations, and normalized to cumulative distribution functions (cdfs) in the case of
the cumulative representation, respectively. For the histogram �tting, the midpoints of
the histogram data bars for all bins were extracted (e.g. for the linear representation the
i-th data point would be Xlin,i, ydatalin,i

).
To increase �tting accuracy, the transit time histograms were �tted in all three represen-
tations. First, the cumulative histogram, then the histogram of the logarithmic data and
�nally the linear histogram were �tted to the respective form of the lognormal distribu-
tion. The �tting strategy is exempli�ed in Figure S2b for free di�usion and in Figure S3c
for hindered trapped di�usion. After obtaining the �rst values from the cumulative only
20 % variation for µ and σ is allowed when �tting the other representations. Ultimately
for free di�usion, we have three �ts to determine just two parameters.
The µ value is closely related to the transit time. As a measure for evaluation we de�ned
value recovery as

τD,in−τD,out

τD,in
where τD,in is the input transit time (input value for the

simulation) and τD,out is the recovered value (either by averaging or �tting).

For hindered trapped di�usion, a combination of weighted two lognormal functions was
�tted to the transit time histograms. The three distributions are given as:

fdLogn,cum(Xcum|µ1, σ1, µ2, σ2, A) =A · (
1

2
+

1

2
· erf (ln(Xcum)− µ1)√

2σ1

)+

(1− A) · (1
2
+

1

2
· erf (ln(Xcum)− µ2)√

2σ2

)

(6)
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fdLogn,log(Xlog|µ̃1, σ̃1, µ̃2, σ̃2, A) =A · (
1

σ̃1

√
2π

exp
−(Xlog − µ̃1)

2

2σ̃2
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2
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(7)

fdLogn,lin(Xlin|µ1, σ1, µ2, σ2, A) =A · (
1

Xlinσ1

√
(2π)

exp−(ln(Xlin)− µ1)
2

2σ2
1
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Xlinσ2

√
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exp−(ln(Xlin)− µ2)
2

2σ2
2

),

(8)

where A accounts for the weighting factor of the two Lognormal distributions represented
by µ1, σ1 and µ2, σ2, respectively.

In the case of hindered hop di�usion, we exploited a similar strategy but adapting the
pre- processing of the sFCS data to a two-component FCS �tting model. The criterion
to accept a two-component �t as justi�ed was a contribution of > 10 % of a second
process to the �t (meaning 0.1 < A1 < 0.9). Transit times below 1 ms and larger
300 ms at the resolution limit of sFCS with 2081 Hz were neglected in the statistical
analysis. Subsequently the data were histogrammed, and the histograms were �tted to a
combination of fast exponential and a slower lognormal probability distribution function
starting with the cumulative representation, over the logarithmic ending with the linear
form. The three weighted distributions are given as:

fLognExp,cum(Xcum|µ1, σ1, µ2, A) =A · (
1

2
+

1

2
· erf (ln(Xcum)− µ1)√

2σ1

)+

(1− A) · (1− exp
−Xcum

µ2

)

(9)

fLognExp,log(Xlog|µ̃1, σ̃1, µ̃2, A, C) =A · (
1

σ̃1

√
2π

exp
−(Xlog − µ̃1)

2

2σ̃2
1

)+

(1− A) · (−1
µ2

·Xlog + ln(
1

µ2

)) + C

(10)

fLognExp,lin(Xlin|µ1, σ1, µ2, A) =A · (
1

Xlinσ1

√
(2π)

exp−(ln(Xlin)− µ1)
2

2σ2
1

)+

(1− A) · ( 1
µ2

· exp −Xlin

µ2

),

(11)

where A was a weighting factor for the two distributions with µ1, σ1 for the Lognormal
and µ2 for the exponential, respectively. C is an o�set.

Fitting quality and model selection

The quality of the histogram �tting process was evaluated with two di�erent strategies for
both the single and double Lognormal function. First for visual inspection of the �tting
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quality, the weighted residuals were computed for each individual �t.They were calculated
according to:

Residuals =
(ydata,i − yfit,i)√

(yfit,i)
, (12)

with ydata,i as the i-th y-values extracted from the histogram at the i-th bin and yfit,i as
the i-th recalculated y-value using µ and σ from the �ts (for example with Xlin,i).

Second, the goodness of �t value was also used to evaluate improvement in �tting when
varying parameters, or applying a more complex model. Notably, the single Lognormal
model over a simple Gaussian model, or the double Lognormal model over the single-
Lognormal model produces signi�cant changes in Goodness of F it (compare for example
Figure S3c). The goodness of the �t was calculated according to:

Goodness of F it =
n∑
i=1

(ydata,i − yfit,i)2

yfit,i
(13)

For the selection of a model function, we utilized maximum likelihood estimation (MLE)
to �t the linear representation of the histograms (compare Figure S4). The obtained es-
timators µ̂1,2 and σ̂1,2 should be similar to the values obtained from our �tting strategy
(µ1,2 and σ1,2).

