# **CRISPR-Cpf1** assisted multiplex genome editing and

# transcriptional repression in *Streptomyces*

Lei Li, Keke Wei, Guosong Zheng, Xiaocao Liu, Shaoxin Chen, Weihong Jiang\* and Yinhua Lu\*

## **Supplementary materials**



**Fig. S1.** Phenotypic analysis of exoconjugants in which 5'-CTV-3' PAM-targeted crRNAs were used to guide the cleavage of *actI-orf1* or *actVB*. The strains with *actI-orf1 or actVB* inactivation only produced red-pigmented RED on R2YE plates (imaged at 72 h). 15 random exoconjugants were randomly picked for visual inspections and the strain in the top right corner represented the wild type in each group.



**Fig. S2. One-step deletion of the prodiginines (RED) biosynthetic gene cluster** (**BGC) by** *Fn***Cpf1-based reconstituted NHEJ editing system.** (A) The map of the RED biosynthetic gene cluster. Two "X" marks represent the cleavage sites of CRISPR-Cpf1 system. (B) Phenotypic identification of the mutants with deletion of the RED BGC. For each trial, 15 colonies were selected. The images were photographed after growth on R2YE plates for 48 h at 30 °C. The strain on the top right corner represents the wild-type *S. coelicolor* M145. These strains in which the RED BGC has been broken or completely deleted only produce blue-pigmented actinorhodin (ACT). (C) Sequence analysis of the mutants with deletion of the RED BGC. The numbers in brackets represent the deleted lengths.



**Fig. S3. ddCpf1-mediated simultaneous repression of three genes using a single customized crRNA array in** *S. coelicolor.* (A) Phenotypic analysis of the exoconjugants with the individual editing plasmid containing single or multiple crRNAs . Three target genes (*cpkA*, *actI-orf1* and *redX*) were selected for simultaneous repression. The order of crRNAs targeting three genes is designed as array 3, array 4, array 5 or array 6. The strain only expressing ddCpf1 was used as the control (indicated as C). Images for antibiotics production (CPK, RED and ACT) was photographed at the time indicated. (B) Transcriptional analysis of *cpkA*, *redX* and

*actI-orf1* in the strains with the individual editing plasmid containing single or multiple crRNAs. RNA samples for the analysis of *cpkA*, *redX* and *actI-orf1* transcription were isolated from the cultures after growth for 24, 48 and 72 h, respectively. The transcriptional levels of each gene were analyzed in the engineered strains expressing ddCpf1 with individual crRNA or crRNA arrays, and the strain only expressing ddCpf1 was used as the control (indicated as C).



Fig. S4. Effect of deletion of SB100792 on bacterial growth. The partenal strain S.

*hygroscopicus* SIPI-KF and the  $\Delta$ *SBI00292* mutant were grown on MB plates and images were photographed from the front and back sides at 3 and 7 days.



Fig. S5. Growth of the two important industrial *Streptomyces* species only expressing dCas9 or ddCpf1. pKC1139 was used as the control. c. f. u. represents colony-forming unit. SPR: *S. pristinaespiralis* HCCB10218, SHY: *S. hygroscopicus* SIPI-KF.

**Table S1** PAM occurrence frequencies of four different class 2 CRISPR-Cas systemsin Streptomyces coelicolor M145

|                                  | SpCas9 | FnCpf1 | AsCpf1/LbCpf1 |
|----------------------------------|--------|--------|---------------|
| PAM sequence                     | NGG    | TTV    | TTTV          |
| Occurrence frequency             | 0.26   | 0.0334 | 0.0047        |
| PAM numbers in 100-bp DNA region | 26     | 3.34   | 0.47          |
| PAM numbers in single gene       | 257.7  | 33.1   | 4.7           |

| Plasmids or Strains                      | Relevant features                                                                                                                                           | Source/Reference       |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Plasmids                                 |                                                                                                                                                             |                        |
| pCB003                                   | pMB1 <i>ori, aadA</i> , the promoter j23119 was used to express the synthetic guide RNA(sgRNA)                                                              | Huang et al., 2015     |
| рКС1139                                  | A replicative vector in actinomycetes harboring a temperature sensitive replicon pSG5, <i>oriT</i> , and <i>aac(3)IV</i>                                    | Kieser et al.,<br>2000 |
| pAH91kasOp*-cmlR                         | pAH91 with <i>cmlR</i> under the control of the strong promoter <i>kasOp</i> *                                                                              | Li et al., 2017        |
| pIB139                                   | An integrative plasmid containing <i>oriT</i> , <i>attP</i> , <i>int</i> , <i>aac(3)IV</i> and <i>ermEp</i> *                                               | Kieser et al.,<br>2000 |
| pIB-00792                                | pIB139 with <i>SBI00792</i> under the control of the strong promoter <i>ermEp</i> *                                                                         | This study             |
| pKCCas9( <i>tipAp</i> )                  | pKC1139 with the <i>scocas9</i> gene under the control of the inducible promoter <i>tipAp</i>                                                               | Huang et al., 2015     |
| pKCCas9(tipAp)-actI-orf1                 | pKCCas9( <i>tipAp</i> ) with the sgRNA transcription cassette for editing <i>actI-orf1</i>                                                                  | This study             |
| pKCdCas9(tipAp)                          | pKC1139 with the <i>scocas9</i> (D10A and H840A) gene<br>under the control of the inducible promoter <i>tipAp</i>                                           | This study             |
| pKCCpf1( <i>tipAp</i> )                  | pKC1139 with the <i>scocpf1</i> gene under the control of the inducible promoter <i>tipAp</i> and the crRNA repeat unit under the control of <i>kasOp</i> * | This study             |
| pKCCpf1(tipAp)-actI-orf1                 | pKCCpf1( <i>tipAp</i> ) with the crRNA transcription cassette for editing <i>actI-orf1</i>                                                                  | This study             |
| pKCCpf1                                  | pKC1139 with the <i>scocpf1</i> gene under the control of <i>ermEp</i> * and the crRNA repeat unit under the control of the strong promoter <i>kasOp</i> *  | This study             |
| pKCddCpf1                                | pKC1139 with the <i>scocpf1</i> (E1006A) gene under the control of the promoter <i>ermEp</i> *                                                              | This study             |
| pKCCpf1-actI-orf1                        | pKCCpf1 with the crRNA transcription cassette for editing <i>actI-orf1</i>                                                                                  | This study             |
| pKCCpf1- <i>actI-orf1-</i> up<br>(TTC)   | pKCCpf1 with the crRNA transcription cassette for editing the upstream of <i>actI-orf1</i> and PAM is TTC                                                   | This study             |
| pKCCpf1- <i>actI-orf1</i> -up<br>(CTG)   | pKCCpf1 with the crRNA transcription cassette for editing the upstream of <i>actI-orf1</i> and PAM is CTG                                                   | This study             |
| pKCCpf1 <i>-actI-orf1-</i> down<br>(TTG) | pKCCpf1 with the crRNA transcription cassette for editing the downstream of <i>actI-orf1</i> and PAM is TTG                                                 | This study             |
| pKCCpf1- <i>actI-orf1</i> -down          | pKCCpf1 with the crRNA transcription cassette for<br>editing the downstream of <i>actLorf1</i> and PAM is CTC                                               | This study             |
| pKCCpf1-actVB                            | pKCCpf1 with the crRNA transcription cassette for                                                                                                           | This study             |
| pKCCpf1-actVB<br>(CTG)                   | pKCCpf1 with the crRNA transcription cassette for editing <i>actVB</i> and PAM is CTG                                                                       | This study             |

 $\begin{tabular}{ll} Table S2 Bacterial plasmids and strains used in this study \end{tabular}$ 

