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Box 1: Summary of models of Bicoid protein concentration gradient formation 
 
Synthesis, diffusion, degradation (SDD) model1,2:  
Bcd is synthesized at rate J in the anterior pole, before diffusing (D) and degrading at 
rate µ. The Bcd concentration (CBcd) is then given by the reaction-diffusion equation 

 . (E1) 
In steady-state, the solution of Eq. E1 is given by 

 , (E2) 
where and (where L is the system length). It is also possible that the 
gradient may not reach dynamic equilibrium within the 2-3 hour time window of early 
development, resulting in pre-steady-state interpretation 3,4.   
 
Nuclear shuttling model5: 
This model is similar to the SDD model except µ=0 in Eq. E1 and Bcd nuclear protein 
is diluted by increased trapping upon nuclei division. The length scale is now time 
dependent  and there is no steady-state (a secondary Bcd degradation 
pathway is required to clear Bcd during cycle 14).  By suitable choice of D, the profile 
is exponential-like in early n.c. 14, Figure 1C and Appendix Figure S1B.  
 
Spatially distributed bcd mRNA model6-8:   
Here, we consider the bcd mRNA gradient to be exponentially-distributed with length 
scale  though alternative distributions can be used9. This alters the synthesis 

term in Eq. E1 to . In the limit  the steady-state solution reduces to 

Eq. E2 while in the limit then the steady-state Bcd distribution is effectively 
described by the underlying bcd mRNA distribution. Note that other suitable 
distributions for the mRNA gradient do not significantly alter our results7. 
 
bcd mRNA diffusion and degradation model6,10: 
The dynamics that describe this model are similar to the SDD model (Eq. 1) but now 
we consider bcd mRNA ( ), not Bcd protein, diffusion.  There is fixed initial bcd 
mRNA number in the anterior with (relatively) static Bcd protein: 

,      (E3) 
Although there is no Bcd protein degradation, this model obtains a steady state as 
the Bcd production ceases when the initial bcd mRNA is fully degraded. 
 
Adaptations to these models, such as incorporating both distributed bcd mRNA and 
time dependent diffusion have been analyzed 11, including advection 12. See 
Appendix: Theoretical modeling and Simulation for more complete mathematical 
details of the above models.   
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Box 2: Calculation of average Bcd age using different models 
 
Here, we briefly outline qualitative arguments for the expected behavior of the four 
models considered. See Theoretical modeling and simulation for more complete 
mathematical details. 
 
The average protein age depends on the mechanism of protein production and 
(possible) protein degradation and diffusion.  For the SDD model, in steady state the 
average protein age  at a position x is given  

   if (where L is system length)   (E4) 

Interestingly, this is the same as the timescale to reach steady-state in the SDD 
model13.  
 
For the nuclear shuttling model, the protein age scales with system age, as there is 
no degradation.  The protein age at larger distances from the source is older as it 
typically takes a time ~ x2/D to diffuse a distance x (though the boundaries 
complicate the form of , Appendix: Theoretical modeling and simulation). 
 
For the RNA gradient model, Bcd is produced more locally. Therefore, there is 
reduced change in  as a function of position. When the bcd RNA gradient 
extends further than the diffusion length scale ( ) then the average protein 
age is approximately constant throughout the embryo. In steady-state, the protein 
age is given by (again, analogous to the time to steady-state 9) 

 where   (E5) 

In the extreme case that 𝜆!"# = 𝜆 then protein is produced locally and diffusion can 
be set to zero yet still replicate the observed Bcd gradient. In this case, the protein 
has the same average age throughout the embryo, determined by the protein 
lifetime. 
 
For the RNA diffusion model the average protein age gets younger as a function of 
distance from the anterior pole. This is because protein is first produced at the 
anterior pole where bcd mRNA is initially localized. The RNA then diffuses through 
the embryo, with new Bcd protein produced at steadily further distances from the 
anterior. The bcd dynamics mirror those of the SDD model for Bcd, resulting in an 
average protein lifetime given by (at long times, after all bcd RNA has degraded) 

.      (E6) 

 
See Appendix: Theoretical modeling and simulation for more complete discussion of 
the protein age in the models, including pre-steady-state solutions for  and 
implementation of boundary conditions. 
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A. Imaging and Image Analysis 
 
A.1 MuVi-SPIM Characterization for imaging of Drosophila embryogenesis 
 
We used light-sheet fluorescent microscopy (LSFM) to gain rapid in toto 4D images 
in vivo with subcellular resolution and low photo-bleaching. To characterize our 
microscope (MuVi-SPIM) we first explored the developing embryo expressing Bcd-
Venus, Appendix Figure S5.  To validate the microscope sensitivity, we focused on 
two challenging regions. First, we imaged Bcd-Venus expression in cycle 8 of 
embryo development, before the nuclei reached the outer membrane, Appendix 
Figure S5G.  Nuclear Bcd-Venus expression was clear, despite the presence of lipids 
around the nuclei.  Second, we analyzed Bcd-Venus expression in the posterior pole 
of the embryo in early cycle 14, Appendix Figure S4h.  Although weak, expression 
above background levels was clearly observable in even the most posterior nuclei, 
Appendix Figure S5H. Background subtraction was performed through linear 
unmixing, as described in Methods and Appendix Figure S13. 
 
We quantified the signal uniformity across the embryo by imaging H2b-mCherry 
expressing embryos, Appendix Figure S5I, and OregonR embryos, Appendix Figure 
S5J. The measured intensity was relatively flat across the embryo.  The slight drop in 
H2b-mCherry intensity at the poles was partially due to difficulties in segmentation. 
 
The relative fluctuations in the nuclear Bcd signal, Appendix Figure S5K-L, were 
comparable to previous published work14. Therefore, the readout of the Bcd gradient 
in MuVi-SPIM was reliable and comparable with previous observations using two-
photon confocal microscopy. 
  
 
A.2 Stereographic projection 
 
During n.c. 9-14 of Drosophila embryo development Bcd is localized to the cortical 
region of the embryos. Therefore, we performed a stereographic projection of the 
embryo cortical surface15,16, Appendix Figure S5A-B.  With such a 2D projection, 
image segmentation was straightforward and we could extract the Bcd-eGFP 
intensity profile across the whole embryo, Appendix Figure S5C.  We confirmed the 
projection accuracy by mapping the coordinates back to the three-dimensional data, 
Appendix Figure S5D-E.  Finally, we look at the Bcd gradient on the dorsal and 
ventral sides of the embryo. Consistent with previous work17, the dorsal and ventral 
gradients were equivalent after correction for source offset, Appendix Figure S5F.  
 
The key ideas behind the stereographic projection used in the analysis are provided 
elsewhere15,18. The main difference between the projection performed previously 
(which was based on either histone or membrane localized signals) and here is that 
Bcd is spatially varying in concentration and therefore the Bcd fluorescent signal 
cannot be used to segment the whole embryo.  Instead, we implemented in Matlab a 
manual segmentation protocol.  The basic protocol was as follows: 

1) Image aligned along the AP axis of the embryo 
2) User determines planes describing most anterior/posterior parts of embryo 
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3) User inputs number of desired intermediate planes to segment 
4) User then presented with each selected plane and they draw a polygon 

(using Matlab function roipoly) around the embryo 
5) The software then interpolates the segmentation to the other planes 
6) After segmentation, the same protocol as outlined in 15 was followed to extract 

the “carpet” of Bcd intensity 
7) The 3D to 2D mapping was also inverted to ensure that the carpet faithfully 

reproduced the 3D data, Appendix Figure S5D-E. 
 
