
Supplemental Materials and Methods 

 

Somatic variants from cancer data 

 

Data were obtained from whole genome sequenced cancers for breast cancer (n=560) 

from (Nik-Zainal et al. 2016) and from 9 cancer types publicly available in ICGC (The 

International Cancer Genome Consortium 2010). The ICGC project codes for the cancer 

types were: PACA-CA (n=148) and PACA-AU (n=94) for pancreatic cancer (Waddell et 

al. 2015), (Notta et al. 2016), OV-AU (n=72) for ovarian cancer (Patch et al. 2015), LIRI-

JP (n=264) for liver cancer (Fujimoto et al. 2016), PRAD-CA (n=120) for prostate cancer 

(Fraser et al. 2017), ESAD-UK (n=98) for esophageal adenocarcinoma (The Cancer 

Genome Atlas Research Network 2017), GACA-CN (n=40) for gastric cancer (The 

International Cancer Genome Consortium 2010), RECA-EU (n=74) for renal cell cancer 

(The International Cancer Genome Consortium 2010), PBCA-DE (n=239) for pediatric 

brain cancer (The International Cancer Genome Consortium 2010) and MALY-DE 

(n=100) for malignant lymphoma (The International Cancer Genome Consortium 2010). 

In total, 1809 whole genome sequenced cancers were analysed. Sequencing coverage 

exceeded 25X for all tumours and matched normal samples.  

 

Short insert paired-end reads were aligned to the reference human genome (GRCh37) 

using Burrows-Wheeler Aligner, BWA (v0.5.9). 

 

High quality curated somatic variant calls (substitutions, insertions/deletions and 

structural variations) were derived from the Wellcome Trust Sanger Institute’s Cancer 

Genome Project whole genome sequencing pipeline as previously described (Nik-Zainal 



et al. 2016). This is constituted by a bespoke, Expectation-Maximisation- based 

substitution-calling algorithm (CaVEMan), (Jones et al. 2016), (Nik-Zainal et al. 2012) a 

modified version of an insertion/deletion detection algorithm, Pindel (Ye et al. 2009) and 

a bespoke structural variant algorithm which uses de Bruijn graphing for discovery of 

somatic rearrangements and local reassembly for mapping breakpoints to base pair 

level. 

 

A subset of all somatic variants for breast cancer samples had been previously validated 

using alternative sequencing platforms to ensure high specificity of data (Nik-Zainal et al. 

2016). In short, 70 samples were used for validation across a mix of histopathological 

subtypes and were sourced from different collaborating centres. 

● On average 3% (range 0.6-20%) of the total burden of substitutions per sample 

were used for validation (total 11,581 mutations). The positive predictive value was 

~95.5% (average) for substitutions. 

● On average of 40% (range 8%-68%) of the total number of indels were validated 

per sample (total 7,192). The positive predictive value was 85% for indels. 

● Rearrangements were discovered using Brass I and an additional in silico 

method was used (de novo breakpoint assembly) to validate the finding. Only 

breakpoints that were de novo assembled with high confidence (80% and above only) 

were included in order to reduce the likelihood of false positive calls. PCR-based Sanger 

sequencing validation confirmed the presence of 803 randomly sampled breakpoints 

from this conservative dataset. 

 

 

 

 



 

 

 

Supplementary Table1: Number of substitutions, indels and rearrangement 

breakpoints per tumour type. 

Cancer Name  Samples Substitutions Indels Rearrangement 

breakpoints 

BRCA  560 3,479,651 371,993 131,068 

LIRI  264 3,575,056 852,361 51,034 

OVCA 72 732,189 141,296 39,078 

ESAD  98 2,890,654 347,680 48,394 

GACA  40 525,850 185,213 12,268 

PBCA  239 299,241 231,874 13,120 

PACA  242 1,881,336 625,803 48,404 

RECA  74 584,144 123,180 1,972 

MALY  100 1,242,356 203,051 10,752 

PRAD 120 602,729 799,583 24,104 

 

Furthermore, these datasets have all been published and therefore been through peer-

review previously. 

  



Simulations were performed for 10% randomly selected substitutions for each tumour 

type. The controls generated controlled for trinucleotide content. For each generated 

simulated mutation, the site of the substitution was excluded from the search space, and 

a site of the same trinucleotide content was randomly selected within a window of 50kb, 

therefore also controlling for genomic location. 

 

The reference genome hg19 was used throughout the manuscript. The results would not 

differ, if the analysis was performed in GRCh38. This is because GRCh38 differs from 

hg19 in its annotation of low mappability and centromeric sites, at which we do not call 

mutations. 

 

Reference non-B DNA annotations 

 

Non-B DNA sequence motif annotations were derived from (Cer et al. 2013). We have 

focused on the following categories in this analysis: Mirror repeats, H-DNA, short 

tandem repeats, Z-DNA, inverted repeats, direct repeats and G-quadruplexes. 

