Supporting Information

for

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

Muhammad Imran¹, Nunzio Motta¹, and Mahnaz Shafiei^{1,2,*}

Address: ¹Institute for Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia and ²Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia Email: Mahnaz Shafiei - mshafiei@swin.edu.au *Corresponding author

Summary of electrospun materials and their gas sensing performance

	Electrospinni	ng parameters										Sensing Per	rformance				
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
Conductom etric	PVP	DMF	In(NO ₃) ₃ ·xH ₂ O	21- gauge needle	0.05 ml/h	20	22	600 °C for 2 h	CuO- In ₂ O ₃ nanocom posite	NFs	40 nm	1.16×10 ⁵ / 5ppm	150 °C	5 ppm	- /140s	H ₂ S	[1]
Conductom etric	PVP	DMF:ethanol (1:1)	In(NO ₃) ₃ ·4.5H ₂ O	hypoder mic syringe	1.0 ml/h	20	25	600 °C for 1 h	In ₂ O ₃ - SnO ₂ composit e	NFs	40- 100 nm	8.1/1ppm	80 °C	1-8.1 ppm	1s/6s	Trimethyl amine	[2]
Conductom etric	PVP	Ethanol, DMF	WCl ₆	23SP	1 µl/mi n	14	10	300 - 500 °C for 1 h	WO ₃	NFs	20- 100 nm	12.4/400 ppb	75 °C	400 ppb	30s/3 2s	NO ₂	[3]
Conductom etric	Poly(styrene -co- acrylonitrile)	DMSO	zinc acetate	hypoder mic syringe ID = 0.5 mm	1.0 ml/h	20	17	At 500 °C , 700 °C and 900 °C for 2 h	ZnO	NFs	60 nm	6/40 ppm	160 °C and 200 °C	40 ppm		NH ₃	[4]
Conductom etric	PVP	DMF:ethanol (1:1)	P-type La _{0.7} Sr _{0.3} FeO ₃ NPs	hypoder mic syringe	1.0 ml/h	10	20	600 °C for 5 h in air	L_4SnO_2	NFs	20 nm	28/1 ppm	300 °C	1 ppm	9s/15 s	C ₂ H ₅ OH	[5]
Conductom etric	PVAc	DMF	Tin (IV) acetate	stainless steel needle 25 gauge	5 µl/mi n	16.5	15	500 °C for 2 h in air	SnO ₂	NFs	210± 35 n m	57/2.5 ppm 6.4/2.5 ppm	300 °C 150 °C	125 ppb- 2.5 ppm		NO ₂ H ₂	[6]
Conductom etric	PVP	Ethanol, DMF	Co(NO ₃) ₂ ·6H ₂ O and rGO	N7- gauge needle	0.2 ml/h	18.5	13.5	800 °C for 30 min	rGO- Co ₃ O ₄ composit e	NFs	200- 300 nm	53.6%/50 ppm	20 °C	5 -100 ppm	4s/5 min	NH ₃	[7]
Conductom	PVA	DI water	In(CH ₃ COO) ₃			20	15	400 °C	In_2O_3	NFs	150-	~540%/10	300 °C	100		CO	[8]

Table S1: Different types of electrospun material based gas sensors.