A.3 Segmentation 
 
Segmentation was performed using Ilastik (ilastik.org,19).  This machine-learning 
approach could reliably segment the 2D carpets quickly. Though much slower, we 
also confirmed that we could segment the full 3D data on a PC with 128Gb RAM 
using Ilastik.  Analysis of the segmentation data was then done in Matlab using 
custom written code. 
 
A.4 Gradient fitting protocol 
 
The Bcd gradient has an exponentially-decaying profile away from the anterior pole 
2,20, Appendix Figure S5C. In model fitting, particularly of exponential-like profiles, 
reliable fitting can only be achieved by a fit that spans a range of magnitudes. We 
were able to fit an exponentially-decreasing profile, I = I0e-x/λ, to the Bcd-eGFP 
gradient (where λ is the decay length) across almost the entire embryo length (50µm 
to 450µm), representing around four decay lengths, Appendix Figure S5C. Fitting to 
an exponential profile was performed using the Matlab function fit, utilizing a least-
squares algorithm and included the 95% confidence intervals on each fit. In all 
embryos, the fitted decay length λ was between 100-110 µm in early cycle 14. Due to 
the large amount of data in a single time point, we could fit the Bcd profile of a single 
embryo with high confidence (typical 95% confidence intervals are within 2% of the 
best fit value).  For the tandem reporter, the signal was less bright and so we were 
typically limited to ~80% of the embryo. However, this was more than sufficient for 
reliable curve fitting. We obtained similar curves for different Bcd insertions (Venus, 
eGFP and mCherry-sfGFP) in early n.c. 14. Overall, we analyzed the Bcd gradient 
across almost its entire extent and hence could reliably deduce the decay length with 
high confidence for a single embryo. 
 
A.5 Timer normalization protocol 
 
After background subtraction the mCherry and sfGFP profiles need to be compared.  
One approach is to use a priori knowledge that only old protein reaches posterior 
regions of the embryo (true if the SDD model is correct) and hence it is likely that 
both fluorophores will have folded.  However, there are a number of issues with this 
approach. (1) If there is a significant FRET effect between the mCherry and sfGFP 
then the final ratio between the signals should not be 1 but offset from this. (2) 
Although both fluorophores will have mostly folded, there will still be a higher fraction 
of sfGFP folded than mCherry. For example, assuming that folding is a Poisson 
process then the probability of a fluorophore having folded by time t is given by 
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Pfold (t) =1− e
−t/τ where τ is the characteristic fluorophore folding time.  In the SDD model 

the average age of a protein a distance x from the source in steady-state is given by 

tage =
1
2µ

1+ x
λ

!

"
#

$

%
&  (Eq. E4) as discussed in Box 2.  Therefore, at x=300µm with λ=85µm 

we have an average protein age of around 100 minutes (with µ=1/45 min-1).  Using 
τ=18 minutes (sfGFP) and τ=50 minutes (mCherry, ignoring two step folding process 
here) suggests that in the normalization region, 99% of sfGFP will have folded but 
only around 90% of mCherry has folded.  Therefore, the normalization should not be 
set to 1 in the region 250-350 µm but instead to around 0.9. Of course, here a priori 
knowledge was used to determine the normalization protocol.  So, we do not use this 
approach but instead introduced an additional fitting parameter ε representing our 
uncertainty in the fluorescence scaling. In Appendix Figure S5M we show that 
measurements of the mCherry-sfGFP-Bcd fluorescence ratio on different 
microscopes (confocal, light-sheet) and with different imaging conditions gives similar 
profile shape after scaling only by a multiplicative factor. 
 
In the case of diffusive bcd mRNA with localized Bcd protein (i.e. protein non-
diffusive) we would expect to see the opposite trend to that observed: older protein 
near the anterior pole and younger protein further away.  Therefore, we normalized 
the profiles with respect to the anterior pole instead, Appendix Figure S5N.  Again, 
the general shape is unchanged with increasing protein age as a function of 
distance. This suggests that bcd mRNA diffusion is not the primary mechanism of 
Bcd gradient formation (this does not discount such a mechanism completely but it is 
unlikely to be the primary mechanism underlying Bcd gradient formation). 
 
The fitting to the tFT-ratio was done using an additional free parameter ε 
representing the intensity scaling between the two different fluorophores.  This fitting 
parameter increased the error in the fits, Figure 3D and Appendix Figure S7. 
However, the final parameter chosen was the one that minimized both the fit to the 
mCherry/sfGFP ratio  and the intensity profiles. Fitting was performed by minimizing 
𝑟! = !

!〈!〉
𝐸! − 𝑂! !!

!!!  for the sfGFP and tandem ratios simultaneously. The 

normalization N<O> ensures that the relative contributions to the fitting from the 
sfGFP profile and the tandem ratios are balanced.  We also checked that using 

 where Ei and Oi  represented the model prediction and 

experimental observation for each position xi, did not alter our general conclusions. 
 
A.6 Image inhomogeneity correction 
 
The measured image intensity Imeasured (x, y, z)  is a function of position due to imaging 
inhomogeneity.  Such inhomogeneity typically appears as a multiplicative factor 
K(x, y, z)  in the image intensity as the variability is typically due to changes in light 
intensity at different positions.  Therefore, accounting for background Ibackground (x, y, z) , 

Imeasured (x, y, z) = K(x, y, z)Iactual (x, y, z)+ Ibackground (x, y, z)     (E7) 

χ 2 =
(Ei −Oi )

2

Eii
∑
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Using linear unmixing we can (approximately) remove Ibackground (x, y, z) .  If K(x, y, z)  is 

dependent primarily on variations in illumination intensity then it is (to a first 
approximation) independent of the illumination wavelength.  Therefore K(x, y, z)  is 
similar for both 488nm and 561nm illumination. Hence, 
I sfGFPmeasured (x, y, z)− I

sfGFP
background (x, y, z)

I mCherrymeasured (x, y, z)− I
mCherry
background (x, y, z)

=
I sfGFPactual (x, y, z)
I mCherryactual... (x, y, z)

     (E8) 

which is independent of K(x, y, z) .  Therefore, although illumination inhomogeneity 
affects measurements of, for example, the Bcd spatial concentration profile, it does 
not affect the measurement of the timer ratio. 
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B. Theoretical modeling and simulations 
 
B.1 Models of Bcd gradient formation 
 
B.1.1. Synthesis, Diffusion, Degradation (SDD) Model 
 
In the SDD model, the Bcd protein is synthesized (at rate J) in the anterior region. 
The Bcd protein then diffuses (D) through the cytoplasmic space, constrained to be 
near the cortex before degrading (µ).  The spatio-temporal dynamics of the Bcd 
concentration (Cbcd) are then described by (in one dimension) 
∂CBcd

∂t
= D ∂

2CBcd

∂x2
−µCBcd + Jδ(x) .       (E9) 

The general solution of Eq. E9 at time t and position x is given by 

CBcd =
Jλ
D

e−x/λ − 1
2
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where λ = D /µ and λ << L  (where L is the system length) so that the right hand 
boundary is effectively unimportant.  In steady-state, Eq. E10 reduces to 

Css
bcd =

Jλ
D
e−x/λ .         (E11) 

When analyzing the data in the paper, we used Eq. E10 to describe the behavior of 
the Bcd morphogen gradient.   
 
