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Supplementary Figure 1. (A) Protein alignment between the histone acetyltransferase orthologues P300
(Homo sapiens) and Nejire (Drosophila melanogaster). The previously identified core region of P300 aligns
with high identity to the putative core region of Nejire; Bromo Domain (BD), RING domain and Histone
Acetyltransferase (HAT) domain have high % identity, the HAT aspartate catalytic residue D1399 in P300
corresponds to D2046 in Nejire Core®. (B) dCas9-VPR, dCas9-P300 Core and dCas9-Nejire Core protein
fusion schematics; FLAG epitope (DYKDDDDK) for antibody detection, Nuclear Localization Sequence (NLS).
(C) Aberrant morphology of eyes seen with dCas9-Nejire Core in presence of various gene-specific sgRNAs.
(D) dCas9-VPR expressed in eyes with sgRNAs show no aberrant morphology, except in combination with
eve-sgRNA. (E) dCas9-P300 Core gives no observable aberrant morphology when expressed in eyes with

sgRNAs.

Supplementary Figure 2. Plasmid maps for cloning and expression vectors used.

Supplementary Table 1. Statistical analysis of INDEL inheritance as a measure of fitness. Equal numbers of
Heterozygous balanced mutants were crossed as virgins and presence and absence of balancer scored in F1
generation. Expected frequency for homozygous F1 individuals if no fitness cost present would be 1/3 of
total counted. X* shows the calculated Chi-Squared value calculated from Observed and Expected
Frequencies of the two genotypic classes for each INDEL. With 1 degree of Freedom of used X*values higher
than 6.63 (p=0.01) indicate a significant difference between observed and expected frequency of
homozygous mutants in the F1 generation. This significant difference is mostly significantly fewer than
expected when there is a difference, however engrailed-5/17/99 gives significantly more homozygous

mutants than expected in the F1 indicating that there is less fitness costs than the balancer for this line.

Supplementary Table 2. Transgenic lines crossed as females to tester stocks to determine lethality.
Compare with Figure 6A. Female virgin transgenic stocks crossed to male tester stocks. Associated %

Lethality is similar to that seen for lines crossed as males (Figure 6A) to tester stocks.



Supplementary Table 3. P-element insertion loci. P-element flanking sequence derived from Inverse PCR of
5’ element, 15 nucleotides of flanking sequence shown each side of insertion. Genomic location of insertion
along with strand and nearest 5" and 3’ gene are shown. If element inserts within a gene (either intron or
UTR) this is denoted by the nearest 5’ Gene shown in brackets. Distances shown in kilobases (kb) np = not

performed.

Supplementary Table 4. Assessment of transgenic fitness costs in homozygous viable lines. Scored embryo
number and subsequent scored larval survival numbers are shown for each homozygous strain. Percentage

Lethality calculated as Dead Embryo number divided by Total number of embryos.

Supplementary Technical Cross 1: Activation Domain and gRT-PCR sgRNA screen in eyes. Cross of dCas9-
Activators expressed in eyes from GMR-GAL4 driver in the eyes to sgRNA to assess strength of Activation
fusions and sgRNA transactivation potential. In total 13 sgRNAs were crossed to female dCas9-Activator
lines and each assessed for activation potential using gene specific primers on cDNA made from head RNA.
Control is w1118 flies which contain no sgRNA. (A)dCas9-VPR. (B) dCas9-p300 Core. (C) dCas9-Nejire Core.

Supplementary Technical Cross 2: CRISPRa Lethality Screen: Female activator-GAL4 lines crossed to male
sgRNAs. Genotypes scored in F1 differ depending on the balancer genotype of the female line crossed (See
Supplementary Data Table 1 for which crosses used which strategy) (A) Tubulin-GAL4 driving UAS::dCas9-
VPR is balanced over a multiple 2™ and 3™ fused balancer; progeny can inherit either UAS::dCas9-VPR and
aTubulin-84b-GAL4 or the balancer. sgRNA lines were crossed as males and scored for presence of absence
of balancer phenotypes. % Survival was calculated as shown. (B) When both UAS::dCas9-VPR and driver-
GAL4 are balanced, 4 possible phenotypes are scored in the F1. (C) UAS::dCas9-VPR is homozygous and
driver-GAL4 is balanced in female parent (D) UAS::dCas9-VPR is heterozygous and driver-GAL4 is homozy-
gous in female parent. (E) Both UAS::dCas9-VPR and driver-GAL4 are homozygous, phenotypes not scored

in F1, presence of absence of progeny used to discern lethality.