| pKCCpf1-actI-orf1-up            | pKCCpf1 with the crRNA transcription cassette for                      | This study  |
|---------------------------------|------------------------------------------------------------------------|-------------|
| (23 nt)                         | editing the upstream of actI-orf1 and the spacer length                |             |
|                                 | of crRNA is 23 nt                                                      |             |
| pKCCpf1-actI-orf1-up            | pKCCpf1 with the crRNA transcription cassette for                      | This study  |
| (22 nt)                         | editing the upstream of <i>actI-orf1</i> and the spacer length         |             |
|                                 | of crRNA is 22 nt                                                      |             |
|                                 | pKCCpf1 with the crRNA transcription cassette for                      |             |
| pKCCpf1-actI-orf1-up            | editing the upstream of <i>actI-orf1</i> and the spacer length         | This study  |
| (21 nt)                         | of crRNA is 21 nt                                                      | -           |
| pKCCpf1-actI-orf1-up            | pKCCpf1 with the crRNA transcription cassette for                      | This study  |
| (20  nt)                        | editing the upstream of <i>actI-orf1</i> and the spacer length         |             |
| ()                              | of crRNA is 20 nt                                                      |             |
| nKCCnf1- <i>actI-orf1</i> -un   | pKCCnf1 with the crRNA transcription cassette for                      | This study  |
| (19 nt)                         | editing the unstream of <i>actLorfl</i> and the spacer length          | This study  |
| (17 m)                          | of crRNA is 10 nt                                                      |             |
| nKCCnf1_actI_orf1_un            | pKCCnf1 with the crRNA transcription cassette for                      | This study  |
| (18  nt)                        | aditing the upstream of <i>getl</i> or <i>fl</i> and the spacer length | This study  |
| (10 III)                        | of or DNA is 18 at                                                     |             |
| aVCCaf1 and well up             | of CIRINA IS 18 III                                                    | This study. |
|                                 | precepti with the crkiva transcription cassette for                    | This study  |
| (1 / nt)                        | editing the upstream of <i>acti-orfi</i> and the length of             |             |
|                                 | spacer is 17 nt                                                        |             |
| pKCCpf1-act1-orf1-up            | pKCCpt1 with the crRNA transcription cassette for                      | This study  |
| (16 nt)                         | editing the upstream of <i>actI-orf1</i> and the spacer length         |             |
|                                 | of crRNA is 16 nt                                                      |             |
| pKCCpf1- <i>actI-orf1</i> -down | pKCCpf1 with the crRNA transcription cassette for                      | This study  |
| (23 nt)                         | editing the downstream of <i>actI-orf1</i> and the spacer              |             |
|                                 | length of crRNA is 23 nt                                               |             |
| pKCCpf1-actI-orf1-down          | pKCCpf1 with the crRNA transcription cassette for                      | This study  |
| (22 nt)                         | editing the downstream of actI-orf1 and the spacer                     |             |
|                                 | length of crRNA is 22 nt                                               |             |
| pKCCpf1-actI-orf1-down          | pKCCpf1 with the crRNA transcription cassette for                      | This study  |
| (21 nt)                         | editing the downstream of actI-orf1 and the spacer                     |             |
|                                 | length of crRNA is 21 nt                                               |             |
| pKCCpf1-actI-orf1-down          | pKCCpf1 with the crRNA transcription cassette for                      | This study  |
| (20 nt)                         | editing the downstream of actI-orf1 and the spacer                     |             |
|                                 | length of crRNA is 20 nt                                               |             |
| pKCCpf1-actI-orf1-down          | pKCCpf1 with the crRNA transcription cassette for                      | This study  |
| (19 nt)                         | editing the downstream of actI-orf1 and the spacer                     |             |
|                                 | length of crRNA is 19 nt                                               |             |
| pKCCpf1-actI-orf1-down          | pKCCpf1 with the crRNA transcription cassette for                      | This study  |
| (18 nt)                         | editing the downstream of actI-orf1 and the spacer                     | ·           |
|                                 | length of crRNA is 18 nt                                               |             |
| pKCCpf1-actI-orf1-down          | pKCCpf1 with the crRNA transcription cassette for                      | This study  |
| (17 nt)                         | editing the downstream of <i>actI-orf1</i> and the spacer              | 2           |
| (17 nt)                         | editing the downstream of actI-orf1 and the spacer                     |             |

|                            | length of crRNA is 17 nt                                          |                    |
|----------------------------|-------------------------------------------------------------------|--------------------|
| pKCCpf1-actI-orf1-down     | pKCCpf1 with the crRNA transcription cassette for                 | This study         |
| (16 nt)                    | editing the downstream of actI-orf1 and the spacer                |                    |
|                            | length of crRNA is 16 nt                                          |                    |
| pKCCpf1-actI-orf1-HR       | pKCCpf1 with the crRNA transcription cassette for                 | This study         |
| 1 1 7                      | deleting <i>actI-orf1</i> and two homologous arms                 | 2                  |
| nKCCnf1- <i>redX</i> -HR   | nKCCnf1 with the crRNA transcription cassette for                 | This study         |
| ркеерн неих нк             | deleting redY and two homologous arms                             | This study         |
| pVCCpf1 got out und V U    | PKCcpf1 with two poir homologous arms and the                     | This study         |
| ркссрп-асп-отј1-теал-п     | PROCEDIT with two-pair homologous arms and the                    | This study         |
| K                          | crRNA transcription cassettes for simultaneously                  |                    |
|                            | deleting acti-orf1 and redX                                       |                    |
| pZX09                      | NHEJ expression vector harboring the $ligD$ and $ku$              | Zheng et al., 2017 |
|                            | genes from Mycobacterium smegmatis                                |                    |
| pGH- <i>gadphp-</i> Sda-LK | NHEJ cloning vector harboring the <i>ligD</i> and <i>ku</i> genes | This study         |
|                            | from Streptomyces daghestanicus under the control of              |                    |
|                            | the ultrastrong promoter gadphp                                   |                    |
| pKCCpf1-MsmP               | pKCCpf1 with the <i>ligD</i> and <i>Ku</i> genes from             | This study         |
|                            | Mycobacterium smegmatis under the control of the                  |                    |
|                            | ultrastrong promoter <i>gadphp</i>                                |                    |
| pKCCpf1-MsmE               | pKCCpf1 with the $ligD$ and $Ku$ genes from                       | This study         |
|                            | Mycobacterium smegmatis under the control of the                  | 2                  |
|                            | strong promoter <i>ermEp</i> *                                    |                    |
| pKCCpf1-SdaP               | pKCCpf1 with the <i>ligD</i> and $Ku$ genes from                  | This study         |
| pricepri suu               | Streptomyces dashestanicus under the control of the               | inis stady         |
|                            | ultrastrong promoter <i>adphp</i>                                 |                    |
| nKCCnf1-SdaE               | nKCCnf1 with the $ligD$ and $Ky$ genes from                       | This study         |
| precepti-bual              | Streptomycas dashastanicus under the control of the               | This study         |
|                            | strong promotor arm En*                                           |                    |
| aVCCafl DavD               | rKCCnfl with the lind and Ky series from                          | This study.        |
| ркссрп-григ                | precepting with the $ugD$ and $Ku$ genes from                     | This study         |
|                            | <i>Pseudomonas puttaa</i> K12440 under the control of the         |                    |
|                            | ultrastrong promoter <i>gadphp</i>                                |                    |
| pKCCpf1-PpuE               | pKCCpT1 with the <i>ligD</i> and <i>Ku</i> genes from             | This study         |
|                            | <i>Pseudomonas putida</i> KT2440 under the control of the         |                    |
|                            | strong promoter <i>ermEp</i> *                                    |                    |
| pKCCpf1-MsmE- <i>redX</i>  | pKCCpf1-MsmE with the crRNA transcription                         | This study         |
|                            | cassette for editing <i>redX</i>                                  |                    |
| pKCCpf1-SdaE- <i>redX</i>  | pKCCpf1-SdaE with the crRNA transcription cassette                | This study         |
|                            | for editing <i>redX</i>                                           |                    |
| pKCCpf1-PpuE- <i>redX</i>  | pKCCpf1-PpuE with the crRNA transcription cassette                | This study         |
|                            | for editing <i>redX</i>                                           |                    |
| pKCCpf1-MsmE-actI-orf1     | pKCCpf1-MsmE with the crRNA transcription                         | This study         |
|                            | cassette for editing actI-orf1                                    |                    |
| pKCCpf1-SdaE-actI-orf1     | pKCCpf1-SdaE with the crRNA transcription cassette                | This study         |
|                            | for editing actI-orf1                                             |                    |
|                            |                                                                   |                    |

| nKCCnf1-PnuF-actI-orf1    | nKCCnf1-PnuE with the crRNA transcription cassette                         | This study      |
|---------------------------|----------------------------------------------------------------------------|-----------------|
| precepti-i pul-ucii-orji  | for editing act_orfl                                                       | This study      |
| nKCCnf1_MsmF_RFD_BGC      | pKCCpf1_MsmE with the artificial CPISPR array for                          | This study      |
| preepi1-wishie-red-boe    | transcribing two or PNAs for deleting PED                                  | This study      |
|                           | hissunthatia gana alustar                                                  |                 |
| - SET152                  | TUC10 and $\PhiC21$ interfert D and $C2VW$ las Za and aniT                 | Diamagn at al   |
| pse1152                   | $pUC19 \text{ orl, } \PsiC31 \text{ ini/all}P, aac(3)IV, iac2a, and orl i$ | bierman et al., |
|                           | KKZ                                                                        | 1992            |
| pseradopri                | pSE1152 with <i>Scocpj</i> (E1006A) gene under the                         | This study      |
|                           | control of the strong promoter <i>ermEp</i> <sup>**</sup> and the crKNA    |                 |
|                           | repeat unit under the control of the strong promoter                       |                 |
|                           |                                                                            | <b>TT1</b> • 1  |
| pSEIddCpII-redX-II        | pSE1ddCp11 with the crRNA transcription cassette                           | This study      |
| (also as pSETddCpfT-redX) | targeting the template strand of <i>redX</i> , No.1                        |                 |
| pSETddCpf1-redX-T2        | pSEIddCpf1 with the crRNA transcription cassette                           | This study      |
|                           | targeting the template strand of <i>redX</i> , No.2                        |                 |
| pSETddCpt1-redX-T3        | pSETddCpf1 with the crRNA transcription cassette                           | This study      |
|                           | targeting the template strand of <i>redX</i> , No.3                        |                 |
| pSETddCpf1-redX-T4        | pSETddCpf1 with the crRNA transcription cassette                           | This study      |
|                           | targeting the template strand of <i>redX</i> , No.4                        |                 |
| pSETddCpf1-redX-NT1       | pSETddCpf1 with the crRNA transcription cassette                           | This study      |
|                           | targeting the non-template strand of <i>redX</i> , No.1                    |                 |
| pSETddCpf1-redX-NT2       | pSETddCpf1 with the crRNA transcription cassette                           | This study      |
|                           | targeting the non-template strand of <i>redX</i> , No.2                    |                 |
| pSETddCpf1-redX-NT3       | pSETddCpf1 with the crRNA transcription cassette                           | This study      |
|                           | targeting the non-template strand of <i>redX</i> , No.3                    |                 |
| pSETddCpf1-redX-NT4       | pSETddCpf1 with the crRNA transcription cassette                           | This study      |
|                           | targeting the non-template strand of <i>redX</i> , No.4                    |                 |
| pSETddCpf1-actI-orf1      | pSETddCpf1 with the crRNA transcription cassette                           | This study      |
|                           | targeting the template strand of actI-orf1                                 |                 |
| pSETddCpf1-cpkA           | pSETddCpf1 with the crRNA transcription cassette                           | This study      |
|                           | targeting the template strand of <i>cpkA</i>                               |                 |
| pSETddCpf1-array 1        | pSETddCpf1 with the artificial CRISPR array for                            | This study      |
|                           | transcribing three crRNAs targeting the template                           |                 |
|                           | strands of <i>redX</i> , <i>cpkA</i> and <i>actI-orf1</i>                  |                 |
| pSETddCpf1-array 2        | pSETddCpf1 with the artificial CRISPR array for                            | This study      |
|                           | transcribing three crRNAs targeting the template                           |                 |
|                           | strands of <i>actI-orf1</i> , <i>redX</i> and <i>cpkA</i>                  |                 |
| pSETddCpf1-array 3        | pSETddCpf1 with the artificial CRISPR array for                            | This study      |
|                           | transcribing three crRNAs targeting the template                           |                 |
|                           | strands of <i>actI-orf1</i> , <i>cpkA</i> and <i>redX</i>                  |                 |
| pSETddCpf1-array 4        | pSETddCpf1 with the artificial CRISPR array for                            | This study      |
|                           | transcribing three crRNAs targeting the template                           |                 |
|                           | strands of <i>cpkA</i> , <i>actI-orf1</i> and <i>redX</i>                  |                 |
| pSETddCpf1-array 5        | pSETddCpf1 with the artificial CRISPR array for                            | This study      |