Our approach considered a one-spatial-dimensional model of Bcd gradient formation 
(for all models). This is a reasonable approximation to the Bcd gradient2 but higher 
dimensional models that account more realistically for the embryo morphology have 
also been used3,11,21. Therefore, our estimations of the Bcd dynamic parameters may 
be altered by extending the model to higher dimensions, though the consistency 
between the one-dimensional model and more complex implementations means that 
we are confident that our approach is a reasonable approximation to the underlying 
dynamics. 
 
B.1.2. Shuttling Model 
 
In the shuttling model, the Bcd protein is again synthesized at the anterior and 
diffuses through the embryo5,7. However, there is no Bcd degradation. The 
parameters are selected such that the nuclear divisions act to dilute the Bcd signal to 
ensure relative constant Bcd concentration in nuclei during n.c. 12-14.  It is then 
assumed within this model that in n.c. 14 an alternative mechanism acts to degrade 
the Bcd protein.  For the total Bcd concentration, the spatio-temporal dynamics are 
described by 
∂CBcd

∂t
= D ∂

2CBcd

∂x2
+ Jδ(x)

        (E12)
 

with general solution 
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CBcd =
Jλ(t)
D
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e
−
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where λ(t) = 4Dt is now the time-dependent length scale of the gradient. The nuclear 
Bcd concentration is then determined by the shuttling rate into nuclei7. There is no 
steady-state in the shuttling model. 
 
B.1.3. RNA Gradient Model 
 
The RNA gradient model is similar dynamically to the SDD model but now, instead of 
the Bcd originating from a point source in the anterior, the bcd mRNA is distributed, 
resulting in non-local production of Bcd6,8,11.  The shape of the mRNA distribution is 
typically taken to be a gradient akin to the Bcd protein gradient.  Here, we consider 
the case when the bcd mRNA is exponentially distributed with length scale λrna .  
Alternatives, such as Gaussian distributed sources, are also viable6,7 but do not 
significantly alter our general conclusions discussed. 
 
We consider the bcd mRNA gradient to be exponentially-distributed,  

cbcd =
J
λrna

e−x/λrna .         (E14) 

 The steady-state solution of this model is given by9 

Css
Bcd =

Jλ
D

1
(1−Λ2 )

e−x/λ −Λe−x/λrna( )
       (E15)

 

where Λ = λrna / λ .  In the limit λ >> λrna  then the solution reduces to Eq. E11. In the 

alternative limit λrna >> λ then the Bcd distribution is effectively described by the 
underlying bcd mRNA distribution. 
 
B.1.4. bcd RNA Diffusion Model 
 
This model assumes that the bcd RNA (crna) is the primary dynamic mechanism and 
that Bcd protein is relatively stationary10. In this case, a pool of bcd mRNA is 
deposited in the anterior pole by the mother. This pool of RNA then diffuses (Drna) 

through the embryo and degrades (µrna).  Bcd is produced locally, at a rate α.  Such 
dynamics are described by the coupled equations: 
∂crna
∂t

= Drna
∂2crna
∂x2

−µrnacrna
       (E16)

 

∂CBcd

∂t
=αcrna

         (E17)
 

where initially crna is localized to the anterior pole. The particular initial distribution of 
crna can be varied. Here, we consider all the crna localized at x=0. We note that more 
complex distributions10 give slightly improved fits to the Bcd gradient but do not alter 
the underlying dynamic properties. 
 

For initial condition crna (x, 0) =
A
λs
δ(x)δ(t)  the solution of Eqs. E16-17 are 
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crna (x, t) =
A
πDt

e−µte
−

x2

λ (t )2

       (E18)
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where λs = Drna /µrna and λ(t) = 4Dt .  In steady-state ( t→∞ ) we obtain 

CBcd (x) =
αA
λs

e−x/λs .        (E20) 

Therefore, we see that all models considered can create an exponentially-decaying 
profile with (effective) length scale of around 100 µm at particular times with plausible 
parameter selection.  We emphasize here that we generally use the simplest form of 
each model to test the dynamic behavior: our objective is to discover which model 
best replicates the observed protein age, not find a detailed model exactly replicating 
the Bcd morphogen gradient.  Hence, for example, we do not consider the more 
complex initial conditions used in Ref. 10 as the fundamental protein dynamics are 
unchanged. 
 
 
B.2 Theoretical predictions for average protein lifetime 
 
When considering the protein age, the models fall into two general categories: those 
with protein degradation; and those without protein degradation.  In the latter case, in 
the long time limit the average protein age scales with the system age.  The shuttling 
and RNA diffusion (even though it obtains a steady-state) models fall into this latter 
category. To give the reader a more intuitive understanding of protein age we begin 
by outlining the results for a simple model without diffusion where we can analytically 
compare different modes of concentration dynamics. We then discuss the models of 
Bcd gradient formation. 
 
B.2.1 Simple model: same concentration, different protein lifetimes 
 
Consider the following two models describing the temporal change in concentration 
of some protein. Model A has constant production J and linear protein degradation 
m. Model B has no degradation but production is temporally dependent, and decays 
as exp(-µt). Both models start initially with ρ(t = 0) = 0 . Mathematically, the two 

models can be described by the equations: (A) !ρ = J −µρ ; and (B) !ρ = Je−µt . Both 

models have identical solution for the concentration ρ = J(1− e−µt ) /µ , Theory Figure 
1a.  However, the predicted protein lifetime is very different.   
 
For Model A, the probability of a protein being τ old is P(τ ) = µe−µτ (i.e. the probability it 

has not decayed up to time τ).  However, we need to account for the system age, t 
(i.e. a protein cannot be τ old if t < τ).  Therefore, we are interested in the probability 
that a protein is τ old given the system is time t old, 
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P(τ | t) = µe−µτ

1− e−µt
         (E21) 

Hence, we can calculate the average particle age, < τ(t)>, at time t, 

< τ (t)>= τ 'µe−µτ '

1− e−µt
dτ '

0

t
∫ =

1
µ
1− µte−µt

1− e−µt
#

$
%

&

'
(       (E22) 

At large times this reduces to < τ >= µ−1 as expected. At very short times ( µt <<1 ), 
< τ (t)>~ t / 2 since little degradation has occurred.   
 
In Model B, there is no degradation but production is not constant. Therefore, the 
probability of a particle being τ old is given by the probability that is was produced at 
time t- τ: 

P(τ | t) = µe
−µ (t−τ )

1− e−µt
        (E23) 

and hence 

< τ (t)>= µe−µt

1− e−µt
τ 'eµτ ' dτ ' =

t − 1
µ
(1− e−µt )

1− e−µt0

t
∫ .     (E24)  

In the limit of long time this tends to < τ (t)>= t −µ−1  (i.e. the system time minus the 
average time that a protein was produced) and at very short times ( µt <<1 ), 
< τ (t)>~ t / 2 (as with Model A). Therefore, these toy models allow us to see that 
measuring protein lifetime can distinguish models that have identical concentration 
behavior, Theory Figure 1b. 
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Theory Figure 1: Comparison of protein lifetime in two toy models with identical protein concentration behavior (see 
Appendix: Theory). a Both models have identical concentration time dependence but the protein lifetimes in the two 
models are different (inset), with circles representing model A which has degradation and diamonds model B which 
has limited protein synthesis. b Corresponding mCherry/sfGFP ratio for both models (solid line, model A; dashed line, 
model B). c In model A, the system is allowed to reach steady-state, and then synthesis is double (green arrow). d 
The corresponding effect on average protein age in the system (scaled by degradation rate). At the change in 
production, the average protein age transiently decreases. 