 

● A mirror repeat is a section of sequence that is repeated with a center of 

symmetry on the same strand, length of at least 20nt and arm size of at least 10nt. A 

subset of mirror repeats are termed Hinged DNA (H-DNA), because they are 

predisposed to forming a triple helical structure connected through alternative chemical 

bonds called Hoogsteen bonds. H-DNA have a high (>90%) AG content, arm lengths of 

>=10nt and spacer size of less than 8nt. 

● Z-DNA is a left-handed double helical structure that is formed by alternating 

purine-pyrimidine tracts of at least 12nt (excluding AT repeats). 



● Direct repeats are defined as repeated sequences with arm length of >=10nt, 

with maximum size 300nt. 

● Short tandem repeats are (also called microsatellite repeats) defined as motifs of 

1-9nt, repeated at least 3 times with a minimum length of 9nt and without any 

interruptions. Short tandem repeats are prone to misalignment and formation of looped 

or slipped structures. 

●      Inverted repeats are palindromic sequences with minimum arm length of 6nt, 

spacer size up to 100nt and have a tendency to form hairpin or cruciform structures. 

●      G-quadruplexes are defined as 4 or more runs of at least 3 guanines, separated by 

spacers of 1-7nt of other nucleotides. For G-quadruplex motifs we referred to G-runs as 

the guanine runs that can form Hoogsteen bonds and the loops as the spacer between 

the G-runs.  

 

BEDTools utilities v2.21.0 were used to manipulate genomic files and intervals (Quinlan 

and Hall 2010). 

 

To count the number of nucleotides shared between different non-B DNA motifs, 

“bedtools intersect” and “bedtools coverage” functions were used. The command 

“bedtools jaccard” was used to calculate the Jaccard index for each pair of motifs (Fig. 

S1b). 

 

 

 

Epigenomic Data 

  



DNase and histone modification narrowpeak files were downloaded from (Roadmap 

Epigenomics Consortium 2015) (http://www.roadmapepigenomics.org/data/) and BAM 

files were derived from (The ENCODE Project Consortium 2012) ( 

http://genome.ucsc.edu/ENCODE/downloads.html). HMEC cell line epigenetic 

narrowpeak data were used to model breast cancer, whereas PANC1, HepG2 and 

GM12878 cell line narrowpeak epigenomic data were used to model pancreatic cancer, 

liver cancer and malignant lymphoma. Ovary, esophagus, fetal female brain, stomach 

mucosa, fetal kidney primary tissue narrowpeak epigenomic data were used to model 

ovarian cancer, esophageal carcinoma, pediatric brain cancer, gastric cancer and renal 

cell cancer respectively. BAM files for the same epigenetic modifications were derived 

from (The ENCODE Project Consortium 2012) to validate the findings derived from 

narrowpeak files, for MCF-7 cell line, which is used to model breast cancer.  

 

Chromatin States 

 

Chromatin states represent partitions of the genome derived using chromatin 

modification patterns in commonly used cell lines.  Here chromatin states were defined 

with Segway as described in (Hoffman et al. 2012), (Hoffman et al. 2013) using 

chromatin modifications from (The ENCODE Project Consortium 2012) for 6 human cell 

lines (GM12878, H1-Hesc, HepG2, HUVEC, K562, HelaS3) and downloaded from 

http://hgdownload-

test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgSegmentation/. Segway 

regulatory segment tracks display labeled, non-overlapping partitions of the genome of 

regulatory sites with biological functions and are produced by an unsupervised pattern 

discovery algorithm.  The labeled partitions were grouped in: CTCF, DNase, 

transcription associated, candidate strong enhancer, candidate weak enhancer, low 



activity proximal to active states, promoter flanking, inactive promoter, heterochromatin-

repetitive-copy number variation, Polycomb repressed and active promoter. 

 

The background or “expected” density of each non-B DNA motif (DN-background) was 

calculated as the total number of occurrences of the motif (TO) over all mappable 

nucleotides across the Segway states (TN). The density of each non-B DNA motif at a 

particular state (DN-specific) was calculated as the fraction of the number of 

occurrences of the non-B DNA motif at that state (SO) over the number of mappable 

nucleotides covered in that state (SN). The enrichment of a non-B DNA motif at a given 

state was the fraction of the density at the state over the background density of the motif. 

 

Background density of a non-B DNA motif: DN-background: TO /TN 

Density of a non-B DNA motif at the state = DN-specific: SO /SN 

Enrichment:  DN-specific / DN-background 

 

The mean enrichment across 6 human cell lines (GM12878, H1-Hesc, HepG2, HUVEC, 

K562, HelaS3) was calculated. Hierarchical clustering of chromatin states and plotting 

was performed with the python package “seaborn” using default parameters (Fig. 1i). 

