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S1 Analysis of sFCS data

Pre-processing and fitting of the sFCS data

Using the empirically determined scanning-frequencies and the pixel dwell times, the sFCS
data were loaded and correlated using the FoCuS-scan software.? Initial bleaching was
removed by cropping off the first 10 seconds of all measurements. To further reduce
the bias due to bleaching the photobleaching correction by local averaging (16 seconds
interval) was applied as described before.?’ Following temporal cropping, the correlation
curves were then fitted using the described software package. The data for free and
trapped diffusion simulations, as well as all experimental data were fitted to a single
component 2D-diffusion model as follows.
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7 denotes the correlation time not to be confused with the absolute measurement time
t. Offset Oy, amplitude (given as inverse average number of particles in the observation
volume) 1/~ and transit time 7p were fitting parameters. Fitting was performed in the
range of 0.5 ms to 4000 ms. To obtain robust fits and an adequate error measure the data
were bootstrapped 20 times. Data were exported and saved as Excel-sheets containing

all fitted parameters and additionally the standard deviations and signal-to-noise values
(based on S/N = G(7)/var(G(7))%?).20

The sFCS data for hindered hop diffusion comprising two processes with two different
correlation times were fitted with a two-component model following as previously used in
camera based FCS analysis:!!
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where A; and A, denote the amplitudes of the two process with characteristic correlation
times of 7p; and 7p .

Statistical analysis of transit time histograms

Statistical analysis of the sFCS data was performed on the basis of the empirical finding
that all histograms of transit times from freely diffusing molecules were lognormally distri-
buted as previously outlined.?’ The lognormal nature of the sFCS data was a consequence
of an inherent bias in the data correlation resulting in a larger error for larger transit ti-
mes. All quantitative analysis was executed using custom-written scripts in MATLAB
(MathWorks, USA).

Lognormal distributed data are described by the Lognormal function that exists in three
analytical forms in its linear, cumulative, and logarithmic representation. The linear
single lognormal function fszognin(Xiin|p, o) is given by:
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with two characteristic parameters p and o.

The single cumulative Lognormal function fsrogn cum (Xeum |, o) is defined as:
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where erf denotes the error function.

The final third presentation of the single Lognormal function fzogn,iog(Xiog|ft; 7):
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Notably, the third presentation originates from the property that data X, were lognor-
mally distributed with the logarithm Xj,, = In(Xj;,) being normally distributed with
fi=p+i(0? —o*) and & = o

Our analysis pipeline exploited these three representations of the Lognormal function.
First, the data were read into MATLAB and pre-processed by applying a cutoff value to
remove very large transit time values, accounting for bleaching and noise. To compute
the sFCS histograms, the data sets were binned into 50 equally distributed bins, and
then normalized to probability distribution functions (pdfs) for the linear and logarithmic
representations, and normalized to cumulative distribution functions (cdfs) in the case of
the cumulative representation, respectively. For the histogram fitting, the midpoints of
the histogram data bars for all bins were extracted (e.g. for the linear representation the
i-th data point would be Xiin i, Ydatay,,. . )-

To increase fitting accuracy, the transit time histograms were fitted in all three represen-
tations. First, the cumulative histogram, then the histogram of the logarithmic data and
finally the linear histogram were fitted to the respective form of the lognormal distribu-
tion. The fitting strategy is exemplified in Figure S2b for free diffusion and in Figure S3c
for hindered trapped diffusion. After obtaining the first values from the cumulative only
20 % variation for p and o is allowed when fitting the other representations. Ultimately
for free diffusion, we have three fits to determine just two parameters.

The p value is closely related to the transit time. As a measure for evaluation we defined
value recovery as —2nPout where Tp.in 18 the input transit time (input value for the

TD,in
simulation) and 7p . is the recovered value (either by averaging or fitting).

For hindered trapped diffusion, a combination of weighted two lognormal functions was
fitted to the transit time histograms. The three distributions are given as:
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where A accounts for the weighting factor of the two Lognormal distributions represented
by w1, o1 and p9, 0, respectively.

In the case of hindered hop diffusion, we exploited a similar strategy but adapting the
pre- processing of the sFCS data to a two-component FCS fitting model. The criterion
to accept a two-component fit as justified was a contribution of > 10 % of a second
process to the fit (meaning 0.1 < A; < 0.9). Transit times below 1 ms and larger
300 ms at the resolution limit of sFCS with 2081 Hz were neglected in the statistical
analysis. Subsequently the data were histogrammed, and the histograms were fitted to a
combination of fast exponential and a slower lognormal probability distribution function
starting with the cumulative representation, over the logarithmic ending with the linear
form. The three weighted distributions are given as:
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where A was a weighting factor for the two distributions with uq, o1 for the Lognormal
and ps for the exponential, respectively. C' is an offset.