 
Further, using this toy model it is straightforward to see that the production rate itself 
does not affect protein age (so long as there are no non-linear interactions in the 
system). In Theory Figure 1c-d, we show the scenario where model (A) has its 
production rate doubled after some time. The total concentration eventually doubles. 

However, the average protein age returns to µ−1  after a brief dip. This dip is caused 
by the sudden increase in very young protein due to the increase in production rate – 

i.e. the protein age is sensitive to !"
!"

 but not J itself. Therefore, we see that the protein 
age can be sensitive to temporal shifts in production, but it is insensitive to the 
underlying production rate value. 
 
B.2.2 Synthesis, Diffusion, Degradation (SDD) Model 
 
In the SDD model, since there is continuous production (exceptions to this discussed 
below) and degradation the proteins have a finite average lifetime in steady-state.  At 
small times (t << 1/µ) there are relative few degradation events and hence protein 
age scales with system time. However, as more degradation occurs the average 
protein age becomes less dependent on system time (essentially, the system 
“forgets” its initial condition).  In steady-state, the average protein age as a function 
of distance is given by  

< τ (x)>=
t ' !ρ(x, t ')dt '

0

∞

∫
ρss (x)

        (E25) 

which reduces to at long times 

τ (x) = 1
2µ

1+ x
λ

!

"
#

$

%
& ,        (E26) 

in the limit of L >> λ  (where L is the system length). Note that this is also the time 
scale for the gradient to obtain steady-state9. In systems that have protein 
degradation, the time scale to obtain steady state at position x and the average age 
of particles in steady state at that position are the same.  Extending this model to a 
finite system (i.e. where the boundary at x=L must be considered) complicates the 
form of Eq. E25 but is straightforward to compute numerically. 
 
To derive the pre-steady-state time distribution is more challenging.  Essentially, we 
need to calculate P(τ|x)t - the probability that a particle is age τ at a distance x from 
the source after total time t. We consider the behavior of a single particle. 
From diffusion theory we know P(x|τ)t as this is simply the expected diffusion of the 

particle injected at time t-t: P(x |τ ) = 2e
−x2 /λ (τ )2

πλ(τ )
(i.e. Gaussian distributed from the 

source with infinite system size – see below for finite size solution).  The probability 
of the particle (assuming linear decay) being age τ is P(τ)=mexp[-µt] (note that both 
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these terms are independent of system age as we consider a single particle).  
Finally, in steady-state the probability of a particle being at position x is given by 

P(x) = 1
λ
e−x/λ . Therefore, we can use Bayes formula to find P(τ |x) 

P(t | x) = P(x | t)P(t)
P(x)

=
µ
π
e
−

x2

λ (t )2e−µt

te=x/λ       (E27)
 

and hence  

τ (x)t = tP(t | x)dt
0

t

∫
        (E28)

 

In the steady-state limit this reduces to Eq E26. In Figure 1C and Appendix Figure S1 
we see good agreement between the simulations and Eq. 26 at long times where we 
solve Eq. E28 numerically, accounting for finite boundary conditions. In Figure 1C, 
we solve the full pre-steady-state equations, where P(x) is now the spatial distribution 
at time t, (not necessarily at steady-state). Solving this analytically results in an 
unwieldy solution (particularly if finite system size is considered) so we numerically 
integrate Eq. E28 (using Matlab). 
 
B.2.3. Shuttling Model 
 
The shuttling model does not obtain a steady state. The age of a protein is τ=t-tprod, 
where t is the system age and tprod the time of production.  Since diffusion is the 
driving dynamics, a protein of average age τ will have travelled an average distance 
x = 2Dτ . At a given position x, if the time is greater than approximately τ = x2 / 4D (or 
equivalently one could consider the mean-first-passage-time) then the age of protein 
will scale with position. Of course, τ cannot be greater than t, so at large times the 
the protein lifetime is determined by the total time t, as can be seen in Figure 1D and 
Appendix Figure S1C-D.  
 
The probability of a particle being at position x given a particle age t, in a system of 
length L: 

P(x | t) = 1
L
1+ 2 cos nπ x

L
!

"
#

$

%
&e

−
nπ
L

!

"
#

$

%
&
2
Dt

n=1

∞

∑
!

"

#
#

$

%

&
&
      (E29) 

 
From this, we can derive the total probability distribution at time t after initiation if all 
particles are inserted at a time distributed with uniform probability. Hence, we can 
find an equivalent form of Eq. E28 for the shuttling model. However, the form of this 
is not particularly illuminating and in the manuscript we present numerical solutions.  
 

B.2.4 RNA Gradient Model 
 
In the RNA gradient model, the proteins have finite lifetime, as in the SDD model. 
Therefore, we can use the result from9 to find the average protein age in steady-
state: 



	 15	

τ (x) = 1
2µ

1+ x
λ

!

"
#

$

%
&

e−x/λ

e−x/λ −Λse
−x/λs

+
2

1−Λ−2
s

)

*
+

,

-
.
      (E30)

 

where Λs = λs / λ . In Figure 1C and Appendix Figure S1 we find good agreement 
between our simulations and Eq. E30 at long times. In Figure 1D we solve the model 
numerically (akin to described for the SDD model) to find the average protein lifetime 
at earlier times in a finite system.  
 
 
B.2.5 bcd RNA Diffusion Model 
 
In the RNA diffusion model, the bcd mRNA has finite lifetime but not the Bcd protein 
itself. Therefore, at a given position and time a protein have age given by τ = t − tprod . 

The time of production will be determined by the bcd RNA concentration. However, 
the bcd RNA in this case behaves, dynamically, the same as Bcd protein in the SDD 
model.  Therefore, at long time (µrnat >>1 ) the average protein age is given by 

< τ (x)>t= t −
1

2µrna

1+ x
λrna

"

#
$

%

&
'        (E31) 

Eq. E31 fits the simulations for the bcd RNA model well, Figure 1D and Appendix 
Figure S1. In Figure 1D we calculate the average protein age numerically, 
accounting for finite boundary conditions. Eq. E31 shows that the general trend of old 
protein near the source is a general property of the bcd RNA diffusion model, 
regardless of particular parameters. 
 
B.2.6 Theoretical predictions for mCherry/sfGFP ratio 
 
From the above estimations of average protein age, we developed an understanding 
of the expected behavior of the timer ratio. To calculate the timer ratio for each model 
we extended the dynamic equations to include folding of both sfGFP and mCherry. 
Each protein can exist in six states: unfolded (Cu ); sfGFP folded only (Cg ); mCherry 

partial-folded only (Cr* ); mCherry full folded (Cr ); sfGFP folded and mCherry partial-
folded (Cgr* ); and both fluorophores folded (Cgr ). We also confirmed our results using 

simulations of the fluorophore folding, Appendix Figure S1. 
 
For the SDD model, Eq. E9 becomes 
 
∂Cu

∂t
= D ∂

2Cu

∂x2
− (µ +α +β1)Cu + Jδ(x)

      (E32) 
∂Cg

∂t
= D

∂2Cg

∂x2
+αCu − (µ +β1)Cg

 
∂Cr*

∂t
= D ∂

2Cr*

∂x2
+β1Cu − (µ +β2 +α)Cr*

  
∂Cr

∂t
= D ∂

2Cr

∂x2
+β2Cr* − (µ +α)Cr
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∂Cgr*

∂t
= D

∂2Cgr*

∂x2
+β1Cg +αCr* − (µ +β2 )Cgr*

 
∂Cgr

∂t
= D

∂2Cgr

∂x2
+β2Cgr* +αCr −µCgr

 

    
 

Therefore, the total Bcd concentration stills obeys Eq. E9 (the folding terms cancel).  
 