Supplementary Technical Cross 3: qRT-PCR and Protein Analysis in the embryo (A) aTubulin-84b-GAL4 is
used to drive UAS::dCas9-VPR and crossed to eve-sgRNA (also hid1-sgRNA for mRNA analysis) males. Be-
cause the aTubulin-84b-GAL4 is not viable as a homozygous insertion it was not possible to obtain non-seg-
regating lines. F1 progeny are a mix of two genotypes, one that can putatively activate expression at the
eve (or hid) locus and a balancer genotype. As embryos were assessed it was not possible to distinguish F1
genotypes (dominant marker of the balancer becomes visible at the larval stage onwards). We therefore
pooled F1 progeny and compared against the control line which contains no sgRNA in order to discern over-
expression phenotypes.

Supplementary Technical Cross 4: CRISPR/Cas9 INDEL Creation. Female vasa:Cas9 line crossed to male
sgRNAs (A) Strategy to induce INDEL mutations on the 2™ chromosome using a 2™ Chromosome balancer
to maintain the putative INDEL through successive generations. (B) A more complex strategy is required for
establishing chromosome 3 INDEL mutations as both the sgRNA and Cas9 are integrated at the AttP-9A
(VK00027) on chromosome 3 which needed to be removed to accurately assess the viability of the muta-
tion. The putative INDEL induced in female germ-cells is selected with GFP in order to easily screen for GFP
absence in later generations (sgRNA is marked by Vermillion complementation, which is not possible to
score in a Mini-White background); a balancer that maintains the mutation on chromosome 3 used. GFP is
lost through recombination in the female germ-line in the absence of a balancer in the final step. INDELs

were then reconfirmed to be present and maintained with a 3™ chromosome balancer.

Supplementary Technical Cross 5: Synthetic Lethal Element Screen. Testing for lethality involved crossed
heterozygous male transgenic lines to w1118 female flies which are wild-type for sgRNA binding sites at the
eve and hid loci. (A) Transgenics derived from ®C31 integration using the AttB/AttP sites (B) Single Barrier
vector integrated using P-elements at various (unknown) chromosomal locations. (C) Double Barrier vectors

integrated at various locations with P-elements, integrated into a genome protective at the eve and hid loci.



Supplementary Technical Cross 6: qRT-PCR Embryo Analysis for P-Element Insertions. (A) Heterozygous
male P-element bearing flies were crossed to tester stocks of w1118 (wild-type) or the protective eveAl1l
strain. F1 embryos segregating the transgene were collected as a pooled population as heterozygous parent
were crossed (homozygotes for the tested transgenic lines were inviable). Embryos were aged, collected

and RNA extracted, cDNA synthesized and eve expression analysed by qRT-PCR.
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Supplementary Figure 2
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Supplementary Table 1

Significantly Fewer Homozyous A

Homozyous A Observed Expected than expected (P=0.01 with 1

INDEL Line / Total Homozyous A Homozyous A X2 Value Degree of Freedom)

dpp2-1 38/202 38 67 19.27 Yes
dpp2-4 18/132 18 44 23.05 Yes
dpp2-3/5 92/309 92 103 1.76 No
dpp2-6 31/93 31 31 0.00 No
engrailed-1/2/3 35/102 35 34 0.04 No
engrailed-5/17/99 243/582 243 194 18.56 No (More than expected)
engrailed-15 43/137 43 46 0.24 No
eve-2/3/11 204/587 204 196 0.53 No
eve-12 54/164 54 55 0.02 No
eve-13/14 105/315 105 105 0.00 No
eve-16 31/219 31 73 36.25 Yes
hairy-1 31/97 31 32 0.09 No
hairy-3/10 22/63 22 21 0.07 No
hid1-13 50/147 50 49 0.03 No
hid1-15 35/103 35 34 0.03 No
hid1-19 74/223 74 74 0.01 No
rad51-10 36/112 36 37 0.08 No
rad51-28 25/72 25 24 0.06 No
reaperl-8 80/253 80 84 0.34 No
reaperl-9 0/120 0 40 60.00 Yes