|                                                                                                                                                                                                                                                                                                                                                                                                               | transcribing three crRNAs targeting the template                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                               | strands of <i>cpkA</i> , <i>redX</i> and <i>actI-orf1</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |
| pSETddCpf1-array 6                                                                                                                                                                                                                                                                                                                                                                                            | pSETddCpf1 with the artificial CRISPR array for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | This study                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                               | transcribing three crRNAs targeting the template                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                               | strands of <i>redX</i> , <i>actI-orf1</i> and <i>cpkA</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |
| pKCCpf1-SBI00792                                                                                                                                                                                                                                                                                                                                                                                              | pKCCpf1 with the crRNA transcription cassette for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | This study                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                               | editing SBI00792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |
| pKCCpf1-SBI00792-HR1.0                                                                                                                                                                                                                                                                                                                                                                                        | pKCCpf1 with the crRNA transcription cassette for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | This study                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                               | deleting SBI00792 and two 1-kb homologous arms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |
| pKCCpf1-SBI00792-HR1.5                                                                                                                                                                                                                                                                                                                                                                                        | pKCCpf1 with the crRNA transcription cassette for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | This study                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                               | deleting SBI00792 and two 1.5-kb homologous arms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                    |
| pKCCpf1-SBI00792-HR2.0                                                                                                                                                                                                                                                                                                                                                                                        | pKCCpf1 with the crRNA transcription cassette for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | This study                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                               | deleting SBI00792 and two 2-kb homologous arms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                    |
| pKCCpf1-SBI00792-HR2.5                                                                                                                                                                                                                                                                                                                                                                                        | pKCCpf1 with the crRNA transcription cassette for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | This study                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                               | deleting SBI00792 and two 2.5-kb homologous arms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                    |
| Escherichia coli                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                      |
| DH5a                                                                                                                                                                                                                                                                                                                                                                                                          | F <sup>-</sup> 80 <i>ΦdlacZDM15</i> Δ( <i>lacZYA–argF</i> ) <i>U169deoR recA1</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GIBCO-BRL                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                               | endA1 hsdR17(rk <sup>-</sup> mk <sup>+</sup> ) supE44 $\lambda^{-}$ thi <sup>-</sup> 1gyrA96 relA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                      |
| ET12567/pUZ8002                                                                                                                                                                                                                                                                                                                                                                                               | ET12567 containing the non-transmissible RP4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GIBCO-BRL                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                               | derivative plasmid pUZ8002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                      |
| S17-1                                                                                                                                                                                                                                                                                                                                                                                                         | supE44, $\Delta lacU169$ ( $\Phi lacZ\Delta M15$ ), recA1, endA1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GIBCO-BRL                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                               | hsdR17, thi-1, gyrA96, relA1, par phage lysogenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                      |
| Streptomyces coelicolor                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                      |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                      |
| M145                                                                                                                                                                                                                                                                                                                                                                                                          | SCP1- SCP2-, aderivative from S. coelicolor A3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kieser et al.,                                                                                                                                                                                                                                                       |
| M145                                                                                                                                                                                                                                                                                                                                                                                                          | SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2) [wild type]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kieser et al.,<br>2000                                                                                                                                                                                                                                               |
| M145<br>M145/pKC1139                                                                                                                                                                                                                                                                                                                                                                                          | SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)<br>[wild type]<br>M145 carrying the plasmid pKC1139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kieser et al.,<br>2000<br>This study                                                                                                                                                                                                                                 |
| M145<br>M145/pKC1139<br>M145/pKCCas9( <i>tipAp</i> )                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)</li> <li>[wild type]</li> <li>M145 carrying the plasmid pKC1139</li> <li>M145 carrying the plasmid pKCCas9(<i>tipAp</i>)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Kieser et al.,<br>2000<br>This study<br>This study                                                                                                                                                                                                                   |
| M145<br>M145/pKC1139<br>M145/pKCCas9( <i>tipAp</i> )<br>M145/pKCCpf1( <i>tipAp</i> )                                                                                                                                                                                                                                                                                                                          | <ul> <li>SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)</li> <li>[wild type]</li> <li>M145 carrying the plasmid pKC1139</li> <li>M145 carrying the plasmid pKCCas9(<i>tipAp</i>)</li> <li>M145 carrying the plasmid pKCCpf1(<i>tipAp</i>)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kieser et al.,<br>2000<br>This study<br>This study<br>This study                                                                                                                                                                                                     |
| M145<br>M145/pKC1139<br>M145/pKCCas9( <i>tipAp</i> )<br>M145/pKCCpf1( <i>tipAp</i> )<br>M145/pKCCpf1                                                                                                                                                                                                                                                                                                          | <ul> <li>SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)</li> <li>[wild type]</li> <li>M145 carrying the plasmid pKC1139</li> <li>M145 carrying the plasmid pKCCas9(<i>tipAp</i>)</li> <li>M145 carrying the plasmid pKCCpf1(<i>tipAp</i>)</li> <li>M145 carrying the plasmid pKCCpf1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Kieser et al.,<br>2000<br>This study<br>This study<br>This study<br>This study                                                                                                                                                                                       |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$                                                                                                                                                                                                                                                                                              | <ul> <li>SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)</li> <li>[wild type]</li> <li>M145 carrying the plasmid pKC1139</li> <li>M145 carrying the plasmid pKCCas9(<i>tipAp</i>)</li> <li>M145 carrying the plasmid pKCCpf1(<i>tipAp</i>)</li> <li>M145 carrying the plasmid pKCCpf1</li> <li>Mutant with in-frame deletion of the <i>actI-orf1</i> gene</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kieser et al.,<br>2000<br>This study<br>This study<br>This study<br>This study<br>This study                                                                                                                                                                         |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$<br>$\Delta redX$                                                                                                                                                                                                                                                                             | <ul> <li>SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)</li> <li>[wild type]</li> <li>M145 carrying the plasmid pKC1139</li> <li>M145 carrying the plasmid pKCCas9(<i>tipAp</i>)</li> <li>M145 carrying the plasmid pKCCpf1(<i>tipAp</i>)</li> <li>M145 carrying the plasmid pKCCpf1</li> <li>Mutant with in-frame deletion of the <i>actI-orf1</i> gene</li> <li>Mutant with in-frame deletion of the <i>redX</i> gene</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kieser et al.,<br>2000<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study                                                                                                                                                           |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$<br>$\Delta redX$<br>$\Delta actI-orf1-redX$                                                                                                                                                                                                                                                  | SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)<br>[wild type]<br>M145 carrying the plasmid pKC1139<br>M145 carrying the plasmid pKCCas9( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1<br>Mutant with in-frame deletion of the <i>actI-orf1</i> gene<br>Mutant with in-frame deletion of the <i>redX</i> gene<br>Mutant with in-frame deletion of both <i>actI-orf1</i> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kieser et al.,<br>2000<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study                                                                                                                                             |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$<br>$\Delta redX$<br>$\Delta actI-orf1-redX$                                                                                                                                                                                                                                                  | <ul> <li>SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)</li> <li>[wild type]</li> <li>M145 carrying the plasmid pKC1139</li> <li>M145 carrying the plasmid pKCCas9(<i>tipAp</i>)</li> <li>M145 carrying the plasmid pKCCpf1(<i>tipAp</i>)</li> <li>M145 carrying the plasmid pKCCpf1</li> <li>Mutant with in-frame deletion of the <i>actI-orf1</i> gene</li> <li>Mutant with in-frame deletion of the <i>redX</i> gene</li> <li>Mutant with in-frame deletion of both <i>actI-orf1</i> and <i>redX</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kieser et al.,<br>2000<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study                                                                                                                               |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$<br>$\Delta redX$<br>$\Delta actI-orf1-redX$<br>M145/pKCCpf1-MsmP                                                                                                                                                                                                                             | SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)<br>[wild type]<br>M145 carrying the plasmid pKC1139<br>M145 carrying the plasmid pKCCas9( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1<br>Mutant with in-frame deletion of the <i>actI-orf1</i> gene<br>Mutant with in-frame deletion of the <i>redX</i> gene<br>Mutant with in-frame deletion of both <i>actI-orf1</i> and<br><i>redX</i><br>M145 carrying the plasmid pKCCpf1-MsmP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Kieser et al.,<br>2000<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study                                                                                                                               |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$<br>$\Delta redX$<br>$\Delta actI-orf1-redX$<br>M145/pKCCpf1-MsmP<br>M145/pKCCpf1-MsmE                                                                                                                                                                                                        | <ul> <li>SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)</li> <li>[wild type]</li> <li>M145 carrying the plasmid pKC1139</li> <li>M145 carrying the plasmid pKCCas9(<i>tipAp</i>)</li> <li>M145 carrying the plasmid pKCCpf1(<i>tipAp</i>)</li> <li>M145 carrying the plasmid pKCCpf1</li> <li>Mutant with in-frame deletion of the <i>act1-orf1</i> gene</li> <li>Mutant with in-frame deletion of both <i>act1-orf1</i> and <i>redX</i></li> <li>M145 carrying the plasmid pKCCpf1-MsmP</li> <li>M145 carrying the plasmid pKCCpf1-MsmE</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kieser et al.,<br>2000<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study                                                                                                                               |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$<br>$\Delta redX$<br>$\Delta actI-orf1-redX$<br>M145/pKCCpf1-MsmP<br>M145/pKCCpf1-MsmE<br>M145/pKCCpf1-SdaP                                                                                                                                                                                   | <ul> <li>SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)</li> <li>[wild type]</li> <li>M145 carrying the plasmid pKC1139</li> <li>M145 carrying the plasmid pKCCas9(<i>tipAp</i>)</li> <li>M145 carrying the plasmid pKCCpf1(<i>tipAp</i>)</li> <li>M145 carrying the plasmid pKCCpf1</li> <li>Mutant with in-frame deletion of the <i>actI-orf1</i> gene</li> <li>Mutant with in-frame deletion of the <i>redX</i> gene</li> <li>Mutant with in-frame deletion of both <i>actI-orf1</i> and <i>redX</i></li> <li>M145 carrying the plasmid pKCCpf1-MsmP</li> <li>M145 carrying the plasmid pKCCpf1-MsmE</li> <li>M145 carrying the plasmid pKCCpf1-MsmE</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                            | Kieser et al.,<br>2000<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study<br>This study                                                                                                   |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$<br>$\Delta redX$<br>$\Delta actI-orf1-redX$<br>M145/pKCCpf1-MsmP<br>M145/pKCCpf1-MsmE<br>M145/pKCCpf1-SdaP<br>M145/pKCCpf1-SdaE                                                                                                                                                              | SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)<br>[wild type]<br>M145 carrying the plasmid pKC1139<br>M145 carrying the plasmid pKCCas9( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1<br>Mutant with in-frame deletion of the <i>act1-orf1</i> gene<br>Mutant with in-frame deletion of the <i>redX</i> gene<br>Mutant with in-frame deletion of both <i>act1-orf1</i> and<br><i>redX</i><br>M145 carrying the plasmid pKCCpf1-MsmP<br>M145 carrying the plasmid pKCCpf1-MsmE<br>M145 carrying the plasmid pKCCpf1-MsmE<br>M145 carrying the plasmid pKCCpf1-SdaP<br>M145 carrying the plasmid pKCCpf1-SdaE                                                                                                                                                                                                                                                                                                                                                                                                                       | Kieser et al.,<br>2000<br>This study<br>This study                                                                                     |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$<br>$\Delta redX$<br>$\Delta actI-orf1-redX$<br>M145/pKCCpf1-MsmP<br>M145/pKCCpf1-MsmE<br>M145/pKCCpf1-SdaP<br>M145/pKCCpf1-SdaE<br>M145/pKCCpf1-PpuP                                                                                                                                         | SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)<br>[wild type]<br>M145 carrying the plasmid pKC1139<br>M145 carrying the plasmid pKCCas9( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1<br>Mutant with in-frame deletion of the <i>actI-orf1</i> gene<br>Mutant with in-frame deletion of the <i>redX</i> gene<br>Mutant with in-frame deletion of both <i>actI-orf1</i> and<br><i>redX</i><br>M145 carrying the plasmid pKCCpf1-MsmP<br>M145 carrying the plasmid pKCCpf1-MsmE<br>M145 carrying the plasmid pKCCpf1-SdaP<br>M145 carrying the plasmid pKCCpf1-SdaE<br>M145 carrying the plasmid pKCCpf1-SdaE<br>M145 carrying the plasmid pKCCpf1-PuP                                                                                                                                                                                                                                                                                                                                                                              | Kieser et al.,<br>2000<br>This study<br>This study                                                                       |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$<br>$\Delta redX$<br>$\Delta actI-orf1-redX$<br>M145/pKCCpf1-MsmP<br>M145/pKCCpf1-MsmE<br>M145/pKCCpf1-SdaP<br>M145/pKCCpf1-SdaE<br>M145/pKCCpf1-PpuP<br>M145/pKCCpf1-PpuE                                                                                                                    | SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)<br>[wild type]<br>M145 carrying the plasmid pKC1139<br>M145 carrying the plasmid pKCCas9( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1<br>Mutant with in-frame deletion of the <i>act1-orf1</i> gene<br>Mutant with in-frame deletion of the <i>redX</i> gene<br>Mutant with in-frame deletion of both <i>act1-orf1</i> and<br><i>redX</i><br>M145 carrying the plasmid pKCCpf1-MsmP<br>M145 carrying the plasmid pKCCpf1-MsmE<br>M145 carrying the plasmid pKCCpf1-MsmE<br>M145 carrying the plasmid pKCCpf1-SdaP<br>M145 carrying the plasmid pKCCpf1-SdaE<br>M145 carrying the plasmid pKCCpf1-PpuP<br>M145 carrying the plasmid pKCCpf1-PpuP                                                                                                                                                                                                                                                                                                                                   | Kieser et al.,<br>2000<br>This study<br>This study                                                         |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$<br>$\Delta redX$<br>$\Delta actI-orf1-redX$<br>M145/pKCCpf1-MsmP<br>M145/pKCCpf1-MsmE<br>M145/pKCCpf1-SdaP<br>M145/pKCCpf1-SdaE<br>M145/pKCCpf1-PpuP<br>M145/pKCCpf1-PpuE<br>M145/pKCCpf1-PpuE<br>M145/pKCCpf1-PpuE                                                                          | SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)<br>[wild type]<br>M145 carrying the plasmid pKC1139<br>M145 carrying the plasmid pKCCas9( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1<br>Mutant with in-frame deletion of the <i>actI-orf1</i> gene<br>Mutant with in-frame deletion of the <i>redX</i> gene<br>Mutant with in-frame deletion of both <i>actI-orf1</i> and<br><i>redX</i><br>M145 carrying the plasmid pKCCpf1-MsmP<br>M145 carrying the plasmid pKCCpf1-MsmE<br>M145 carrying the plasmid pKCCpf1-SdaP<br>M145 carrying the plasmid pKCCpf1-SdaE<br>M145 carrying the plasmid pKCCpf1-PpuP<br>M145 carrying the plasmid pKCCpf1-PpuP<br>M145 carrying the plasmid pKCCpf1-PpuE<br>M145 carrying the plasmid pKCCpf1-PpuE                                                                                                                                                                                                                                                                                         | Kieser et al.,<br>2000<br>This study<br>This study                                           |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$<br>$\Delta redX$<br>$\Delta actI-orf1-redX$<br>M145/pKCCpf1-MsmP<br>M145/pKCCpf1-MsmE<br>M145/pKCCpf1-SdaP<br>M145/pKCCpf1-SdaE<br>M145/pKCCpf1-PpuP<br>M145/pKCCpf1-PpuP<br>M145/pKCCpf1-PpuE<br>M145/pSETddCpf1<br>M145/pSETddCpf1-redX-T1                                                 | SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)<br>[wild type]<br>M145 carrying the plasmid pKC1139<br>M145 carrying the plasmid pKCCas9( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1<br>Mutant with in-frame deletion of the <i>act1-orf1</i> gene<br>Mutant with in-frame deletion of the <i>redX</i> gene<br>Mutant with in-frame deletion of both <i>act1-orf1</i> and<br><i>redX</i><br>M145 carrying the plasmid pKCCpf1-MsmP<br>M145 carrying the plasmid pKCCpf1-MsmE<br>M145 carrying the plasmid pKCCpf1-MsmE<br>M145 carrying the plasmid pKCCpf1-SdaP<br>M145 carrying the plasmid pKCCpf1-SdaE<br>M145 carrying the plasmid pKCCpf1-PpuP<br>M145 carrying the plasmid pKCCpf1-PpuE<br>M145 carrying the plasmid pKCCpf1-PpuE                                                                                                                 | Kieser et al.,<br>2000<br>This study<br>This study                             |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$<br>$\Delta redX$<br>$\Delta actI-orf1-redX$<br>M145/pKCCpf1-MsmP<br>M145/pKCCpf1-MsmE<br>M145/pKCCpf1-SdaP<br>M145/pKCCpf1-SdaE<br>M145/pKCCpf1-SdaE<br>M145/pKCCpf1-PpuP<br>M145/pKCCpf1-PpuP<br>M145/pKCCpf1-PpuE<br>M145/pSETddCpf1<br>M145/pSETddCpf1-redX-T1<br>M145/pSETddCpf1-redX-T2 | SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)<br>[wild type]<br>M145 carrying the plasmid pKC1139<br>M145 carrying the plasmid pKCCas9( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1<br>Mutant with in-frame deletion of the <i>actI-orf1</i> gene<br>Mutant with in-frame deletion of the <i>redX</i> gene<br>Mutant with in-frame deletion of both <i>actI-orf1</i> and<br><i>redX</i><br>M145 carrying the plasmid pKCCpf1-MsmP<br>M145 carrying the plasmid pKCCpf1-MsmE<br>M145 carrying the plasmid pKCCpf1-SdaP<br>M145 carrying the plasmid pKCCpf1-SdaE<br>M145 carrying the plasmid pKCCpf1-SdaE<br>M145 carrying the plasmid pKCCpf1-PpuP<br>M145 carrying the plasmid pKCCpf1-PpuE<br>M145 carrying the plasmid pSETddCpf1<br>M145 carrying the plasmid pSETddCpf1- <i>redX</i> -T1<br>M145 carrying the plasmid pSETddCpf1- <i>redX</i> -T2 | Kieser et al.,<br>2000<br>This study<br>This study |
| M145<br>M145/pKC1139<br>M145/pKCCas9( $tipAp$ )<br>M145/pKCCpf1( $tipAp$ )<br>M145/pKCCpf1<br>$\Delta actI-orf1$<br>$\Delta redX$<br>$\Delta actI-orf1-redX$<br>M145/pKCCpf1-MsmP<br>M145/pKCCpf1-MsmE<br>M145/pKCCpf1-SdaP<br>M145/pKCCpf1-SdaP<br>M145/pKCCpf1-SdaE<br>M145/pKCCpf1-PpuP<br>M145/pKCCpf1-PpuP<br>M145/pSETddCpf1-redX-T1<br>M145/pSETddCpf1-redX-T2<br>M145/pSETddCpf1-redX-T3              | SCP1- SCP2-, aderivative from <i>S. coelicolor</i> A3(2)<br>[wild type]<br>M145 carrying the plasmid pKC1139<br>M145 carrying the plasmid pKCCas9( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1( <i>tipAp</i> )<br>M145 carrying the plasmid pKCCpf1<br>Mutant with in-frame deletion of the <i>act1-orf1</i> gene<br>Mutant with in-frame deletion of the <i>redX</i> gene<br>Mutant with in-frame deletion of both <i>act1-orf1</i> and<br><i>redX</i><br>M145 carrying the plasmid pKCCpf1-MsmP<br>M145 carrying the plasmid pKCCpf1-MsmE<br>M145 carrying the plasmid pKCCpf1-MsmE<br>M145 carrying the plasmid pKCCpf1-SdaP<br>M145 carrying the plasmid pKCCpf1-SdaE<br>M145 carrying the plasmid pKCCpf1-PpuP<br>M145 carrying the plasmid pKCCpf1-PpuE<br>M145 carrying the plasmid pKCCpf1-PpuE<br>M145 carrying the plasmid pSETddCpf1- <i>redX</i> -T1<br>M145 carrying the plasmid pSETddCpf1- <i>redX</i> -T2<br>M145 carrying the plasmid pSETddCpf1- <i>redX</i> -T2                                                                                                              | Kieser et al.,<br>2000<br>This study<br>This study |