It is straightforward to extend these equations to the other models and include FRET 
effects. For an extended discussion of modeling folding kinetics see22. The equations 
were solved using Matlab (pdepe) and the solutions compared with the Monte Carlo 
simulations, Appendix Figure S1. All model fitting to the mCherry/sfGFP ratio in 
Figure 3A,C and Appendix Figure S7 involves solving the full set of equations for 
different fluorophore states for each model (accounting for finite boundary conditions 
and interpretation prior to fully reaching steady-state). 
 
B.3 Timer ratio without protein production 
 
As has been previously proposed, Bcd protein production may cease in n.c. 14 (and 
potentially earlier11). To explore further, we considered the case 
∂CBcd

∂t
= D ∂

2CBcd

∂x2
−µ14CBcd

       (E33) 
where we account for potentially different rate of degradation in n.c. 14, with initial 
condition 

CBcd (t = 0, x) =
J
Dµ

e−x/ D/µ  

but no further production. 
 
At t=0, the average protein concentration was given by Eq. E26. First, ignoring 
diffusion, the concentration at a particular position decreases as e−µ14t with time (µ14 
being the degradation rate in n.c. 14).  Since protein degradation is independent of 
position and other proteins, the probability of a particular protein degrading is 
independent of its state (e.g. which fluorophores have folded). However, the average 
age of each protein at time t after cessation of production goes as 

< τ (x)>t
1
2µ

1+ x
λ

!

"
#

$

%
&+ t , since, although the total protein number has decreased 

significantly, the age of each surviving protein must be older. Therefore, the ratio of 
mCherry to sfGFP signal approaches one, independently of the value of µ14  (as 

< τ (x)>  is independent of µ14 ). Of course, µ14  plays an important role in the 

experimental validation of this result – large µ14  results in very low concentrations, 
and subsequently much noisier experimental measurements of the mCherry/sfGFP 
ratio. Including diffusion introduces potential dependence on µ14 .  However, the 
timescale for diffusion over a significant fraction of the embryo is larger than the 
expected timescale for degradation. e.g. the diffusion time over scale of 50µm (10% 
embryo length) is ~ 20 minutes, whereas the degradation time scale is around 15 
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minutes. Therefore, locally over a few nuclei the role of diffusion is important but at 
the scale of the embryo the degradation dominates in cycle 14 (assuming 
degradation is increased). We see that since degradation dominates the timescales 
at the embryo level in cycle 14 (assuming no production) then the mCherry/sfGFP 
ratio is largely independent of the degradation rate.  
 
B.4 Simulation details 
 
One dimensional Monte Carlo simulations were written in Matlab and run on a server 
PC with 128Gb memory. Simulations took between one hour and one day to 
complete, depending on the diffusion constant, particle number and the desired 
simulation time.    
 
The simulations were performed in the region 0<x<L, where L=500µm.  Discretizing 
in space, we defined Δx as the distance between points, so we typically had 
Nx = L /Δx +1 spatial positions (+1 accounts for x=0).  Simulations were run for a total 

time T, so we had NT = (T /δt)+1 time points (+1 accounts for t=0). 
 
In the simulations there were three probabilities: P(J) = Jδt the probability that in time 
t->t+δt a particle was inserted at x=0, P(µ) = µδt , the probability that in time t->t+δt a 

particle decays and P(D) =
Dδt
(Δx)2

, the probability that in time t->t+δt a particle moves.  

Generally, P(D) was the largest probability and hence we defined δt = 1
2
(Δx)2

D
so that 

each time step each particle moves either left or right (except if at x=0 or x=L).   
 
At each time step a uniformly distributed random number in (0,1) was drawn to 
determine the number of newly injected particles based on P(J) (assuming Poisson 
statistics for insertion). Next, for each particle a uniformly distributed random number 
in (0,1) was drawn. If it was less than P(µ) the particle decayed. Finally, a uniformly 
distributed random number in (0,1) was drawn for each particle: if it was less than 0.5 
the particle moved left; if it was greater than 0.5 the particle moved right. The 
behavior of each individual particle was saved to allow investigation of the particle 
lifetime (it is much faster to run the simulations based on total particle number but 
then the local particle age information is lost). Simulation results were checked 
against analytical predictions and there was always excellent fit, giving confidence in 
the results. 
 
We also performed simulations where individual particles could fold green, fold red or 
both. As above, we assigned a probability for each folding event based on the 
experimentally measured folding times. As shown in Figure 1 and Appendix Figure 
S1 there was good agreement between simulations and analytical approaches. 
 
We also numerically integrated the above equations with finite boundary conditions 
using Matlab pdepe. We ensured that the numerical solutions (both simulations and 
numerical integration) and analytical solutions were in good agreement at long times.  
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B.5 Simulations of the gradient dynamics before equilibrium 
 
In order to study the development of the Bcd gradient during stages 4 and 5 (Figure 
6), we implemented a version of the SDD model that includes the maturation of the 
fluorophores in the timer- such as we did before- and additionally allows for the 
possibility of changing the production and degradation rates parameters during the 
simulations.  
 
This model was implemented in R, using the ReacTran package ( https://CRAN.R-
project.org/package=ReacTran)23, which allows building models that describe 
reaction and advective-diffusive transport. We implemented a 1-D diffusive model. 
The simulations were run on a MacBook Pro with a 2.5 GHz Intel Core i7 processor 
and 16 Gb memory. Each simulation took approximately 60 min. The geometry of the 
model is a one-dimensional grid composed of 500 finite Δx of 1 µm, with zero-
gradient boundary conditions. The production of tFT-Bcd was restricted to the first 
five grid cells to mimic an anteriorly restricted source, while all the other parameters 
were invariant in space. The simulations were run for 1200- 4000 time points (sec). 
The initial abundance of all species was 0. The reactions and species included are 
depicted in the following scheme, Theory Figure 2: 
 

 
Theory Figure 2: Schematic of reaction scheme used in modeling SDD through blastoderm development 

 
To study the effects on the reporter of the possible escape of free GFP from 
degradation, we included an additional reaction that gives free GFP as a product of 
degradation, “kinc-deg” and a diffusion coefficient for free GFP “Dgfp” (Appendix Figure 
S4C). The incomplete degradation of the timer was implemented as a fraction of the 
full degradation, thus “kinc-deg” is a probability. The Diffusion of free GFP was consider 
as 3 times the diffusion of the full construct because it has aproximately 1/3 of its 
size. For the analysis that required variation in the production and degradation rates, 
we considered them variables with a constant value except when changed at a 
certain time in the simulations (typically t=600 sec). The change was modeled as an 
exponential decay, with decay rate “dg” for the degradation rate and “dp” for the 
production rate (Appendix Figure S11). 
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C. Appendix Tables 
 
Appendix Table 1. List of parameter values used in Figure 6B  
Parameter Initial phase 1 2 3 4 5 6 
jini  

(Mol/sec) 
4000 0 4000 4000 8000 2000 1000 

kini  (sec-1) 0.4 0.4 0.8 0 0.4 0.2 0.8 
Kdeg-inc 0 0 0 0 0 0 0 
D  
(µm2/sec) 

2 2 2 2 2 2 2 

Dgfp  
(µm2/sec) 

D*3 D*3 D*3 D*3 D*3 D*3 D*3 

mgfp  (sec-

1) 
1.5 1.5 1.5 1.5 1.5 1.5 1.5 

mch  (sec-1) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 
dg  (sec-1) 0 0 0 0 0 0 0 
dp  (sec-1) 0 0 0 0 0 0 0 
The initial phase corresponds to times 0-600 and the following to times 600-1200. 
 