Fitting quality and model selection

The quality of the histogram fitting process was evaluated with two different strategies for
both the single and double Lognormal function. First for visual inspection of the fitting



quality, the weighted residuals were computed for each individual fit. They were calculated

according to:

(ydam,i - yfz’t,i)
(yfit,z’)

with Ygeta; as the i-th y-values extracted from the histogram at the i-th bin and ys;, as

the i-th recalculated y-value using p and o from the fits (for example with Xj;, ;).

Residuals = : (12)

Second, the goodness of fit value was also used to evaluate improvement in fitting when
varying parameters, or applying a more complex model. Notably, the single Lognormal
model over a simple Gaussian model, or the double Lognormal model over the single-
Lognormal model produces significant changes in Goodness of F'it (compare for example
Figure S3¢). The goodness of the fit was calculated according to:
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For the selection of a model function, we utilized maximum likelihood estimation (MLE)
to fit the linear representation of the histograms (compare Figure S4). The obtained es-
timators fi; o and & 9 should be similar to the values obtained from our fitting strategy

(ILLLQ and 0'172) .

From the MLE we also obtained the optimized logarithmic likelihood vector for the Bay-
esian Information Criterion (BIC) analysis. The BIC value provided a statistical measure
to evaluate which model represented the data best, applies penalties for the introduction
of more fitting parameters, and was hence used to decide for a fitting model (free or hinde-
red diffusion). In this way, the transit times were evaluated for example being Gaussian,
single- or double-Lognormal distributed. The log-likelihood function for a single Gaussian
is given by:
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The log-likelihood function for a single-lognormal function is given by:
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Accordingly, the log-likelihood function for a double-lognormal function is given by:
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For numerical stability of the double-Lognorm function, we used in practice the alternative
equation below incorporating a second weighting factor B which is not depended on A
and we constrained the fit to a contribution of a second component. Notably, for the BIC
calculation we assumed six fitting parameters.

In ‘CdLOgnAB (:ulv U%’ 2, U%? A7 B) = Z In deOQn,linAB(Ii|M1> 0%7 2, 0%7 Aa B) =
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Instead of maximizing the log-likelihood functions the negative values were minimized
using MATLAB’s solver fmincon. The optimized likelihood value was fed into MATLAB’s
built in BIC function aicbic along with the number of sF'CS transit times as number of
observations and the number of parameters of 2 or 6 for Gaussian and single-Lognormal
or for a double-Lognormal, respectively.

Finally, we expanded our analysis to the case of hindered hop diffusion and also included
a maximum likelihood estimation for a combination of lognormal and exponential proba-
bility distribution function to be able to make use of the BIC for model selection. The
log-likelihood function for a weighted combination of Lognormal and Exponential is given
by:
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The model with the lowest BIC value represents the data best. To statistically compare
the likelihoods of the different models, we used the relative likelihood (RL) values. They
were calculated as follows:

RLi = exXp ((B]Cmin - BIOI)/Q), (19)

where RL; represents the relative likelihood value for the i-th model with the the i-th
BIC value (BIC;) compared to the most likely model with the lowest BIC (BICy,).%3°



Together with the Residuals and the Goodness of F'it value it was possible to objectively
decide whether a probe was undergoing free Brownian diffusion or hindered diffusion in
the cellular membrane.



S2 Supporting Figures
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Figure S1: Spread of transit time values from individual FCS data generated from computer-
simulated sFCS experiments of free diffusion with different implemented transit times and for
different line scanning frequencies. (a) Transit time histograms with implemented average transit
times and line scanning frequencies given in ms and Hz, respectively, revealing that slow diffusing
molecules experience larger errors than faster particles, also depending on the scanning frequency.
(b) Transit times versus signal-to-noise ratios and (c) transit times versus fitting standard de-
viation (as obtained from bootstrapping in the fitting program, see for details?’) with different
line scanning frequencies as marked and different implemented transit times indicated by dark
(fast, low values) to bright (slow, high values) tones, indicating the dependency of the broadness
of the distributions and the dis-symmetry towards longer transit times of the distribution on the
magnitude of the measured transit time values, which results from the fact that the error of the
measurements increases exponentially with the transit times accompanied by respective changes
in the signal-to-noise (see 2% for details).