| M145/pSETddCpf1-redX-             | M145 carrying the plasmid pSETddCpf1-redX-NT1                     | This study         |
|-----------------------------------|-------------------------------------------------------------------|--------------------|
| NT1                               |                                                                   |                    |
| M145/pSETddCpf1-redX-             | M145 carrying the plasmid pSETddCpf1-redX-NT2                     | This study         |
| NT2                               |                                                                   |                    |
| M145/pSETddCpf1-redX-             | M145 carrying the plasmid pSETddCpf1-redX-NT3                     | This study         |
| NT3                               |                                                                   |                    |
| M145/pSETddCpf1-redX-             | M145 carrying the plasmid pSETddCpf1- <i>redX</i> -NT4            | This study         |
| NT4                               |                                                                   | •                  |
| M145/pSETddCpf1-array1            | M145 carrying the plasmid pSETddCpf1-array 1                      | This study         |
| M145/pSETddCpf1-array2            | M145 carrying the plasmid pSETddCpf1-array 2                      | This study         |
| M145/pSETddCpf1-array3            | M145 carrying the plasmid pSETddCpf1-array 3                      | This study         |
| M145/pSETddCpf1-arrav4            | M145 carrying the plasmid pSETddCpf1- <i>array</i> 4              | This study         |
| M145/pSETddCpf1-arrav5            | M145 carrying the plasmid pSETddCpf1- <i>array</i> 5              | This study         |
| M145/pSETddCpf1-array6            | M145 carrying the plasmid pSETddCpf1- <i>array</i> 6              | This study         |
| Other <i>Strentomyces</i> species |                                                                   |                    |
| S. albus J1074                    | Model Strptomyces, S. albus G mutant                              | Chater and Wilde.  |
|                                   |                                                                   | 1976               |
| S venezuelae ATCC10712            | Model Strentomyces [Wild type]                                    | Bush et al 2013    |
| S. avermitilis NRRL8165           | Avermectin-producing industrial strain                            | Ōmura et al., 2001 |
| S. pristinaespiralis              | Pristinamycin-producing industrial strain                         | Li et al., 2015    |
| HCCB10218                         | i nounanijem producing maasarai suum                              |                    |
| S roseosporus SIPI-DT51           | Daptomycin-producing industrial strain                            | SIPI               |
| S. hvgrosconicus SIPI-KF          | 5-oxomilbemycin A3/A4-producing industrial strain                 | SIPI               |
| 5. hygroscopicus 511 1 Ki         | derived from milbenycin-producing                                 | SHT                |
|                                   | S hygroscopicus strain (with deletion of the <i>milF</i> gene)    |                    |
| S verticillus SIPI-BL             | Bleomycin-producing industrial strain                             | SIPI               |
| 11074/pKC1139                     | <i>S</i> albus 11074 carrying the plasmid pKC1139                 | This study         |
| I1074/pKCCas9( <i>tinAn</i> )     | <i>S</i> albus 11074 carrying the plasmid pKCCas9( <i>tinAn</i> ) | This study         |
| I1074/pKCCnf1                     | <i>s. albus</i> 11074 carrying the plasmid pRCCnf1                | This study         |
| 10712/nKC1139                     | <i>S. venezuelae</i> ATCC10712 carrying the plasmid               | This study         |
| 10/12/pite115/                    | nKC1139                                                           | This study         |
| 10712/nKCCas9(tinAn)              | <i>S venezuelae</i> ATCC10712 carrying the plasmid                | This study         |
| 10/12/piteeus/( <i>upip</i> )     | pKCCas9( <i>tinAn</i> )                                           | This study         |
| 10712/nKCCnf1                     | <i>s venezuelae</i> ATCC10712 carrying the plasmid                | This study         |
| 10/12/pixeepi1                    | nKCCnfl                                                           | This study         |
| 8165/nKC1139                      | S avermitilis NRRI 8165 carrying the plasmid                      | This study         |
| 0105/pre1157                      | pKC1120                                                           | This study         |
| 8165/nKCCasO(tinAn)               | S avarmitilis NPPI 8165 corrying the plasmid                      | This study         |
| 8105/pRCCas9( <i>upAp</i> )       | pKCCos0(tinAn)                                                    | This study         |
| 8165/pVCCpf1                      | $S_{\rm every}$ (upp)                                             | This study         |
| 8105/pKCCp11                      | s. <i>avermants</i> NKKL8105 carrying the plasmid                 | This study         |
| 10210/mVC1120                     | procepti<br>S printing computing 10218 comparing the planning     | This study.        |
| 10210/p <b>NC</b> 1139            | s. prisunaespiraus 10218 carrying the plasmid                     | This study         |
| 10010/mVCC = 0(4.4)               |                                                                   | This start-        |
| 10218/pKCCas9( <i>tipAp</i> )     | 5. <i>pristinaespiralis</i> 10218 carrying the plasmid            | Inis study         |