 
Appendix Table 2. List of parameter values used in Appendix Figure S4C  
Parameter Magenta 

line 
Blue 
line 

Light 
blue line 

Orange 
line 

jini  

(Mol/sec) 
500 4000 4000 4000 

kini  (sec-1) 0.2 1.2 1.2 1.2 
Kinc-deg 0 0.0001 0.001 0.01 
D  
(µm2/sec) 

2 2 2 2 

Dgfp  
(µm2/sec) 

D*3 D*3 D*3 D*3 

mgfp  (sec-1) 0.2 1.5 1.5 1.5 
mch  (sec-1) 0.01 mgfp/2.5 mgfp/2.5 mgfp/2.5 
dg  (sec-1) 0 0 0 0 
dp  (sec-1) 0 0 0 0 
 
 
Appendix Table 3. List of parameter values used in Appendix Figure S11  
Parameter Value 
jini  

(Mol/sec) 
4000 

kini  (sec-1) 1.2 
Kdeg-inc 0 
D  
(µm2/sec) 

2 
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Dgfp  
(µm2/sec) 

D*3 

mgfp  (sec-1) 1.5 
mch  (sec-1) 0.6 
dg  (sec-1) 10 
dp  (sec-1) 10 
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D. Determination of the maturation kinetics of the fluorescent proteins 
 
Fluorescent proteins need to maturate before they become fluorescent, a process 
that takes an average time that is different for each fluorophore. Using of the tandem 
timer fluorescent proteins requires knowledge of the maturation kinetics of the 
fluorophores in the tandem pair. The maturation kinetics of the fluorophores have 
been previously estimated in yeast22. However, the cellular context plays an 
important role in determining folding times – in particular temperature, pH and 
oxygen availability24,25.   – so we measured the folding rates in the Drosophila 
embryo. 
 
The approach we chose is to produce in vitro RNA of the tandem timer constructs, 
inject it on early embryos and then follow the fluorescence in time. Previous 
estimations of fluorophores maturation in live cells were based on a timed induced 
expression and successive inhibition of protein translation. However, there are no 
good expression systems for the early drosophila embryo - in which the activation of 
the genome has not happened yet or is going on at the moment-, so we decided to 
inject RNA directly. . We use the RNA of the full timer to maintain similarity to the 
age-measurements. Further, fitting is improved since the only difference between the 
red and green signals are the maturation kinetics. 
 
D.1 RNA injection of embryos 
	
RNA copies of the full tFT construct (mCherry-linker-sfGFP) were produced by in 
vitro transcription and injected to wt y/w embryos. For obtaining the embryos, young 
flies were caged two days before the experiment. The morning of the experiment 
three 45 min pre-laids were performed followed by a 30 min lay. The plates were 
allowed to develop 30 min at RT and then the embryos were dechorionated 40 sec in 
50% sodium hypochlorite solution. Following, the embryos were taken to the 18ºC 
injection room and mounted on a glass coverslip pretreated with embryo glue  (glue 
from adhesive tape extracted with heptane). For the injection process only, the 
coverslip with the embryos was mounted over a glass slide for additional support. 
They were dehydrated for 8 min in a salts chamber and they were covered with a 
drop of halocarbon oil 700/27 (1:2; Sigma-Aldrich). 
 
The injection needles were pulled from borosilicate glass capillaries (1.2-mm outer 
diameter and 0.94-mm inner diameter; Harvard Apparatus), using a P-97 
Flamming/brown puller (Sutter Instrument).  
 
The embryos were mounted such that three fitted in the microscope field of view. The 
first embryo of each trio was left un-injected as a control, and the other two	 were	
injected in the posterior pole with RNA 100 ng/µl. The injections were performed 
using a microinjector (model 5242; Eppendorf). The injection time was 0.5 sec in 
every case, and the injection pressure was calibrated for each needle and liquid to 
produce a drop of the same approximate volume. All the embryos were injected 
within 1-2 min. 
 



	 22	

 
D.2 Imaging and image analysis 
 
Sequential imaging of ten positions (each containing 1 control and 2 injected 
embryos) was started as soon as possible, approximately 10 min after finishing the 
injections. The embryos were immersed in PBS and imaged at RT using a two-
photon microscope (LSM 780 NLO; Carl Zeiss) with a 20x objective. The time 
resolution of the time courses was 1 min and their duration was between 30 and 160 
min. One central z-slice of each embryo was acquired, with the confocal pinhole set 
to 5 a.u.. 
 
Image quantification of mCherry and sfGFP fluorescence intensities over time were 
done with ImageJ. 
 
D.3 Modeling of maturation rates and data fitting 
 
Estimation of maturation kinetics was performed using a model adapted from 
Khmelinskii et al.22. We modeled sfGFP maturation as a one-step process and 
mCherry maturation as a two-step process, in accordance with chemical reactions 
leading to chromophore formation22,26-28. For fmCherry, one-step and two-step 
models were tested (equivalent to sfGFP and mCherry models). To constrain the 
total amount of mCherry to be equal to that of sfGFP (as is the case biochemically), 
and improve the power and robustness of the fit, joint production and degradation 
kinetics of the fusion protein were considered, Appendix Figure S6A. We assume 
that the non-fluorescent precursor A is produced with a constant production rate p. 
sfGFP can mature in a single reaction with rate m, while mCherry requires two 
consecutive reactions with rates m1 and m2, respectively. Degradation of all fusion 
isoforms occurs with the same constant rate k. This system can be described with 
the following set of rate equations: 
 
!"
!"
= 𝑝 −𝑚!𝐴 −𝑚𝐴 − 𝑘𝐴 

𝑑𝐵
𝑑𝑡

= 𝑚!𝐴 −𝑚!𝐵 −  𝑚𝐵 − 𝑘𝐵  

𝑑𝐶
𝑑𝑡

= 𝑚!𝐵 −  𝑚𝐶 − 𝑘𝐶 

𝑑𝐷
𝑑𝑡

= 𝑚𝐴 −𝑚!𝐷 − 𝑘𝐷 

𝑑𝐸
𝑑𝑡

= 𝑚𝐵 +𝑚!𝐷 −𝑚!𝐸 − 𝑘𝐸 

𝑑𝐹
𝑑𝑡

= 𝑚𝐶 +𝑚!𝐸 − 𝑘𝐹 

 
To map the amounts of fluorescent protein species C, D, E, and F to the observed 
fluorescence intensities and account for autofluorescence, we introduce scaling 
factors and offsets for each channel: 
 
mCherryobserved = 𝐶mCherry ⋅ 𝐶 + 𝐹 + offsetmCherry 
 

(E34) 

(E35) 

(E36) 
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𝑠fGFPobserved = 𝐶sfGFP ⋅ 𝐷 + 𝐸 + 𝐹 ⋅ 1 − 𝐸FRET + offsetsfGFP 
 
where EFRET is the FRET efficiency and was taken to be 0.17322. Since the production 
rate and scaling factors are structurally non-identifiable22, we set the production rate 
to 1 and estimated only the scaling factors. Furthermore, to account for delay 
between RNA injection and protein production, a lag time τ was introduced, such that 

𝑝 = 0, 𝑡 < 𝜏
1, 𝑡 ≥ 𝜏. The degradation rate can be decomposed into effective degradation 

kdeg and dilution kcycle, such that 𝑘 = 𝑘deg + 𝑘cycle. Since the timer construct does not 
have any degradation signals, we assume 𝑘deg = 0 . Furthermore, since D. 
melanogaster embryos at this stage undergo cell division without increasing in 
volume, 𝑘cycle = 0. We therefore set 𝑘 = 0. 
	