	Electrospinni	ing parameters										Sensing Per	rformance	9			
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
etric								, 500 °C or 600 °C in air for 3 h			200 nm	0 ppm		ppm			
Conductom etric	PVP	Ethanol:DMF (1:3)	Indium nitrate $(In(NO_3)_3 \cdot xH_2O),$	stainless steel needle 21 G	1.5 ml/h	15	15	600 °C for 3 h in air	In ₂ O ₃	NRbs	20- 300 nm	~68.5/12p pm	200 °C	1 - 17 ppm	43mi n/93 min	NO ₂	[9]
Conductom etric	PVAc	DMF	Titanium (IV) propoxide	steel orifice (inner diameter of 450 µm	1.5 ml/h	1.5	10	three step 280 °C , 350 °C , and 420 °C each step 1 h	TiO ₂	Porous nanostr uctured layer (nano- grains)	29- 42 nm	~2/2 ppm CO ~3.25/2 ppm NO ₂	450 °C	0.25 - 2 ppm	Sever al min	CO and NO ₂	[10]
Conductom etric	PVP	DMF:ethanol (1:1)	In(NO ₃) ₃ .4.5H ₂ O			20	25	600 °C for 4 h in air	In ₂ . _x Ni _x O ₃	NFs	62 nm	7.2/500 ppb 107.7/10 ppm	70 °C and 130 °C	0.5 - 20 ppm	580s/ 650s	NO ₂	[11]
Conductom etric	PVP	DMF:ethanol (1:1)	$In(NO_3)_3 and Mg(NO_3)_2 \cdot 6H_2O$	23 G		15	15	600°C for 2 h in air	Mg-In ₂ O ₃	NTs	80 nm	173.7/10 ppm	150 °C	0.5 - 10 ppm		H ₂ S	[12]
Conductom etric	PANI /PMMA	THF				7	6	-	PAN/PM MA Composit e	NFs	2.5- 3.5 μm	1.38/1 ppm	RT	1–30 ppm	10s/-	NH ₃	[13]
Conductom etric	PVP, PAN	DMF	SnCl ₂ ·2H ₂ O		0.4 ml/h	20	15	500 °C for 4 h in air	SnO ₂	NFs	80- 400 nm	2.4/1 ppm	150 °C	0.06%	21s/3 33s	H ₂	[14]
Conductom etric	PVA	DI water	SnCl ₄ ·5H ₂ O			10	10	300, 500	SnO ₂	NFs	100 nm	4.5/10 ppm	330 °C	10 ppm	13s/1 3.9s	ethanol	[15]

	Electrospinni	ing parameters										Sensing Per	rformance	•			
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
								and 700 °C for 4 h									
Conductom etric	PVP	DMF:ethanol (1:1)	$\begin{array}{cc} Zn(NO_3)_2 & .6H_2O\\ and \ SnCl_2 \ .2H_2O \end{array}$					600 °C for 5 h	ZnO – SnO ₂ –	HFs	150 nm	83/20 ppm	260 °C	200 ppm	4- 7s/4- 5s	ethanol	[16]
Conductom etric	PVP	DMF	In(NO) ₃ .4 ¹ / ₂ H ₂ O and Ce(NO) ₃ .6H ₂ O			16		600 °C for 3 h	$\begin{array}{rr} In_2O_3 & - \\ CeO_2 \end{array}$	NTs	OD 90- 180 nm	498/20 ppm	80 °C	20 ppm	64s/2 04s	H_2S	[17]
Conductom etric	PVP	DMF	In(NO) ₃ .4 ¹ / ₂ H ₂ O and Al ₂ (NO) ₃	ID = 0.8 mm	0.25 ml/h	15		550 °C for 4 h in air	$\begin{array}{ll} Al_2O_3 & - \\ In_2O_3 \end{array}$	NTs	200 nm	0.47/291 ppb	RT	291 ppb- 97 ppm	24s/	NO _x	[18]
Conductom etric	PVP	DMF:ethanol (1:1)	In(NO ₃) ₃ and SnCl ₂	ID = 0.8 mm	0.004 ml/m in	15		550 °C for 4 h in air	$\begin{array}{rrr}In_2O_3&-\\SnO_2\end{array}$	NRs	230 nm	8.98/100 ppm	RT	0.1- 100 ppm	4.67s /	NO _x	[19]
Conductom etric	PVP	acetic acid and ethanol	$C_{16}H_{36}O_4Ti$ and $In(NO_3)_3.4.5H_2O$	0.8 mm		14		600 °C for 4 h in air	In ₂ O ₃ /Ti O ₂	NFs	200 nm	41.1%/97 ppm	RT	97 ppb – 97 ppm	3s/	NO _x	[20]
										NTs		23.46/100 ppm			1s/57 s		
Conductom etric	PVP	DMF:ethanol (1:1)	In(NO ₃) ₃			15		500 °C for 2 h	In ₂ O ₃	NWs	-	14.22/100	280 °C	100 ppm	1s/34 s	acetone	[21]
Conductom etric	PVP	DMF and ethanol	Fe(NO ₃) ₃ . 9H ₂ O and Al(NO ₃) ₃ . 9H ₂ O			13		550 °C for 4 h	Al-doped α -Fe ₂ O ₃	NTs	OD 90	41.8/50 ppm	240 °C	300 ppb – 500 ppm	20s/6 0s	ethanol	[22]
Conductom etric	PVP	DMF:ethanol (1:1)	$SnCl_2 \cdot 2H_2O$ and $AlCl_3 \cdot 6H_2O$			10	15	600 °C for 2 h	Al-doped SnO ₂	NTs	OD 200	7.82/1000 ppb	240 °C	1000 ppb – 100 ppb		formaldeh yde	[23]