|                                   | pKCCas9( <i>tipAp</i> )                             |            |
|-----------------------------------|-----------------------------------------------------|------------|
| 10218/pKCCpf1                     | S. pristinaespiralis 10218 carrying the plasmid     | This study |
|                                   | pKCCpf1                                             |            |
| 10218/pKCdCas9(tipAp)             | S. pristinaespiralis 10218 carrying the plasmid     | This study |
|                                   | pKCdCas9( <i>tipAp</i> )                            |            |
| 10218/pKCddCpf1                   | S. pristinaespiralis 10218 carrying the plasmid     | This study |
|                                   | pKCddCpf1                                           |            |
| SIPI-DT51/pKC1139                 | S. roseosporus SIPI-DT51 carrying the plasmid       | This study |
|                                   | pKC1139                                             |            |
| SIPI-DT51/pKCCas9( <i>tipAp</i> ) | S. roseosporus SIPI-DT51 carrying the plasmid       | This study |
|                                   | pKCCas9( <i>tipAp</i> )                             |            |
| SIPI-DT51/pKCCpf1                 | S. roseosporus SIPI-DT51 carrying the plasmid       | This study |
|                                   | pKCCpf1                                             |            |
| SIPI-KF/pKC1139                   | S. hygroscopicus SIPI-KF carrying the plasmid       | This study |
|                                   | pKC1139                                             |            |
| SIPI-KF/pKCCas9( <i>tipAp</i> )   | S. hygroscopicus SIPI-KF carrying the plasmid       | This study |
|                                   | pKCCas9( <i>tipAp</i> )                             |            |
| SIPI-KF/pKCCpf1                   | S. hygroscopicus SIPI-KF carrying the plasmid       | This study |
|                                   | pKCCpf1                                             |            |
| SIPI-KF/pKCdCas9( <i>tipAp</i> )  | S. hygroscopicus SIPI-KF carrying the plasmid       | This study |
|                                   | pKCdCas9( <i>tipAp</i> )                            |            |
| SIPI-KF/pKCddCpf1                 | S. hygroscopicus SIPI-KF carrying the plasmid       | This study |
|                                   | pKCddCpf1                                           |            |
| SIPI-BL/pKC1139                   | S. verticillus SIPI-BL carrying the plasmid pKC1139 | This study |
| SIPI-BL/pKCCas9( <i>tipAp</i> )   | S. verticillus SIPI-BL carrying the plasmid         | This study |
|                                   | pKCCas9( <i>tipAp</i> )                             |            |
| SIPI-BL/pKCCpf1                   | S. verticillus SIPI-BL carrying the plasmid pKCCpf1 | This study |
| $\Delta SBI00792$                 | Mutant with in-frame deletion of the SBI00792 gene  | This study |
|                                   | in S. hygroscopicus SIPI-KF                         |            |
| SIPI-KF/pIB139                    | S. hygroscopicus SIPI-KF carrying the empty vector  | This study |
|                                   | pIB139                                              |            |
| Δ <i>SBI00792</i> /pIB139         | SB100792 deletion mutant carrying the empty vector  | This study |
|                                   | pIB139                                              |            |
| Δ <i>SBI00792</i> /pIB-00792      | SB100792 deletion mutant carrying the complemented  | This study |
|                                   | plasmid pIB-00792                                   |            |