  

 

Repli-Seq Data 

 

Reference coordinates for replication landmarks were inferred from Repli-Seq data of 14 

cell-lines, which were NHEK, IMR90, HUVEC, HeLa-S3, GM12813, GM12812, 

GM12801, GM06990, BJ, BG02ES, MCF-7, GM12878, HepG2 and K562. Repli-Seq 

data were obtained from (The ENCODE Project Consortium 2012) 



(https://www.encodeproject.org/) and processed as described in (Morganella et al. 

2016). Replication timing was measured at each genomic interval using “bedtools map” 

utility function. Repli-Seq data for MCF-7 were used for breast cancer, HepG2 Repli-seq 

data were used for liver cancer, GM12878 for malignant lymphoma and MCF-7 for all 

other cancer types. A positive correlation between mutations and replication time 

indicates positive correlation for early replication time domains and mutations, while a 

negative correlation denotes a positive correlation for late replication time domains (Fig. 

2a, Fig. S4). Pearson correlation between any two cell lines with Repli-Seq data 

exceeded 0.69 in all cases, using 500kb genomic windows (Fig. S2).  

 

 

Modelling the relationship between mutations and genomic features (epigenetics, 

replication time domains and non-B DNA motifs) 

  

The human genome (hg19) was partitioned in equal-sized regions of 500kb segments. 

Centromeric sites, simple repeats and regions of excessive sequencing depth (UCSC 

Top 0.01 Hi Seq Depth) were downloaded from the UCSC genome browser and used to 

identify bins with low mappability. The command “bedtools coverage” was used to 

calculate the coverage of centromeric sites and low complexity sequences at each 

genomic interval. We excluded the first and last bin from each chromosome as well as 

any bin where <50% of the bases were mappable or where replication time data is 

missing, and the sex chromosomes. This resulted in 5,581 non-overlapping bins. All 

quantities except for the replication times were transformed as x’ = log2(1 + x) for the 

downstream analysis. 

 



To map reads from histone modification BAM files from (The ENCODE Project 

Consortium 2012) at each genomic interval, “bedtools multicov” utility function was used. 

In case of multiple replicates per file, the mean number of reads per segment was 

calculated across replicates. 

 

To calculate the number of non-B DNA motifs, mutations, genomic features and 

narrowpeak files from (Roadmap Epigenomics Consortium 2015) at each genomic 

segment, BEDtools “intersect” utility was used (bedtools intersect -a segments.file -b 

mutation.file with flags -u, -v, -c). The statistics of non-B DNA motifs at 500kb windows 

across the humans are provided in Supplementary Table 2. 

 

The command “bedtools nuc” was used to calculate the GC content at each interval as 

well as the number of As, Gs, Cs, Ts and Ns at each interval for the hg19 reference 

genome. 

 

Partial correlation is a measure of association between two variables, controlling for the 

effect of covariates. Partial correlations were applied to measure the relationship 

between mutations and non-B DNA motifs, controlling for the effect of epigenetic 

markers and replication timing. Partial correlations were calculated in R with the package 

‘ppcor’ (Kim 2015). Results are noted in Fig. S5. 

 

Linear and random forest regression 

  

To model the relationship between the number of mutations and a plethora of 

explanatory variables we applied two predictive models; linear regression and random 

forest regression. In the former, additive relationships are modeled using linear predictor 



functions, whereas a random forest model is an ensemble-learning model in which 

multiple regression trees are constructed and evaluated. In both models, the relative 

importance of each predictor variable can be measured. The two models were applied 

independently to each cancer type. Prostate cancer, for which epigenetic data from a 

relevant cell of origin were not available, was excluded. 

 

Both models were evaluated using 10-fold cross-validation, whereby the model was 

trained using 90% of the data and tested using the held out 10%. The same bins and 

transformations that were used for the correlation calculations were used for the 

regression. For the linear model we used the command “lm” in R and for the random 

forest regression, we used the R-package “randomForest” with default parameters. For 

the random forest regression model feature importance was measured using the 

predictive measure of the original and the permuted dataset. In particular, the variable 

importance for Fig. 2 panels d and e was evaluated using the R-package “pRF”, which 

uses a permutation test. The parameters for the pRF function were “n.perms = 200” and 

“mtry = 4”. The biplot in Fig. 2f represents the first two loadings obtained using the 

princomp command in R. 

 

 

 

 

 

 

 

 



Supplementary Table 2: Statistics of non-B DNA motifs at genomic bins of 500kb 

across the human genome. 