	Electrospinni	ng parameters										Sensing Pe	rformance	9			
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
Conductom etric	PVP	DMF:ethanol (1:1)	In(NO ₃) ₃ .4.5H ₂ O and H ₂ PtCl ₆	ID = 0.8 mm		15	20	700 °C for 4 h	Pt doped In ₂ O ₃	NFs	160– 200 nm	1490/600 ppm	200 °C	50 ppm – 600 ppm	60s / 120s	H ₂ S	[24]
Conductom etric	PVP	DMF	In(NO ₃) ₃ .4.5H ₂ O and HAuCl ₄			22	20	550 °C	Au doped In ₂ O ₃	NFs	80 – 100 nm	13.8/500 ppm	140 °C	10 ppm – 4000 ppm	12s/2 4s	ethanol	[25]
Conductom etric	PVA	DI water	zinc acetate and Ni(NO ₃) ₂			8	20	650 °C for 3 h in air	Ni doped ZnO	NFs	100 nm	16.9/2000 ppm	250 °C	2000 ppm	5s/10 s	C ₂ H ₂	[26]
Conductom etric	РММА	DMF, DI water, PDADMAC	$(NH_4)_6H_2W_{12}O_{40}$. xH ₂ O K ₂ PtCl ₄ K ₂ PdCl ₄	25G	0.2 ml/m in	15	15	500 °C for 1 h in air	WO3 Pt – WO3,	NTs	1.57 μm – 3.37 μ	63.59/ 5 ppm toward NO 1.05/ 5 ppm toward toluene 4.22/ 5 ppm toward NO 2.74/5 ppm toward toluene	350 °C	50 ppb - 5ppm		NO, Toluene	[27]

	Electrospinni	ing parameters			_							Sensing Per	rformance				
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
									Pd – WO ₃			3.89/5 ppm toward NO 2.60/5 ppm toward toluene					
Conductom etric	PVP	DMF and ethanol	C ₁₆ H ₃₆ O ₄ Ti			16		650 °C for 4 h in air	TiO ₂	NRs	500 nm	20/1000 ppm	500 °C	50 - 500 ppm	11- 14s/ 4-8s	acetone	[28]
Conductom etric	PVP	DMF, Ethanol	$Zn(AC)_2 \cdot 2H_2O)$ And $Pr(NO_3)_3 \cdot 6H_2O$			17	20	600 °C for 3 h in air	Pr-doped ZnO	NFs	180 – 270 nm	3.71/100 ppm	380 °C	20 ppm – 800 ppm	51s/4 Os	acetic acid	[29]
Conductom etric	PVP	DMF:ethanol (1:1)	$SnCl_2 \cdot 2H_2O$ and $ZnCl_2$	ID = 0.8 mm	20 µl/mi n	10	20	600 °C for 5 h in air	ZnO– SnO ₂	NFs	100 – 200 nm	18 / 100 ppm	300 °C	1 - 10000	5s/6s	ethanol	[30]
Conductom etric	PMMA	DMF	SWCNTs		0.1 – 1.5 ml/h	10 - 30			PMMA/C NTs	NFs	200– 500 nm	1.3/2083 ppm	RT	1 – 3471 ppm		methanol	[31]
Conductom etric	PVP	glacial acetic , ethanol, and water	Zn(AC) ₂ .2H ₂ O, hexamethylenetet ramine and Tetrabutyl titanate			20		500 °C for 2 h in air	TiO ₂ /ZnO	(NSs on NFs) heterost ructures	70 – 100 nm	15.7/100 ppm	280 °C	10 – 200 ppm	5s/3s	ethanol	[32]
Conductom etric	PVP	DMF:ethanol (1:1)	Zn(AC) ₂ .2H ₂ O and PdCl ₂	0.25 mm	0.05 ml/h	18	20	600 °C for 3 h in air	Pd-doped ZnO	NFs	70 – 160 nm	5.5/20 ppm	220 °C	1 – 20 ppm	25- 29s /12- 17s	СО	[33]
Conductom etric	PVP	DI Water	$\begin{array}{c} (NH_4)_6H_2W_{12}O_{40}\cdot\\ xH_2O \qquad and\\ K_2PdCl_4 \end{array}$	ID = 0.8 mm OD = 1.6	0.01 ml/ for core	30	15	600 °C for 1 h in air	Pd functiona lized WO ₃ NTs	NTs		17.6/500 ppm	450 °C	10 – 500 ppm	25s/ - -	H ₂	