Note: SIPI represents Shanghai Institute of Pharmaceutical Industry.

| Streptomyces species           | Abbreviation | Donor E. coli   | Medium                        |
|--------------------------------|--------------|-----------------|-------------------------------|
| S. coelicolor M145             | SCO          | ET12567/pUZ8002 | M-Isp4+10 mM Mg <sup>2+</sup> |
| S. albus J1074                 | SAL          | ET12567/pUZ8002 | M-Isp4+10 mM Mg <sup>2+</sup> |
| S. venezuelae ATCC10712        | SVEN         | ET12567/pUZ8002 | M-Isp4+10 mM Mg <sup>2+</sup> |
| S. avermitilis NRRL8165        | SAV          | ET12567/pUZ8002 | M-Isp4+10 mM Mg <sup>2+</sup> |
| S. roseosporus SIPI-DT51       | SRO          | ET12567/pUZ8002 | M-Isp4+10 mM Mg <sup>2+</sup> |
| S. pristinaespiralis HCCB10218 | SPR          | S17-1           | M-Isp4+10 mM Mg <sup>2+</sup> |
| S. hygroscopicus SIPI-KF       | SHY          | S17-1           | M-Isp4+60 mM Mg <sup>2+</sup> |
| S. verticillus SIPI-BL         | SVER         | ET12567/pUZ8002 | M-Isp4+10 mM Mg <sup>2+</sup> |

Table S3 The conditions of conjugal transfer for different Streptomyces species

 Table S4 Oligonucleotide sequences used in this study

\_

| Primers                         | Sequence (5'-3')                                                                    |
|---------------------------------|-------------------------------------------------------------------------------------|
| Primers for the construction pK | CCcpf1( <i>tipAp</i> ), pKCCpf1 and pKCddCpf1                                       |
| kasOp*-crRNA-fw                 | gcTCTAGAtgttcacattcgaaccgtc                                                         |
| kasOp*-crRNA-rev                | ggACTAGTatctacaacagtagaaatttggccacgactttacaacac                                     |
| <i>ermEp*-</i> fw               | aagcagagacggttcgaatgtgaacaGGATCCctctagtatgcatgcgagtg                                |
| <i>ermEp*-</i> rev              | ttgttgacgaactcctggtagatggaCATATGtggatcctaccaaccggcac                                |
| ddcpf1-fw                       | ggaattcCATATGtccatctaccaggagttcgtca                                                 |
| ddcpf1-rev                      | gGAATTCtcagttgttgcggttctgcacgaa                                                     |
| Primers for the construction of | pKCCas9( <i>tipAp</i> )-actI-orf1, pKCCpf1( <i>tipAp</i> )-actI-orf1 and            |
| pKCCpf1-actI-orf1               |                                                                                     |
| cas9-actI-orf1-fw               | cccAAGCTTgcagatctcaaaaaaagcaccgact                                                  |
| cas9-actI-orf1-rev              | gACTAGTgaagcgcagagtcgtcatcagttttagagctagaaatagca                                    |
| cpf1-actI-orf1-fw               | gACTAGTatgacgactctgcgcttcaatccatctacaacagtagaaatttgg                                |
| cpf1-actI-orf1-rev              | ggaattcCATATGtggatcctaccaaccggcacgatt                                               |
| Primers for the construction of | the plasmids for determining PAM compatibility in S. coelicolor                     |
| crRNA-actI-orf1-up-fw (TTC)     | gACTAGTatgacgactctgcgcttcaatccatctacaacagtagaaatttgg                                |
| crRNA-actI-orf1-up-fw (CTG)     | gACTAGTacgactctgcgcttcaatccgaaatctacaacagtagaaatttgg                                |
| crRNA-actI-orf1-down-fw (TTG)   | gACTAGTgacgcgacggacatcgactacatatctacaacagtagaaatttgg                                |
| crRNA-actI-orf1-down-fw (CTC)   | gACTAGTagtggccgaccatcgacttgatcatctacaacagtagaaatttgg                                |
| crRNA-actVB-fw (TTC)            | gACTAGTgctccatcgagacggacacgaacatctacaacagtagaaatttgg                                |
| crRNA- actVB-fw (CTG)           | gACTAGTttggccgtacgagccaggcagacatctacaacagtagaaatttgg                                |
| crRNA-rev                       | ggaattcCATATGtggatcctaccaaccggcacgatt                                               |
| Primers for the construction of | the plasmids for determining the efficient spacer lengths of crRNA in               |
| S. coelicolor                   |                                                                                     |
| crRNA-actI-orf1-up-fw (23 nt)   | gACTAGTatgacgactctgcgcttcaatccatctacaacagtagaaatttgg                                |
| crRNA-actI-orf1-up-fw (22 nt)   | gACTAGTtgacgactctgcgcttcaatccatctacaacagtagaaatttgg                                 |
| crRNA-actI-orf1-up-fw (21 nt)   | gACTAGTgacgactctgcgcttcaatccatctacaacagtagaaatttgg                                  |
| crRNA-actI-orf1-up-fw (20 nt)   | gACTAGTacgactctgcgcttcaatccatctacaacagtagaaatttgg                                   |
| crRNA-actI-orf1-up-fw (19 nt)   | gACTAGTcgactctgcgcttcaatccatctacaacagtagaaatttgg                                    |
| crRNA-actI-orf1-up-fw (18 nt)   | gACTAGTgactctgcgcttcaatccatctacaacagtagaaatttgg                                     |
| crRNA-actI-orf1-up-fw (17 nt)   | gACTAGTactctgcgcttcaatccatctacaacagtagaaatttgg                                      |
| crRNA-actI-orf1-up-fw (16 nt)   | gACTAGTctctgcgcttcaatccatctacaacagtagaaatttgg                                       |
| crRNA-actI-orf1-down-fw (23 nt) | gACTAGTgacgcgacggacatcgactacatatctacaacagtagaaatttgg                                |
| crRNA-actI-orf1-down-fw (22 nt) | gACTAGTacgcgacggacatcgactacatatctacaacagtagaaatttgg                                 |
| crRNA-actI-orf1-down-fw (21 nt) | gACTAGTcgcgacggacatcgactacatatctacaacagtagaaatttgg                                  |
| crRNA-actI-orf1-down-fw (20 nt) | gACTAGTgcgacggacatcgactacatatctacaacagtagaaatttgg                                   |
| crRNA-actI-orf1-down-fw (19 nt) | gACTAGTcgacggacatcgactacatatctacaacagtagaaatttgg                                    |
| crRNA-actI-orf1-down-fw (18 nt) | gACTAGTgacggacatcgactacatatctacaacagtagaaatttgg                                     |
| crRNA-actI-orf1-down-fw (17 nt) | gACTAGTacggacatcgactacatatctacaacagtagaaatttgg                                      |
| crRNA-actI-orf1-down-fw (16 nt) | gACTAGTcggacatcgactacatatctacaacagtagaaatttgg                                       |
| crRNA-rev                       | ggaattcCATATGtggatcctaccaaccggcacgatt                                               |
| Primers for the construction an | d identification of $\Delta actI$ -orf1, $\Delta redX$ and $\Delta actI$ -orf1-redX |