Non-B 

DNA 

Median 

Occurrences 

No 

Occurrences 

in Bin 

Mutability 

Enrichment 

of Motif at 

Subs 

Mutability 

Enrichment 

of Motif at 

Indels 

Mutability 

Enrichment of 

Motif 

Rearrangements 

IR 1029 184 1.098 1.626 1.210 

STR 330 185 1.562 5.767 1.025 

DR 88 186 1.134 2.378 0.833 

MR 162 184 1.083 2.494 0.983 

G4 38 185 1.188 1.449 0.901 

Z-DNA 33 223 1.742 10.668 0.981 

H-DNA 11 206 1.677 5.965 0.887 

 

 

Enrichment of mutagenesis within non-B DNA motifs 

  

For each bin of size B and non B-DNA motif, we calculated the number of bps covered, 

b, as well as the number of mutations that overlapped the motif type, m, and the number 

of mutations not overlapping the motif, n. The fraction of mutations overlapping non B-

DNA motifs is m/b, and the fraction of mutations not overlapping motifs is n/(B-b). The 

enrichment of mutations overlapping non B-DNA motifs is given by r = m(B-b)/nb. When 

calculating r we exclude the bins where b = 0. When calculating ratios in Fig. 3a, Fig. S9, 

the expected values and the variances are adjusted to account for correlations as: 

 



E[X/Y] = E[X]/E[Y] - Cov[X, Y]/E[Y]2 + Var[Y]E[X]/E[Y]3 

  

and 

 

Var[X/Y] = (E[X]/E[Y])(Var[X]/E[X]2 - 2Cov[X,Y]/E[X]E[Y] + Var[Y]/E[Y]2). 

 

For panels in Fig. S11c, Fig. S12 this correction was not applied since it results in 

negative values for some of the spacer or arm lengths. For all cases, the correlation 

between the mutation densities of spacer and arms is positively correlated and for all but 

a handful, the adjusted ratios are an order of magnitude higher than the unadjusted, 

suggesting that the latter is an underestimate. 

 

When discussing mirror repeats, direct repeats and inverted repeats “spacer” is used to 

denote the part of the motif that is not repeated, whereas “arm” is used to denote the 

repeating parts (Fig. 1d-f). The number of mutations overlapping spacers and arms was 

recorded separately. 

 

For each direct repeat, inverted repeat and mirror repeat motif we calculated the length 

of the spacer and the arms. The mutation density was calculated as the number of 

mutations overlapping each motif part divided by the length of the spacer or arm 

respectively, averaged across all instances of the motif-type. Figure 3c is a summary 

figure across the ten tumour types of Fig. S11c and Fig. S12, measuring the average 

mutational density in the spacer and arm for spacer sizes 1-10nt. For Figure S11b, the 

mutational enrichment at spacers over arms was corrected for that expected based on 

the trinucleotide content frequencies of substitutions at each cancer type. 

 



We measured the mutational density in each sub-component of each G-quadruplex motif 

(G-run and loop) and calculated the enrichment as the fraction of the mutational 

densities of the two sub-components averaged across instances. Furthermore, we 

separated G-quadruplexes into two groups based on the average size of the loops (less 

or equal than 3nt or longer than 3nt) and compared the mutational density of each 

group. In all cases, error bars displayed standard error measured using bootstrapping 

with replacement (n=10,000). For Figure S11a, the mutational enrichment at loops over 

G-runs was corrected for that expected based on the trinucleotide content frequencies of 

substitutions at each cancer type. 

 

To investigate the relationship between mutagenesis and the distribution of non-B DNA 

motifs we generated a window of 2kb centered at mutations and measured the 

distribution of non-B DNA motifs within each position at that window. Next, we calculated 

the median number of each non-B DNA motif across the window and from that we 

defined the enrichment as the number of occurrences at a position over the median 

number of occurrences across the window (Figure S10a-c). For Figure 2b the average 

enrichment across the ten tumour types is shown for each non-B DNA motif. Micrococcal 

nuclease sequencing (MNase-seq) data for K562 cell line were obtained from (The 

ENCODE Project Consortium 2012) 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhNsome/

wgEncodeSydhNsomeK562Sig.bigWig) to assess the relationship between nucleosome 

occupancy and G-quadruplex motifs, given the mutational patterns observed (Figure 

S10a-c). The signal profile and heatmap plot for nucleosome occupancy at a window of 

2kb around G4s (Figure S10d) was generated using deepTools (Ramírez et al. 2014). 

 

 



Analysis of recurrent mutations 

  

The number of substitutions and indels at each genomic site was calculated per cancer 

type across patients using a python script, which has been uploaded as Supplemental 

Material. The overlap between recurrently mutated sites for each mutation type and each 

non-B DNA motif was subsequently calculated using “bedtools intersect” utility. A 

truncated Poisson model was applied as the null model. 

 

The truncated Poisson model was estimated using the “mle” function from the “stats4” R-

package. Mann-Whitney U test for recurrent and non-recurrent indels and substitutions 

overlapping each non-B DNA motif was calculated to measure significance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