reaperl-10 44/117 44 39 0.96 No



Supplementary Table 2

Transgenic sgRNA Homozygous Progeny Synthetic
Strain Target Integration Viable Tester Strain (transgenic / total) Lethality (%)
SB-H eve Yes wild-type 38/74 0.0
SB-H eve eve A1l 44/87 0.0
SB-LT eve a No wild-type 0/227 100.0
SB-LT eve % eve A11 92/185 05
SB-ST eve £ VYes wild-type 12/51 52.9
SB-ST eve ° eve A1l 88/173 0.0
SB-TW eve Yes wild-type 18/63 42.9
SB-TW eve eve A1l 53/106 0.0
SB-LT-1-4 eve No wild-type 21/150 72.0
SB-LT-1-4 eve eve A1l 59/119 0.8
SB-LT-4-2 eve No wild-type 3/105 94.3
SB-LT-4-2 eve eve A1l 85/172 1.2
SB-LT-4-3 eve No wild-type 10/79 74.7
SB-LT-4-3 eve eve A1l 31/64 3.1
SB-LT-5-1 eve 2 No wild-type 6/160 92.5
SB-LT-5-1 eve g eve A11 40/81 1.2
SB-LT-7-1 eve 2 No wild-type 171/86 0.0
SB-LT-7-1 eve o eve A1l 100/203 15
SB-LT-7-2 eve No wild-type 94/186 0.0
SB-LT-7-2 eve eve A1l 90/180 0.0
SB-LT-8-1 eve No wild-type 36/147 51.0
SB-LT-8-1 eve eve A1l 73/145 0.0
SB-LT-9-1 eve No wild-type 79/157 0.0
SB-LT-9-1 eve eve A1l 82/165 0.6



Supplementary Table 3

Transgenic Genomic Location of

Strain 5'Gene  Distance to 5' Gene (kb) 3'Gene Distance to 3' Gene (kb) Insertion [strand] Flanking Sequence (5'-3')
SB-LT-1-4 (CG32179) Inserts in 5'UTR of CG32179 (0.309 from TSS) CG7484 0.612 3L:17,647,057 [+] ACCTTGTTTTCTTCT-P-ATGCGTTGGTCGATT
SB-LT-4-2 np np np np np np

SB-LT-4-3 CG2530 0.189 CG43131 21.467 3R:5,087,203 [-] ACTCTGCGCTCGTCT-P-CCTGCGACTGTGTGT
SB-LT-5-1 np np np np np np

SB-LT-7-1 (CG7858) Insertsin 5'UTR of CG7858 (0.20 from TSS)  CG6310  0.679 3L:11,070,545 [-] ARATTGAGAGTGACG-P-ATATGGACGAGCTGC
SB-LT-7-2 (CG7858) Insertsin 5'UTR of CG7858 (0.20 from TSS)  CG6310 0.679 3L:11,070,545 [-] AAATTGAGAGTGACG-P-ATATGGACGAGCTGC
SB-LT-8-1 (CG42551) Inserts in intron of CG42551 (9.312 from TSS) CG1345 9.981 3R:24,152,818 [-] GCACGTAGGCCATCC-P-GAAGGAGAGCCGARAA
SB-LT-9-1 np np np np np np

DB1-LT-1 CG10038 22.973 CG10013 0.803 3R:12,325,957 [-] TAGTCTGTCCAACAA-P-TGGGGCGCAGACCAT
DB1-ST-1 np np np np np np

DB2-LT-1 np np np np np np

DB2-LT-2 np np np np np np

DB2-LT-3 (CG3964) Inserts in intron of CG3964 (3.099 from TSS) CR44078 3.657 21:3,865,493 [+] GTTATATTTTCGCAG-P-TGCTCACTTTTGCAT



Supplementary Table 4

Total Surviving Dead Lethality
Strain  Embryos Larvae Embryos
w1118 529 501 43 8.6
eve A1l 471 443 42 9.5
SB-TW 502 451 50 11.1
SB-ST 360 302 54 17.9



Supplementary Technical Cross 1: Activation Domain and qRT-PCR sgRNA screen in eyes
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Supplementary Technical Cross 2: CRISPRa Lethality Screen
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Supplementary Technical Cross 3: qRT-PCR and Protein Analysis in the embryo
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Supplementary Technical Cross 4: CRISPR/Cas9 INDEL Creation
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Supplementary Technical Cross 5: Synthetic Lethal Element Screen
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Supplementary Technical Cross 6: qRT-PCR Embryo Analysis for P-Element Insertions

?{P-SB-n- P[W+]}?

A XM118/Y: evenll;
XWils . _
Sample . i 7 Pooled
Xwms, .y ))((\:’ /Y evelAll; -:I mRNA Analysis
?{P-SB-n- P[W+]}7 1 XS - - : Stage Embryos
wiiis! - Collect Tissue
X sevenll;- X (50 Embryos, pooled genotypes)
v evehllis P{P-SB-n-PIW+1}? RNA extraction
4 Xwi118 ALl wilis cDNA Synthesis
Control  ywinisigenigh. — §W“18x :Zzﬁﬂ :| 5 qRT-PCR
Poole

XWi18/y: eveAl1l; :I
XWit8/y; eveAll; -