| Del-actI-orf1-up-fw                  | gACTAGTacggtgagaaggtgctcgtgtagca                                     |
|--------------------------------------|----------------------------------------------------------------------|
| Del-actI-orf1-up-rev                 | aacgtagtcgagatcgcactcggggtcgctgaaggccgatacgggacccctcgat              |
| Del-actI-orf1-down-fw                | agcgaccccgagtgcgatctcgacta                                           |
| Del-actI-orf1-down-rev               | tgtagatggattgaagcgcagagtcgtcattcggcgaacacgacgtcgacgtcct              |
| actI-orf1-crRNA-fw                   | atgacgactctgcgcttcaatccatctacaacagtagaaatttgg                        |
| actI-orf1-crRNA-rev                  | ggaattcCATATGtggatcctaccaaccggcacgatt                                |
| ID-actI-orf1-fw                      | aggcgctggaatcgtatcggaatct                                            |
| ID-actI-orf1-rev                     | acatcagggcggtgaccacgtcga                                             |
| Del- <i>redX</i> -up-fw              | gACTAGTacctgcctcggcctggaccggcagta                                    |
| Del- <i>redX</i> -up-rev             | cgtcgaagtcgaagttcatcgcgttgcgtcggcttcctccaggagcacgtggcata             |
| Del- <i>redX</i> -down-fw            | gacgcaacgcgatgaacttcgactt                                            |
| Del- <i>redX</i> -down-rev           | tgtagatccacctgttgatcgaggaaggcaaactggacggcgtccagtccgagtt              |
| <i>redX</i> -crRNA-fw                | tgccttcctcgatcaacaggtggatctacaacagtagaaatttgg                        |
| <i>redX</i> -crRNA-rev               | cccAAGCTTatcctaccaaccggcacgattgtgc                                   |
| ID- <i>redX</i> -fw                  | acatcgaggtcgacgtggcacggtt                                            |
| ID- <i>redX</i> -rev                 | gatctcgttggtgccggagaagat                                             |
| Primers for the construction of 2    | NHEJ expression vector and the identification of deletion mutants    |
| Msm-ligD-fw                          | cgGATATCatggagcgctatgagcgggttcgcctgacgaa                             |
| Msm-ligD-rev                         | gcTCTAGAgcctattcccacacaacctcatcgggtgt                                |
| Msm-ku-fw                            | gcTCTAGAaaggagtgtccatatgaaccgtgcggtacgccatactg                       |
| Msm-ku-rev                           | cccAAGCTTctacgacttcttcgcagctgccttcttg                                |
| <i>Ppu-ligD-</i> fw                  | gACTAGTagetttGTTTAAACatggecaageceetgeaggaatae                        |
| Ppu-ligD-rev                         | catatggacactccttTCTAGAgctcattcgagccctagctgcttgcgcat                  |
| <i>Ppu-ku-</i> fw                    | gcTCTAGAaaggagtgtccatatggctcgggcaatctggaaaggcgccatcagt               |
| <i>Ppu-ku-</i> rev                   | cccAAGCTTtcatgaagcetttcgcgtettettcac                                 |
| <i>gapdhp-</i> fw                    | gACTAGTgctgctccttcggtcggacgtgcgtcta                                  |
| gapdhp-rev                           | agetttGTTTAAACgegtateceettteagataetegea                              |
| ermEp*-fw (Spe I)                    | gACTAGTcatgcgagtgtccgttcgagt                                         |
| <i>ermEp</i> *-rev ( <i>Eco</i> R V) | cgGATATCcatatgtggatcctaccaac                                         |
| <i>ermEp</i> *-rev ( <i>Pme</i> I)   | agetttGTTTAAACcatatgtggateetaccaac                                   |
| crRNA-RED-BGC-fw                     | gACTAGT cggtgcacgtaggtcacgtggtaat ctacaacagtagaaatttgccttcctcgatcaac |
|                                      | aggtggatctacaacagtagaaatttgg                                         |
| crRNA-rev                            | ggaattcCATATGtggatcctaccaaccggcacgatt                                |
| ID-NHEJ- <i>redX</i> -fw             | tcactgaccggcaccgtatgccacgt                                           |
| ID-NHEJ- <i>redX</i> -rev            | gatetegttggtgeeggagaagat                                             |
| ID-NHEJ-RED-BGC-fw                   | tcactgaccggcaccgtatgccacgt                                           |
| ID-NHEJ-RED-BGC-rev                  | gatctgtggaggggatctgtggat                                             |
| Primers for the construction of a    | a series of CRISPRi plasmids                                         |
| ddcpf1-up-fw                         | aagcttgggctgcaggtcgacTCTAGAtcagttgttgcggttctgcacgaa                  |
| ddcpf1-up-E1006A-rev                 | atcgagtacaacgccatcgtcgtcttcgccgacctgaacttcggcttcaag                  |
| ddcpf1-down-fw                       | ggcgaagacgacgatggcgttgt                                              |
| ddcpf1-down-rev                      | ttgccgccgggcgttttttattggtgaGTTTAAACtatgcttaattaatcaag                |
| CRISPRi- <i>redX</i> -T1-fw          | gACTAGTctgtggctgtgtcgttgtctgaatctacaacagtagaaatttgg                  |
| CRISPRi-redX-T2-fw                   | gACTAGTtgcgcggccgacagcgagtagcgatctacaacagtagaaatttgg                 |

| CRISPRi-redX-T3-fw   | gACTAGTcgtggtagaggtcccggtcgaaatctacaacagtagaaatttgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CRISPRi-redX-T4-fw   | gACTAGTtgccttcctcgatcaacaggtggatctacaacagtagaaatttgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CRISPRi-redX-NT1-fw  | gACTAGTcacggacacacccaccgtcacgatctacaacagtagaaatttgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CRISPRi-redX-NT2-fw  | gACTAGTctggctctcgcgcacgccgtggaatctacaacagtagaaatttgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CRISPRi-redX-NT3-fw  | gACTAGTtcggaaccgtcgtcgtcggcagatctacaacagtagaaatttgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CRISPRi-redX-NT4-fw  | gACTAGTtcaattaccacctgttgatcgagatctacaacagtagaaatttgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CRISPRi-actI-orf1-fw | gACTAGTatgacgactctgcgcttcaatccatctacaacagtagaaatttgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CRISPRi-cpkA-fw      | gACTAGTgaaccgctgtgcagcagctcccaatctacaacagtagaaatttgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CRISPRi-array 1-fw   | $gACTAGT \\ ctgtggctgtgtcgttgtctgaatctacaacagtagaaattgaaccgctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagcagctgtgcagcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagctgtgcagcagcagctgtgcagcagcagctgtgcagcagcagctgtgcagcagctgtgcagcagctgtgcagcagcagcagcagctgtgcagcagcagcagctgtgcagcagcagctgtgcagcagcagcagcagctgtgcagcagcagcagcagcagctgtgcagcagcagcagcagcagcagcagcagcagcagcagcag$                                                                                                                                                                                                                                                                                                                                               |
|                      | $\label{eq:ccca} ccca a cagtagaa attatgacgactctgcgcttca atccatcta caa cagtagaa atttgg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CRISPRi-array 2-fw   | gACTAGTatgacgactctgcgcttcaatccatctacaacagtagaaattctgtggctgtgtcgttgtc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | tga at cta caa cag tag a a at tga accgct gtg cag cag ctccc a at cta caa cag tag a a at ttg g a construction of the second state of the second st   |
| CRISPRi-array 3-fw   | gACTAGTatgacgactctgcgcttcaatccatctacaacagtagaaattgaaccgctgtgcagca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | $\label{eq:schedule} get constraints and the test of the schedule of the sche$ |
| CRISPRi-array 4-fw   | $gACTAGT \\ gaaccgctgtgcagcagctcccaatctacaacagtagaaattatgacgactctgcgct$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | t caat c cat c ta caa c ag t ag a a a t t c t g t g g c t g t g t c g t g t c t g a a t c t a c a a c ag t ag a a a t t t g g a a t c t a c a a c ag t ag a a a t t t g g a c a t c t a c a c a g t a g a a a t t t g g a c a t c a c a g t a g a a a t t t g g a c a t c a c a g t a g a a a t t t g g a c a t c a c a g t a g a a a t t c g g g c t g t g t g t g t g t g t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CRISPRi-array 5-fw   | $gACTAGT {\tt gaaccgctgtgcagcagctccca} at ctacaacagtagaa att ctgtggctgtgtcgttg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | totga at ctaca a cagtaga a att at gacga ctctgcgcttca at ccatcta ca a cagtaga a att tgg a statement of the second statement o   |
| CRISPRi-array 6-fw   | gACTAGT ctgtggctgtgtcgttgtctgaatctacaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactgcgcttcaacagtagaaattatgacgactagaaattatgacgactctgcgcttcaacagtagaaattatgacgactctgcgcttcaacagtagaaattatgacgactgcgctgcgcttcaacagtagaaattatgacgactgcgctgcgcttcaacagtagaaattatgacgactgcgctgcgctgcgctgcgctgcgctgcgctgcgctgcgctgcgctgcgctgcgctgcgctgcgctgcgctgcgctgcgcgctgcgcgctgcgcgctgcgctgcgcgctgcgcgctgcgcgctgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | atccatctacaacagtagaaattgaaccgctgtgcagcagctcccaatctacaacagtagaaatttgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# Primers used in qRT-PCR analysis in S. coelicolor

| RT-hrdB-fw           | agceteaaceagateetega    |
|----------------------|-------------------------|
| RT-hrdB-rev          | agcggtcgccttcctgctggtca |
| RT-actI-orf1-fw      | agttctgggaactgctcacct   |
| RT-actI-orf1-rev     | acaggccacggcgaactgcga   |
| RT- <i>redX</i> -fw  | acccatcgccatcgtcgggatgt |
| RT- <i>redX</i> -rev | accgtgccacgtcgacctcgat  |
| RT-cpkA-fw           | agcagcggctcgtgctcgaact  |
| RT-cpkA-rev          | accgcctcgtccccgtactggta |
|                      |                         |