a Fitting Strategy

1. Cumulative Representation
Fit with given initial guesses

2. Logarithmic Representation
Fit using values from 1. as input

3. Linear Representation
Fit using values from 1./2.

with strong constraints
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Figure S2: Fitting strategy and value recovery of computer-simulated diffusion data. (a) Fit-
ting strategy: stepl, LogNorm fit against cumulative transit time histogram (left, blue: data
from computer-simulations of free diffusion; red: fit; lower panel: weighted residuals) with ar-
bitrary start values of pu and o; step 2, LogNorm fit against logarithmic transit time histogram
with results of step 1 as input parameters; and step 3, LogNorm fit against linear transit time
histogram with results of step 2 as input parameters and employing strong constraints on the fit
(see Supporting Information). (b-d) Comparison of average transit time values as implemen-
ted in the computer-simulations and those resulting from the LogNorm fits to the transit time
distributions (b, fitting), from the mean (c, mean) and median (d, median) of the transit time
distributions for computer-simulated data of free diffusion for different transit times (x-axis) and
line scanning frequencies (colored as labelled). Plotted are the value recovery = (transit time
(fit) — transit time (implemented))/transit time (implemented). Usual errors are less than 5 %,
and only up to 20 % for large transit times.
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Figure S3: Algorithm and analysis of computer-simulated trapped diffusion data. (a) Princi-
ple of computer-simulation algorithm as described in the Methods section. (b) Ratio Dyt =
DsTED/Deont of diffusion coefficients as obtained from the analysis of FCS computer-simulated
trapped diffusion data with different trapping/untrapping probabilities Ptrap on and Perap off
(x-axis); values of Dgrgp and Deons were determined for observation spot sizes with FWHM —
80 nm (simulating super-resolved STED-FCS measurements) and FWHM = 200 nm (simulating
confocal conditions), and only values D5y < 1 indicate a significant and observable trapping ex-
tent. This allowed to identify accurate conditions for computer-simulations of trapped diffusion
(we used Ptrap on = Ptrap off — 0.001 in our sFCS simulations (see Methods). (c) Cumula-
tive (left), logarithmic (middle) and linear (right) transit time histograms of computer-simulated
sFCS data of trapped diffusion (blue) with single- (upper panels) and double- (lower panels)
LogNorm fits (red) with weighted residuals (respective lower panels) and Goodness-of-fit values,
highlighting the more accurate description of the data using the double-LogNorm fits.
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Figure S4: Maximum likelihood estimation of LogNorm fits to experimental data. Linear transit
time histograms of sFCS data (blue) from (a) DPPE in DOPC (left) and DOPC/Chol (right)
SLBs, (b) DPPE (left) and SM (right) in live PTK2 cells, and (¢) GPI-GFP in live PTK2 cells
(left) and GPMVs derived thereof (right). Fits to the data using a purely Gaussian (Gauss
maximum likelihood estimation, orange lines), a single-LogNorm (sLogn maximum-likelihood-
estimation, yellow lines), and a double-LogNorm (dLogn maximum likelihood estimation, purple
dashed lines) are given, as well as RL values from the fits (right insets). The most likely model

has a RL value of 1.
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Figure S5: Computer-simulations for hindered hop sFCS diffusion data. (a) Exemplification
of the hop diffusion simulations with coloured map of the meshwork causing the hindrance, a
short particle trajectory (black) and the line for the sFCS measurement (centre of each pixel
drawn as a green circle). (b,c) Average diffusion coefficient in confocal (b) and Dy, value (as
in Fig. S3 b) (c) for a parameter estimation over the simulation inputs L and phop (using
30 second simulations, 4 carpets per condition). The red dot at L = 100 nm and ppep, = 0.01
indicates a region of reasonable hopping (Dy,s > 1) used for the more dedicated simulations (45
seconds acquisition time, 10 carpets; the Dy, value for 80 nm STED observation spot diameter
was Dyat = 1.12) analysed by maximum likelihood estimation along with BIC/RL evaluation in
(d) and statistical analysis of the transit time histograms fitting combination of Lognorm and
Exponential probability distribution function together with respective weighted residuals in (e).
The red plane in (c) indicates a D44 value of 1 representing free diffusion.
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S3 Supporting Tables

Table S1: Summary of the fitted parameters for the data shown in Figure 1. NA refers to
non-applicable.

slogN dlogN
Data set plexpp) |0 |pi(exppy) |01 | p2(exppo) |01 | A
Simulation 2.18 0.19 | NA NA | NA NA | NA
(free (8.81)
diffusion)
Simulation NA NA | 2.93 0.19 | 3.13 0.21 | 0.73
(trapped (18.69) (22.98)
diffusion)
SLB 1.44 0.41 | NA NA | NA NA | NA
DOPC (4.23)
SLB 2.27 0.30 | NA NA | NA NA | NA
DOPC/Chol | (9.72)

Table S2: Summary of the fitted parameters for the data shown in Figure 2. NA refers to
non-applicable.

slogN dlogN
Data set | p(exp ) |0 | m (exp ) |01 |12 (xppa) |01 [ A
DPPE 3.40 0.68 | NA NA | NA NA | NA
(30.08)
SM NA NA | 4.10 0.69 | 3.24 0.42 | 0.40
(60.30) (25.61)
GPI-GFP | NA NA | 2.44 0.53 | 2.15 0.32 | 0.32
(Cells) (11.42) (8.54)
GPI-GFP | 1.59 0.74 | NA NA | NA NA | NA
(Cells) (4.92)

12