From the MLE we also obtained the optimized logarithmic likelihood vector for the Bay-
esian Information Criterion (BIC) analysis. The BIC value provided a statistical measure
to evaluate which model represented the data best, applies penalties for the introduction
of more �tting parameters, and was hence used to decide for a �tting model (free or hinde-
red di�usion). In this way, the transit times were evaluated for example being Gaussian,
single- or double-Lognormal distributed. The log-likelihood function for a single Gaussian
is given by:

lnLGauss(µ, σ2) =
n∑
i=1

ln fGauss(xi|µ, σ2) =

− n

2
ln(2π)− n

2
lnσ2 − 1

2σ2

n∑
i=1

(xi − µ)2

(14)

The log-likelihood function for a single-lognormal function is given by:

lnLsLogn(µ, σ2) =
n∑
i=1

ln fsLogn,lin(xi|µ, σ2) =

− n

2
ln(2πσ2)−

n∑
i=1

ln(xi)−
∑n

i=1 ln(xi)
2

2σ2
+

∑n
i=1 ln(xi)µ

σ2
− nµ2

2σ2

(15)
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Accordingly, the log-likelihood function for a double-lognormal function is given by:

lnLdLogn(µ1, σ
2
1, µ2, σ

2
2, A) =

n∑
i=1

ln fdLogn,lin(xi|µ1, σ
2
1, µ2, σ

2
2, A) =

−n
2
ln(2π) +

n∑
i=1

(− ln(xi)) +
n∑
i=1

ln(Aσ−1
1 exp(−(ln(xi)− µ1)

2

2σ2
1

)+

(1− A)σ−1
2 exp(−(ln(xi)− µ1)

2

2σ2
1

))

(16)

For numerical stability of the double-Lognorm function, we used in practice the alternative
equation below incorporating a second weighting factor B which is not depended on A
and we constrained the �t to a contribution of a second component. Notably, for the BIC
calculation we assumed six �tting parameters.

lnLdLognAB
(µ1, σ

2
1, µ2, σ

2
2, A,B) =

n∑
i=1

ln fdLogn,linAB(xi|µ1, σ
2
1, µ2, σ

2
2, A,B) =

−1

2
ln(A+B)− n

2
ln(2π) +

n∑
i=1

(− ln(xi))+

n∑
i=1

ln(Aσ−1
1 exp(−(ln(xi)− µ1)

2

2σ2
1

) +Bσ−1
2 exp(−(ln(xi)− µ1)

2

2σ2
1

))

(17)

Instead of maximizing the log-likelihood functions the negative values were minimized
using MATLAB's solver fmincon. The optimized likelihood value was fed into MATLAB's
built in BIC function aicbic along with the number of sFCS transit times as number of
observations and the number of parameters of 2 or 6 for Gaussian and single-Lognormal
or for a double-Lognormal, respectively.

Finally, we expanded our analysis to the case of hindered hop di�usion and also included
a maximum likelihood estimation for a combination of lognormal and exponential proba-
bility distribution function to be able to make use of the BIC for model selection. The
log-likelihood function for a weighted combination of Lognormal and Exponential is given
by:

lnLLognExp(µ1, σ
2
1, µ2, A) =

n∑
i=1

ln fLognExp,lin(xi|µ1, σ
2
1, µ2, A) =

n∑
i=1

ln(A · x−1
i (σ2

12π)
−1/2 exp (−(ln(xi)− µ1)

2

2σ2
1

) + (1− A) · µ−1
2 exp (− xi

µ2

))

(18)

The model with the lowest BIC value represents the data best. To statistically compare
the likelihoods of the di�erent models, we used the relative likelihood (RL) values. They
were calculated as follows:

RLi = exp ((BICmin −BICi)/2), (19)

where RLi represents the relative likelihood value for the i-th model with the the i-th
BIC value (BICi) compared to the most likely model with the lowest BIC (BICmin).

33−35
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Together with the Residuals and the Goodness of F it value it was possible to objectively
decide whether a probe was undergoing free Brownian di�usion or hindered di�usion in
the cellular membrane.