### Primers for the construction and identification of $\Delta SBI00792$

| SBI00792-crRNA-fw            | gtggccaaatttctactgttgtagatcgcaacaaggacgagctccttgccACTAGTgcgtcgatat |
|------------------------------|--------------------------------------------------------------------|
|                              | ctcg                                                               |
| SBI00792-crRNA-rev           | cgttgtaaaacgacggccagtgccaagcttCCATGGtgcgagtttaaactatgctt           |
| Del-SBI00792-up-1kb-fw       | caacaaggacgagctccttgccACTAGTctctgcgggtcgtagaagtcg                  |
| Del-SBI00792-down-1kb-rev    | gttgtaaaacgacggccagtgccAAGCTTatcgtgttccgcaatcagc                   |
| Del-SBI00792-up-1.5 kb-fw    | caacaaggacgagctccttgccACTAGTggcagcatggcgttcttgg                    |
| Del-SBI00792-down-1.5 kb-rev | gttgtaaaacgacggccagtgccAAGCTTtcgaggtacttgccgaacgag                 |
| Del-SBI00792-up-2 kb-fw      | caacaaggacgagctccttgccACTAGTaagccctcggggacggtggt                   |
| Del-SBI00792-down-2 kb-rev   | gttgtaaaacgacggccagtgccAAGCTTcgccacctcgcattcgtc                    |
| Del-SBI00792-up-2.5 kb-fw    | caacaaggacgagctccttgccACTAGTgccgacggtgtagtagtgcg                   |
| Del-SBI00792-down-2.5 kb-rev | gttgtaaaacgacggccagtgccAAGCTTcctccacgatacggctcacct                 |
| Del-SBI00792-up-rev          | ggctttggtgtagccgttctcg                                             |
| Del-SBI00792-down-fw         | agtttcgccgagaacggctacaccaaagccgtgctcaacgggctccaa                   |
| ID-SB100792-fw               | tgaggtcggcggagaagtcg                                               |

| ID-SB100792-rev          | gcatcacgctggtttccct                |
|--------------------------|------------------------------------|
| Com- <i>SB100792</i> -fw | ggaattcCATATGgtgagccagggaaaggcgcgt |
| Com-SBI00792-rev         | gGAATTCtggagcggctggagaaccc         |

Note: The underlined letters stand for the restriction enzyme sites. The red, blue or

yellow lowercase letters represent the guide sequences of crRNAs.

#### Data1:

#### Sequence of synthetic codon-optimized *Fncpf1*

#### *>scocpf1*, 3903 bp

acgacaacctgcagaaggacttcaagtccgccaaggacaccatcaagaagcagatctccgagtacatcaaggactccgagaagttcaagaacctgttcaaccagaacctgatcgacgccaagaagggccaggagtccgacctgatcctgtggctgaagcagtccaaggacaacggcat cgagctgttcaaggccaactccgacatcaccgacatcgacgaggccctggagatcatcaagtccttcaagggctggaccacctacttcaag ggettecacgagaaccgcaagaacgtetactectecaacgacatcccgacctcgatcatetaccggatcgtcgacgacaacctgcccaagttcctggagaacaaggccaagtacgagtccctgaaggacaaggccccggaggccatcaactacgagcagatcaagaaggacctggccgaggagetgacettegacategactacaagaceagegggtcaaceageggetetteteeetggaegaggtettegagategecaactteaacaactacctcaaccagtccggcatcaccaagttcaacaccatcatcggcggcaagttcgtcaacggcgagaacaccaagcggaagggcat caacgagta cat caacctg tact cccag cag at caacga caa ga ccctg a aga ag ta caag at g t ccg t cct g t t caa g ag at cct g t cc g t cct g t t caa g ag at cct g t cc g t cct g t t caa g ag at cct g t cc g t cct g t c a g ag at cct g t cc g t cct g t c a g ag at cct g t cc g t cct g t c a g ag at cct g t cc g a g at cct g t cc g at cct g t cc g a g at cct g t cc g at cct g t cc g a g at cct g t cc g at cct g t cct g t cc g at cct g t cctgacaccgagtccaagtccttcgtcatcgacaagetggaggacgactccgacgtcgtcaccaccatgcagtcettctacgagcagatcgccg caacttcgccgccatcccgatgatcttcgacgagatcgcccagaacaaggacaacctggcccagatctccatcaagtaccaggaccagggcaagaaggacctgctgcaggcctccgccgaggacgacgtcaaggccatcaaggacctgctggaccagaccaacaacctgctgcacaag ctga agatette cacatete ccagte cgagga caagge caacate ctgg a caagga cgag caettet acctgg tette cgagg ag tget actt the constraint of the concgagctggccaacatcgtcccgctgtacaacaagatccgcaactacatcacccagaagccctactccgacgagaagttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaacttcaagctgaagtcaagctgaacttcaagctgaagtcaagttcaagctgaacttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttcaagttgagaactccaccctggccaacggctgggacaagaacaaggagccggacaacaccgccatcctgttcatcaaggacgacaagtactacctgggcgtcatgaacaagaagaacaacaagatcttcgacgacaaggccatcaaggagaacaagggcgagggctacaagaagatcgtgtac aagetgetgeegggegeeaacaagatgetgeeeaaggtettetteteegeeaagteeateaagttetaeaaceegteegaggaeateetge gtt categact teta caag cag te cate te caag cag cag gag tg gaag gac tt cg gett ceg ett ceg cace cag cg gt a caacte caag cag te categac te cag cg gt a caacte caag cag te categac te cag cg gt a caacte caag cg gt a caacte caacte caag cg gt a caacte caa caacte caa caacte caag cg gt a caacte caacte caa caacte caa caacte caa caacte caactegaegagttetaecgegaggtegagaaccagggetaeaagetgaeettegagaacateteegagteetaeategaeteegteaaccagggetaeaacaagetgaeettegagaacateteegagteetaeategaeteegteaaccagggetaeaagetgagaacateteegagteetaeategaeteegagteetaeaagetgaeettegagaacateteegagteetaeategaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegaeteegae

20

ctgttcgacgagcggaacctgcaggacgtcgtctacaagctgaacggcgaggccgagctgttctaccgcaagcagtccatcccgaagaagateaceccaccccgccaaggaagccategccaacaagaacaaggacaacecgaagaaggagtccgtettcgagtacgacetgatcaag gacaagcggttcaccgaggacaagttcttcttccactgccccatcaccatcaacttcaagtcctccggcgccaacaagttcaacgacgagatacggcaagggcaacatcatcaagcaggacaccttcaacatcatcggcaacgaccgcatgaagaccaactaccacgacaagctggccgcgccggcttcacctcgaagatctgccccgtcaccggcttcgtcaaccagctgtaccccaagtacgagtccgtctccaagtaccaggagttcttggcaagtggaccatcgcctccttcggctcccgcctgatcaacttccggaactccgacaagaaccacaactgggacacccgcgaggtctacccgaccaaggagctggagaagctgctgaaggactactccatcgagtacggccacggcgagtgcatcaaggccgccatctgcggcgagtccgacaagaagttettegecaagetgaceteggteetgaacaceateetgeagatgegeaacteeaagaeeggeaeegggetggactaeegcctaccacatcggcctgaagggcctgatgctgctgggccgcatcaagaacaaccaggaaggcaagaagctcaacctggtcatcaagaacgaggagtacttcgagttcgtgcagaaccgcaacaactga

### References

- Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp. Gene 116:43-49.
- Bush MJ, Bibb MJ, Chandra G, Findlay K, Buttner MJ. 2013 Genes required for aerial growth, cell division and chromosome segregation are targets of WhiA before sporulation in *Streptomyces venezuelae*. mBio 4:e00684-13.
- Chater KF, Wilde LC. 1976 Restriction of a bacteriophage of *Streptomyces albus* G involving endonuclease *Sal* I. J Bacteriol 128:644-650.
- Huang H, Zheng GS, Jiang WH, Hu HF, Lu YH. 2015 One-step high-efficiency CRISPR/Cas9-mediated genome editing in *Streptomyces*. Acta Biochim Biophys Sin (Shanghai) 47:231-243.
- Kieser T, Bibb MJ, Butter MJ, Chater KF, Hopwood DA. 2000. The John Innes Foundation, Norwich, United Kingdom.
- Li L, Zhao YW, Ruan LJ, Yang S, Ge M, Jiang WH, Lu YH. 2015 A stepwise increase in pristinamycin II biosynthesis by *Streptomyces pristinaespiralis* through combinatorial metabolic engineering. Metab Eng 29:12-25.
- Li L, Zheng GS, Chen J, Ge M, Jiang WH, Lu YH. 2017 Multiplexed site-specific chromosomal engineering for overproducing bioactive secondary metabolites in actinomycetes. Metab Eng 40:80-92.
- Ōmura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi
   Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M.

2001 Genome sequence of an industrial microorganism *Streptomyces avermitilis*: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA 98: 12215–12220.

9. Zheng X, Li SY, Zhao GP, Wang J. 2017 An efficient system for deletion of large DNA fragments in *Escherichia coli* via introduction of both Cas9 and the non-homologous end joining system from *Mycobacterium smegmatis*. Biochem Biophys Res Commun 485:768-774.