Supplemental files for “Inferences of individual drug responses
across diverse cancer types using a novel competing endogenous RNA

network”

Identification of ceRNAs across various cancer types

Human mature miRNA sequences were downloaded from the miRBase database (release 19) [1], and
IncRNA sequences were obtained from the GENCODE database (v19) [2]. Previous studies indicated
that IncRNAs could compete with mRNAs to bind miRNAs, which could then be detected using
traditional miRNA target prediction algorithms [3-5]. The miRNA-IncRNA interactions were predicted
using TargetScan (v.6.0) [6], PITA (March 2007 version) [7], miRanda (November 2010 version) [8§]
and RNAhybrid (v.2.1.1) [9] using the default parameters. To decrease the false positive rate of
traditional prediction methods, miRNA—IncRNA interactions were filtered using AGO-CLIP-seq data
[10], and then the experimentally validated miRNA-IncRNA interactions derived from
DIANA-LncBase [10] and starBase v2.0 [11] were integrated. The miRNA—mRNA interactions were
collected from TarBase (v6.0) [12] and mirTarBase (release 4.5) [13], which store manually curated
collections of experimentally supported miRNA targets. For each cancer, the ceRNAs were identified
by the following relationships. 1) miRNA-IncRNA and miRNA-mRNA interactions with a significant
negative correlation of expression (Pearson correlation coefficient [PCC] < —0.3, p < 0.05) were
retained [14, 15]. 2) The ceRNA triplet consisted of miRNA-IncRNA and miRNA-mRNA interactions
sharing at least one miRNA [16]. 3) Expression of the IncRNA and mRNA in the ceRNA triplet were

positively correlated (PCC > 0.3, p <0.05) [17].
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Figure S1. Degree distribution of the DRCE networks across 10 types of cancer. The x-axis is the

ranked degree and the y-axis is the number of nodes at this rank. Most nodes are lowly connected and

only a few are relatively highly connected. The examination of the degree distribution reveals a

scale-free power-law distribution.
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Figure S2. Correlation-density curves of LUSC DRCEs and non-DRCEs.
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Figure S3. The percentage of IncRNAs, miRNAs and mRNAs in DRCEs and non-DRCEs whose
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The percentage of IncRMNAs, miRNAs and mRNAs in DRCEs and non-DRCEs whose
correlation with simvastatin®s drug activities more than 0.5, 0.4 and 0.3,

correlation with simvastatin’s drug activities more than 0.5, 0.4 and 0.3.
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Figure S4. Parameter optimization of the patient-drug two-layer integrated network model. The RMSE

range with a change in o in 10 cancer types.
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Figure S5. Scatter plots of observed and predicted DRS.
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Figure S6. Expression of six STAD DRCEs (hsa-miR-335 KLF8 LINC00641,

hsa-miR-106b_ APC_ENSG00000248175, hsa-miR-106b_ APC LINC01184,

hsa-miR-106b_ CCND2 ENSG00000248175, hsa-miR-331 ATRX ENSG00000248175 and

hsa-miR-331 ATRX RP11-47304.3) in patients treated with 5-FU.
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