We assume the initial amount of all protein species to be 0 and estimate a single 
value of each maturation rate m, m1, and m2 globally for the entire data set, while 
scaling factors, offsets, and time delay parameters are estimated separately for each 
embryo. Parameter estimation was performed in MATLAB (MathWorks) using the 
D2D framework29,30. 
 
With this approach we we able to fit all the parameters, scaling factors and offsets 
and they are all identifiable, as determined by likelihood profile analysis (Appendix 
Figure S6D-F). For mCherry, we estimated m1 = 0.017 min-1 (uncertainty range 
between 0.014 min-1 and 0.022 min-1), and m2 = 0.076 min-1 (0.053 min-1, 0.104 min-

1) (Appendix Figure S6G). The half time of the maturation is equal to log(2)/m, so for 
mCherry we get T1= 40 ± 9 min, and T2= 9 ± 4 min. For sfGFP we estimated m = 
0.025 min-1 ,with an uncertainty range between 0.023 and 0.027 min-1, which is 
equivalent of a maturation half-time of T= 27 ± 2 min (Appendix Figure S6B-D, G). 
For fmCherry we estimated m1 = m2= 0.112 min-1 (uncertainty range between 0.094 
min-1 and 0.141 min-1), T1= T2= 6 ± 2 min(Appendix Figure S6C and F-G). We note 
that the measured sfGFP and mCherry characteristic folding time are larger than 
previously estimated22,31. It is not surprising that the fluorophore maturation rate in 
the Drosophila embryo is slower, considering that oxygen availability is likely lower 
as a result of low permeability and high demand. 
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F.  Appendix figures and legends 
 

 
Appendix Figure S1 Protein age simulations for four alternative BCD gradient 
formation models .  
A Models of Bcd gradient formation considered in the manuscript along with mean 
parameters used in the simulations. JBcd: Bcd protein production rate,  DBcd: Bcd 
protein diffusion coefficient, µBcd: Bcd protein degradation rate, λRNA: length scale of 
the exponentially distributed mRNA gradient , cRNA: amount of bcd mRNA molecules, 
µRNA: bcd mRNA  degradation rate, α: Bcd protein production. More  details in 
Appendix section B1. 
B Normalized concentration profiles from Monte Carlo simulations of the four models 
considered after 150 mins. Inset shows the profiles on a logarithmic scale.  
C. Monte carlo simulations (points) along with theoretical fits (see Theory) for the four 
different models. i) SDD model, ii) Nuclear shuttling, iii) RNA gradient, iv) RNA 
diffusion. Red corresponds to 60 mins, green to 150 mins , and magenta to 240 
mins. 
D Average protein age as function of time at x=100µm from simulations as described 
above.  
E Average protein age at different system times (60, 150, 240 minutes) from Monte 
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Carlo simulations. Error bars correspond to s.d. from 10 independent runs.  
F Probability heat map of protein age in different models considered. Parameter 
range as described in Figure 1E, except profiles not constrained to match 
experimental profile (i.e. here, all solutions are shown). Unless otherwise stated, all 
parameters as A.  
 

 
 
Appendix Figure S2 Comparison of six different Bcd- tandem timer fluorescent 
reporter lines.  
Confocal images of a mid-sagittal plane of the six different tFT fluorophore lines 
constructed. All lines were generated by landing site insertion on the chromosome II 
with an identical construct with Bcd tagged with a different tandem reporter under 
bcd regulatory sequences as outlined in Methods. For the intensity profiles, each 
profile has been normalized to its own values at 60-70% of the embryos length (note 
that the y axis is different due to brightness differences amongst the fluorophores). 
The x axis is normalized to the total embryo length. A representative embryo of each 
line is shown. Left: Images for the green and red channels and weighted ratio. 
Right: Quantification of the fluorescence intensity for each channel. Inset: 
mCherry/sfGFP ratio. Of the fluorescent tandem timers tested, only mCherry-sfGFP 
(and in a lesser degree the fmCherry-sfGFP) reporters is useful as it has (i) signal in 
both channels and (ii) a significant difference in their profiles. Scale bars are 50 µm 
long. 
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Appendix Figure S3 The tFT-Bcd is functional. 
A The tFT-Bcd construct rescues a lethal null Bcd mutation. Percentage of 
phenotypes in the F1 of a rescue of BcdE1 (bloomington stock 3630) experiment. 
Brother-sister crosses of flies with the genotype P{tFT-Bcd};+; th' st' kniri-1 bcd6 rnroe-1 
pp/TM3,sb1 were performed. 250 flies were examined.  
B Images of flies with the tandem reporter, comparing flies in wt and in BcdE1 
backgrounds. The mutant flies show mild abnormalities in the torax and an irregular 
eye color that could be due to the linked mutation rn roe1 (black arrow). Some flies 
show the shortage of the vein L2, characteristic of homocigosis in the BcdE1 