	Electrospinn	ing parameters										Sensing Pe	rformance	9			
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
				mm+	and 0.03 - 0.1 ml/h for core												
Conductom etric	PVP	DMF:ethanol (1:1)	In(NO ₃) ₃ and Co(NO ₃) ₂ .6H ₂ O			15	20	500 °C for 2 h in air	Co–In oxide	NFs NTs	50 - 90 nm 150 - 200 nm	41.5/100 ppm 93.1/100 ppm	- 260 °C	1 – 100 ppm	3s/25 s 3s/72 s	ethanol	[35]
Conductom etric	PVA	DI water	Zn(AC) ₂	0.51 mm	0.5 ml/h	10	20	700 °C for 2 h in air	ZnO	NFs	150 – 200 nm	15/5 ppm	300 °C	1 ppm - 5 ppm		СО	[36]
Conductom etric	PMMA, PS, PPv	DMF	ВРО		6 ml/h	8-9	10		PPy/PM MA	NFs	450 nm	14%/150 ppm		150 ppm	300s/ -	NH ₃	[37]
Conductom etric	PCL	HCSA, HFIP	PANI		0.3 ml/h	5.8	55		PANI- PCL	NFs	150 nm	2.88%/pp m 40.0%/pp m		1 – 75% saturat ion 0.5 ppm – 100 ppm		H ₂ O vapours NH ₃	[38]
												251%/pp m		0.1 ppm – 10 ppm		NO ₂	
Conductom etric	PVP	Water, ethanol	In(NO ₃) ₃ .4.5H ₂ O	ID = 0.45mm, OD = 0.5 mm		20	20	500 °C for 1 h and then 700 °C for 2 h	In ₂ O ₃	NFs	50 – 150 nm	~3.7/30 ppm (V/v)	220 °C	1 ppm - 30 ppm	6s/10 s	ethanol	[39]
Conductom	PVP	DMF:C ₂ H ₅ OH:CH ₃	In(NO ₃) ₃ ·4.5H ₂ O		0.4	15	15	600 °C	In ₂ O ₃	NTs	100	11.9/50	240 °C	1 ppm	10s/1	HCHO	[40]

	Electrospinni	ng parameters	-									Sensing Per	rformance				
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
etric		СООН			ml/h for inner core - 0.6 ml/h for outer core			for 3 h in air			nm – 1100 nm	ppm		– 800 ppm	5s		
Conductom etric	PVP	DMF, ethanol	ZnNO ₃ and chromium nitrate			12	15	600 °C for 5 h in air	Cr ₂ O ₃ - sensitized ZnO	NFs	80 nm – 130 nm	24/100 ppm	300 °C	1 ppm - 200 ppm	1s/5s	ethanol	[41]
Conductom etric	PVAc	DMF, ethanol	$\begin{array}{l} CuCl_2 \cdot 2H_2O \text{ and} \\ SnCl_2 \cdot 2H_2O \end{array}$	21G	0.03 ml/h	15	20	700 °C for 1h in air	CuO/SnO 2	Mixed NFs	110 nm	522/10 ppm	300 °C	10 ppm – 100 ppm	1s/30 5s	H_2S	[42]
Conductom etric	PVP	DMF:ethanol (1:1)	Co(NO ₃) ₂ .6H ₂ O	21G	0.5 ml/h	20	15	500, 600, and 700 °C for 2 h in an air	Co ₃ O ₄	NFs	100 nm – 200 nm	51.2/100 ppm	301 °C	5 ppm – 100 ppm	22.7s /2.4s	ethanol	[43]
Conductom etric	PVP	DMF:ethanol (1:1)	SnCl ₂ ·2H ₂ O and PdCl ₂			20	10	600 °C for 2 h air	Pd-doped SnO ₂	HNFs	200 nm - 300 nm	24.6/100 ppm 11.3/100 ppm 8.5/500 ppm 1020.6/10 0 ppm	385 °C and 440 °C	1 – 500 ppm	0.4s/ 11.4s 15.1s /4.7s 0.8s/ 12.3s 1.0s/ 9.6s	H ₂ CO CH ₄ C ₂ H ₅ OH	- [44]
Conductom etric	PVP	DMF and ethanol	In(NO ₃) ₃ ·4.5H ₂ O and tetra-butyl titanate		0.25 ml/h	16		550 °C for 4 h in air	TiO ₂ –In ₂ O ₃	Hemi- micelle d NFs	150 nm – 250 nm	95/97 ppm	RT	0.3 ppm – 97 ppm	4.3s/-	NO ₂	[45]