6



S2 Supporting Figures

Figure S1: Spread of transit time values from individual FCS data generated from computer-
simulated sFCS experiments of free di�usion with di�erent implemented transit times and for
di�erent line scanning frequencies. (a) Transit time histograms with implemented average transit
times and line scanning frequencies given in ms and Hz, respectively, revealing that slow di�using
molecules experience larger errors than faster particles, also depending on the scanning frequency.
(b) Transit times versus signal-to-noise ratios and (c) transit times versus �tting standard de-
viation (as obtained from bootstrapping in the �tting program, see for details20) with di�erent
line scanning frequencies as marked and di�erent implemented transit times indicated by dark
(fast, low values) to bright (slow, high values) tones, indicating the dependency of the broadness
of the distributions and the dis-symmetry towards longer transit times of the distribution on the
magnitude of the measured transit time values, which results from the fact that the error of the
measurements increases exponentially with the transit times accompanied by respective changes
in the signal-to-noise (see 20 for details).
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Figure S2: Fitting strategy and value recovery of computer-simulated di�usion data. (a) Fit-
ting strategy: step1, LogNorm �t against cumulative transit time histogram (left, blue: data
from computer-simulations of free di�usion; red: �t; lower panel: weighted residuals) with ar-
bitrary start values of µ and σ; step 2, LogNorm �t against logarithmic transit time histogram
with results of step 1 as input parameters; and step 3, LogNorm �t against linear transit time
histogram with results of step 2 as input parameters and employing strong constraints on the �t
(see Supporting Information). (b-d) Comparison of average transit time values as implemen-
ted in the computer-simulations and those resulting from the LogNorm �ts to the transit time
distributions (b, �tting), from the mean (c, mean) and median (d, median) of the transit time
distributions for computer-simulated data of free di�usion for di�erent transit times (x-axis) and
line scanning frequencies (colored as labelled). Plotted are the value recovery = (transit time
(�t) � transit time (implemented))/transit time (implemented). Usual errors are less than 5 %,
and only up to 20 % for large transit times.
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Figure S3: Algorithm and analysis of computer-simulated trapped di�usion data. (a) Princi-
ple of computer-simulation algorithm as described in the Methods section. (b) Ratio Drat =
DSTED/Dconf of di�usion coe�cients as obtained from the analysis of FCS computer-simulated
trapped di�usion data with di�erent trapping/untrapping probabilities ptrap_on and ptrap_off

(x-axis); values of DSTED and Dconf were determined for observation spot sizes with FWHM =
80 nm (simulating super-resolved STED-FCS measurements) and FWHM = 200 nm (simulating
confocal conditions), and only values Drat < 1 indicate a signi�cant and observable trapping ex-
tent. This allowed to identify accurate conditions for computer-simulations of trapped di�usion
(we used ptrap_on = ptrap_off = 0.001 in our sFCS simulations (see Methods). (c) Cumula-
tive (left), logarithmic (middle) and linear (right) transit time histograms of computer-simulated
sFCS data of trapped di�usion (blue) with single- (upper panels) and double- (lower panels)
LogNorm �ts (red) with weighted residuals (respective lower panels) and Goodness-of-�t values,
highlighting the more accurate description of the data using the double-LogNorm �ts.
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Figure S4: Maximum likelihood estimation of LogNorm �ts to experimental data. Linear transit
time histograms of sFCS data (blue) from (a) DPPE in DOPC (left) and DOPC/Chol (right)
SLBs, (b) DPPE (left) and SM (right) in live PTK2 cells, and (c) GPI-GFP in live PTK2 cells
(left) and GPMVs derived thereof (right). Fits to the data using a purely Gaussian (Gauss
maximum likelihood estimation, orange lines), a single-LogNorm (sLogn maximum-likelihood-
estimation, yellow lines), and a double-LogNorm (dLogn maximum likelihood estimation, purple
dashed lines) are given, as well as RL values from the �ts (right insets). The most likely model
has a RL value of 1.
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Figure S5: Computer-simulations for hindered hop sFCS di�usion data. (a) Exempli�cation
of the hop di�usion simulations with coloured map of the meshwork causing the hindrance, a
short particle trajectory (black) and the line for the sFCS measurement (centre of each pixel
drawn as a green circle). (b,c) Average di�usion coe�cient in confocal (b) and Drat value (as
in Fig. S3 b) (c) for a parameter estimation over the simulation inputs L and phop (using
30 second simulations, 4 carpets per condition). The red dot at L = 100 nm and phop = 0.01
indicates a region of reasonable hopping (Drat > 1) used for the more dedicated simulations (45
seconds acquisition time, 10 carpets; the Drat value for 80 nm STED observation spot diameter
was Drat = 1.12) analysed by maximum likelihood estimation along with BIC/RL evaluation in
(d) and statistical analysis of the transit time histograms �tting combination of Lognorm and
Exponential probability distribution function together with respective weighted residuals in (e).
The red plane in (c) indicates a Drat value of 1 representing free di�usion.
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S3 Supporting Tables

Table S1: Summary of the �tted parameters for the data shown in Figure 1. NA refers to
non-applicable.

slogN dlogN
Data set µ (exp µ) σ µ1 (exp µ1) σ1 µ2 (exp µ2) σ1 A
Simulation 2.18 0.19 NA NA NA NA NA
(free (8.81)
di�usion)
Simulation NA NA 2.93 0.19 3.13 0.21 0.73
(trapped (18.69) (22.98)
di�usion)
SLB 1.44 0.41 NA NA NA NA NA
DOPC (4.23)
SLB 2.27 0.30 NA NA NA NA NA
DOPC/Chol (9.72)

Table S2: Summary of the �tted parameters for the data shown in Figure 2. NA refers to
non-applicable.

slogN dlogN
Data set µ (exp µ) σ µ1 (exp µ1) σ1 µ2 (exp µ2) σ1 A
DPPE 3.40 0.68 NA NA NA NA NA

(30.08)
SM NA NA 4.10 0.69 3.24 0.42 0.40

(60.30) (25.61)
GPI-GFP NA NA 2.44 0.53 2.15 0.32 0.32
(Cells) (11.42) (8.54)
GPI-GFP 1.59 0.74 NA NA NA NA NA
(Cells) (4.92)
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