associated mutation Kni ri-1 (white arrow). 
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Appendix Figure S4 There is no significant escape of free GFP after tFT-Bcd 
degradation. 
A Immunoblot of embryos expressing constructs indicated above, probed with an 
antibody against GFP. Stage 4 embryos, where the Bcd gradient is building, and 
stage 5, when Bcd is degraded, were collected. Multiple bands are observed for each 
construct, due to the previously reported distribution of bands of both Bcd and the 
tFT. The expected sizes for the full construct and its partial degradation products are 
indicated on the right (note that there are no visible bands of free GFP). 
B Quantification of the gel in A.  
C Cartoon of the model used to explore the possible impact of having partial 
degradation of the tFT – with escape of free GFP - on the measured gradients. The 
model is identical to the one used in Figure 6, but including an additional reaction of 
degradation of the tFT-Bcd (no matter its maturation status) that gives free GFP as a 
product (Kinc-deg). 
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D Theoretical expectation in the case of survival of free GFP after tFT-Bcd 
degradation. Simulations were performed with the model depicted in C. Red/green 
fluorescent ratio is shown as a function of position along the anterior-posterior axis. 
Setting Kinc-deg=0 (no incomplete degradation of the timer construct, equivalent to the 
model in Figure 6) predicts a monotonically increasing curve, consistent with 
experimental data (Figs 2-6). However, even low values of incomplete degradation 
produce curves that are inconsistent with the experimental observations. 
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Appendix Figure S5 Light-sheet fluorescence microscopy using a confocal slit 
can record quantitative data of the Bcd gradient in toto .  
Images were acquired with the MuVi-SPIM microscope. Scale bars are 50 µm long. 
A  Single plane at the center of an embryo expressing Bcd-Venus in n.c. 14. The 
anterior pole of the embryo is on the top. 
B  2D projection “carpet” of the embryo’s cortex. Corresponds to the full 3D imaging 
of the embryo shown in A.  
C Quantification of Bcd-eGFP gradient (n=4) in early n.c. 14. The blue line is the fit is 
to SDD model accounting for fluorophore folding time (~45 minutes for eGFP).  
D- E 3D reconstruction of Bcd concentration in nuclei after unrolling and 
segmentation. D, E corresponds to n.c. 10 and 14 respectively.  
F Bcd-Venus profile in n.c. 14 differs between dorsal and ventral sides of embryo. 
However, such differences do not significantly alter our main conclusions. Inset 
shows relative intensity of Bcd in nuclei relative to yolk.  
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G n.c. 8 embryo expressing Bcd-Venus. Zoomed region highlights Bcd-Venus 
positive nuclei (yellow arrows).  
H Early n.c. 14 embryo expressing Bcd-Venus. Zoomed region highlights Bcd-Venus 
expression in nuclei in the posterior pole. Bcd-Venus intensity profile along the mask 
shown in the inset.  Red arrow denotes most posterior position along mask.  
I Variation in nuclear histone-mCherry signal as function of AP position in early n.c. 
14. Error bars are standard deviation within each bin.  
J Mean cortical fluorescence intensity of an un-tagged OregonR embryo along cortex 
taken with same microscope settings as Figs. 2-3. Dashed lines represent ±1s.d.  
K Bcd-eGFP profile in n.c. 14 (blue dots) with error (red dots). Data from individual 
nuclei binned into 5 mm bins. Inset shows number of nuclei against distance from 
anterior pole.  
L Relative error (standard deviation divided by mean intensity within each 5 µm bin) 
of Bcd-Venus (main panel) and Bcd-eGFP (inset).  The red line is a fit to the 
theoretical prediction if noise is predominantly due to Poisson fluctuations.  
M Imaging of the tFT-Bcd is reproducible between sessions. mCherry-sfGFP-Bcd 
ratio as function of position including data sets taken on confocal and LSFM at 
different times and conditions.  Each profile (gray lines) is scaled by a single 
multiplicative factor (after background subtraction) to account for, as an example, 
variation in laser excitation intensity or microscope alignment.  
N mCherry-sfGFP-Bcd ratio, normalized by the ratio in the anterior pole (set to 0.9 in 
region 50 µm from anterior). 
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Appendix Figure S6 Experimental estimation of the fluorophores maturation 
times.   
Experimental determination of the maturation rates of sfGFP, mCherry and fmCherry 
in the tFT constructs in the Drosophila early embryo. Stage 4 embryos were injected 
with tFT mRNA, and confocal imaging of the green and red fluorescence was started 
10 minutes later.  
A Scheme of the model used for the data fitting. 
B Experimental data (colored dots) and best fit (black line) for the mCherry-sfGFP 
tFT reporter.  
C Experimental data (colored dots) and best fit (black line) for the sfGFP-fmCherry 
tFT.  
D-F Likelihood profile analysis of the fitted maturation rates for sfGFP, mCherry and 
fmCherry respectively. The light blue dtted line marks the lowest cost, and the red 
one the highest acceptable cost. All parameters were identifiable.  
G The fitted maturation rates and uncertainty ranges for each reaction. The 
maturation half-time is equal to log(2)/ maturation rate. 
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Appendix Figure S7 Fitting the tFT-Bcd ratio using different models for 
gradient formation.  
A- D Top: Predicted concentration profiles (black = total Bcd, green = sfGFP, red = 
mCherry) and tFT-Bcd ratio (bottom) for all four models considered using 
representative parameters.  
E- H Fit quality (see Methods) of different models to measured tFT-Bcd ratio for 
different parameter ranges. White line represents parameters that result in a profile 
that is exponential-like with decay length ~85mm. In F, for the nuclear shuttling 
model, there is only one parameter (diffusion). In this case, the y-axis corresponds to 
fits at different times of development. In H, diffusion and degradation refer to the 
mRNA, not the Bcd protein. 
I- J As Figure 3b, but accounting for 5% (J) and 20% (K) FRET effect respectively. 
Fitting of the tFT-Bcd ratio using the SDD model with 5% FRET effect.  
K- L Fitting of the tFT-Bcd ratio using the RNA gradient model with an RNA gradient 
of length 40mm (N) and 100mm (O).  
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Appendix Figure S8 The inhibitor MG132 does not affect the tFT life-time.  
The proteasome inhibitor MG132 has no impact on the average age of tandem 
constructs without the Bcd protein (gray, open squares) or in the total fluorescence 
(inset). All embryos are y/w and were injected while in n.c. 14 and imaged 60 min 
later.  
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Appendix Figure S9 Corroboration of the fsd mutation.  
Top: Strategy for line check by PCR Alternative reverse primers are used for the wt 
or mutant versions, giving different amplified fragments. Bottom: Agarose gel of the 
PCR. The mutant lines show the higher weight bands as expected. 
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500 pb
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wt
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Strategy:
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Appendix Figure S10 The selection of the embryo region quantified does not 
change qualitatively the dynamic trajectories.  
Plots of Bcd protein age vs protein abundance through the early development were 
performed as in Figure 6 C-D, using the same data. However, different sections of 
the embryo across the AP axis were quantified (described in the title and sketched in 
the lower left corner, EL: Embryo Length). Comparison of simulations (black lines) 
and experimental data (colored symbols), both quantified in the same section, shows 
a general agreement. The quality of the data and the agreement diminishes towards 
the posterior pole due to the lower signal (and higher signal/noise) given by Bcd 
gradient.   
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Appendix Figure S11 The SDD model structure with varying production and 
degradation rates can reproduce the experimental trajectories in the levels-age 
space. 
Simulation of the SDD model mimicking the full early development (white continuous 
line), plotted over the experimental data points from Figure 6D. The simulations were 
performed to reproduce the experimental trajectories from Figure 6D. Two gradual 
changes were introduced following build-up of the gradient: an decrease in 
production and a decrease in degradation (inset).  
 
 

 
Appendix Figure S12 Fitting of nuclear shuttling model with time dependent 
diffusion.  
Fitting of the nuclear shuttling model (as described in text) to the 
mCherry/sfGFP ratio (solid orange). Dashed lines correspond to SDD (red) and 
nuclear shuttling (orange) models with fixed parame 
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Appendix Figure S13 Background subtraction using linear unmixing 
 
A Overlay of the sfGFP and mCherry emission spectra in vitro 
(http://www.bdbiosciences.com/us/s/spectrumviewer) and the early embryo 
autofluorescence spectrum (black lines and dots). The autofluorescence profile was 
acquired from 5 wt embryos of the y/w background (not expressing any fluorescent 
proteins) by performing a lambda scan on a confocal microscope. The 
autofluorescence and the GFP spectra overlap extensively. 
B Basic workflow for linear unmixing. For each embryo and time point where the tFT 
was assessed throw-out this work, the red and green channels were recorded along 
with the “AF” channel (laser 488 nm, filter 594 nm). This channel was intended 
specifically for autofluorescence correction.  The AF channel was chosen for showing 
a high correlation with the signal observed on the green channel in 5 wt embryos 
imaged with the MuViSPIM, but no GFP signal (as seen in A left). The AF channel 
image was then used to estimate the (spatially dependent) background signal in the 
green channel of fluorescent proteins-expressing embryos. This correction image 
was weighted and subtracted to the green channel image. 
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C Example of the impact of the linear unmixing on the fluorescence intensity 
quantification of a single embryo. The fluorescence profiles along the AP axis are 
shown. In the cortex area (left), where the mCherry-sfGFP-Bcd localizes, the 
correction has little effect. However on the yolk, where signal is expected to be due 
only to autofluorescence, the linear unmixing converts a gradient-looking profile into 
a no fluorescence flat line. 