	Electrospinni	ing parameters										Sensing Pe	rformance	9			
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
Conductom etric	PEO	DI water, CSA and methanol	PANI and Zn(CH ₃ COO) ₂		0.4 ml/h	18	18		PANI/Zn O	NFs	200 nm - 300 nm	133.6/100 0 ppm	36 °C	1000 ppm	150s/ 185s	LPG	[46]
Conductom etric	PVP	DMF	Zn(AC) ₂ ·H ₂ O			20	20	600 °C for 3 h in air	ZnO	NFs	150 – 200 nm	51/100 ppm	270 °C	10 – 2000 ppm	7– 9s/9 – 11s	ethanol	[47]
Conductom etric	PVP	DMF:ethanol (1:1)	$\begin{array}{ccc} Zn(NO_3)_2. & 6H_2O\\ and & In(NO_3)_3 & .\\ 4.5H_2O \end{array}$		0.4 ml/h	15	15	500 °C for 2 h in air	IZO	NTs	60 – 80 nm	81.8/100 ppm	275 °C	5 – 5000 ppm	2 – 6s/56 – 63s	ethanol	[48]
Conductom etric	PVP	DMF:ethanol (1:1), ammonium persulfate (APS), and HCl	In(NO ₃) ₃ ·4.5H ₂ O and polyaniline	0.5 mm	0.5 ml/h	16	16	800 °C for 3 h in air	In ₂ O ₃ /PA NI	NFs HNFs	850 nm	11.4/1000 ppm 52.4/1000 ppm	RT	100 ppm – 1000 ppm		NH ₃	[49]
Conductom etric	PVP	DMF and ethanol	Zn(CH ₃ COO) ₂ ·H ₂ O and Mn(CH ₃ COO) ₂			15	25	580 °C for 150 min in air	Mn- doped ZnO	NFs	60 nm – 90 nm	203.9/450 ppm	340 °C	50 ppm – 1000 ppm	6s/4s	acetone	[50]
Conductom etric	PVP	DMF:ethanol (1:1)	SnCl ₂ ·2H ₂ O, LaCl ₃		1 ml/h	20		600 °C for 2 h in air	LaOC1- doped SnO ₂	NFs	180 nm	3.7/1000 ppm	300 °C	100 ppm – 20000 ppm	24s/9 2s	CO ₂	[51]
Conductom etric	PVP	DMF and ethanol	Zn(NO ₃) ₂	0.7 mm		22		500 °C for 3 h in air	ZnO	HNFs	60 nm	4.7/100 ppb 3.0/120 ppb	170 °C	10 ppb – 30 ppm	10s/ 100s/ 	Nitrotolue ne Di- Nitrotolue ne	[52]

	Electrospinni	ing parameters										Sensing Pe	rformance	e			
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
															1s/	Nitrometh ane	
												29/30 ppm			1s/	Nitroetha ne	
												83/30 ppm					
Conductom etric	PVP	DMF:ethanol (1:1)	$\begin{array}{c} SnCl_{2} \cdot 2H_{2}O and \\ Al(NO_{3})_{3} \cdot 9H_{2}O \end{array}$	1 mm		15	20	600 °C for 5h in air	Al-doped SnO ₂	NFs	80 nm – 120 nm	7.7/100 ppm	340 °C	10 ppm – 30,00 0 ppm	3s/2s	H ₂	[53]
Conductom etric	PVP	DMF:ethanol (1:1)	$SnCl_2 \cdot 2H_2O$ and $Fe(NO_3)_3 \cdot 9H_2O$		0.4 ml/h	15	15	500 °C for 2 h in air	SnO ₂ - doped α- Fe ₂ O ₃	NTs	65 nm	27.45/100 ppm 10.07/100 ppm	200 °C	5 ppm - 10,00 0 ppm	3s/14 s 4s/12	ethanol acetone	[54]
Con									HCSA-	NFs	20– 150 nm	94/ 94/	-	° PPm	32s/2 0s	methanol	
ductometri c	PEO	HCSA and CHCl ₃	PANI			8			doped PANI			97/	RT		20s/2 0s 110s/ 50s	ethanol 2- propanol	[55]
										NFs	5 nm - 50 nm	40%/1280 00 ppm 40%/6000 0 ppm			8s/	methanol	
Conductom etric	PEO		PEDOT:PSSA			10	20		PEDOT- PSSA			30%/1300 0 ppm	RT		10s/	ethanol	[56]
												20%/2300 0 ppm	-		20s/	2- propanol	
												30%/1500 00 ppm			240s/ 	H ₂ O	

	Electrospinni	ng parameters										Sensing Per	rformance	9			
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
												20%/2470 00 ppm 30%/1000 ppm			13s/ 95s/ 120s/ 	NH ₃ HCl NO ₂	
Conductom etric	PVP	DMF	In(NO ₃) ₃ ·4.5H ₂ O			16	15	600 °C for 2 h in air	In ₂ O ₃	NTs NWs	80 nm 120 nm	166.6/20 ppm 141/20 ppm	RT	1-100 ppm	287s/ 636s 199s/ 317s	H_2S	[57]
Conductom etric	PVP	DMF and ethanol	$\begin{array}{l} In(NO_3)_3 & and \\ Fe(NO_3)_3 \end{array}$			15	20	550 °C fir 2 h	$\begin{array}{c} Fe_2O_3-\\ In_2O_3\\ composit\\ e \end{array}$	NTs	200 nm	33/100 ppm	240 °C	1-100 ppm	5s /25s	formaldeh yde	[58]
Conductom etric	PVP	DMF	$\begin{array}{c} Zn(CH_3COO)_2 \cdot 2 \\ H_2O \\ and \\ In(NO_3)_3 \cdot xH_2O \end{array}$	25 G	0.01 ml/h	17	15	600 °C for 2 h in air	ZnO- In ₂ O ₃ composit e	NFs		119.4/5 ppm	375 °C	0.05 - 5 ppm	1- 2s/16 03s	trimethyla mine	[59]
Conductom etric	PVP	DMF	SnCl ₂ .2H ₂ O and In(NO ₃) ₃ .4.5H ₂ O		0.1 ml/h	15	15	350 °C for 1h - 600 °C for 3 h in air	SnO ₂ /In ₂ O ₃	NTs	80 – 120 nm	400/500 ppm	300 °C	250 ppb- 500 ppm	60s/9 7s	formaldeh yde	[60]
Conductom etric	PVP	DMF and ethanol	$\begin{array}{c} SnCl_2 \cdot 2H_2O\\ and\\ In(NO_3)_3 \cdot 41/2H_2\\ O\end{array}$				5	600 °C for 2 h in air	SnO ₂ /In ₂ O ₃ composit e	NFs	200 – 250 n m	35.69/50 ppm	290 °C	0.5 ppm – 50 ppm	20s/4 0s	formaldeh yde	[61]
Conductom etric	PVP	ethanol and glacial acetic	tetrabutyl titanate and Zn(Ac) ₂ ·2H ₂ O			20		500 °C for 2 h in air	ZnO- TiO ₂	NFs	100 - 300 nm	50.6 /500 ppm	320 °C	20- 500 ppm	50.6s /5 - 10s	ethanol	[62]
Conductom etric	PVP	DMF, ethanol and Acetic Acid	tungsten chloride and	ID = 1.01 mm	0.5 ml/h	20	15	500 °C for 2 h	In_2O_3 . WO ₃	NFs	170 nm	12.9/50 ppm	275 °C	0.4 ppm –	6s/64 s	acetone	[63]

	Electrospinni	ing parameters										Sensing Per	rformance	•			
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
			In(NO ₃) ₃ ·4.5H ₂ O					in air						50 ppm			
Conductom etric	PVP	DMF:ethanol (1:1)	In(NO ₃) ₃ ·4.5H ₂ O and Sn(OH) ₄		1.0 ml/h	20	25	500 °C for 2 h in air	SnO ₂ /In ₂ O ₃	NFs	30 – 80 nm	21/1 ppm	RT	0.1 ppm- 1 ppm	7s/10 s	NH ₃	[64]
Conductom etric		DMF	PMMA and PANI	hyperder mic needle	0.2 ml/h	20	15		PANI/P MMA composit e	NFs	400 - 600 nm	77/500 ppm	RT	20- 500 ppm	131s/ 600s	Triethylea mine	[65]
Conductom etric	PANI/PA6	Formic acid	TiO ₂ (sputtered)						TiO ₂ - PANI/PA 6	NFs		18.3/250 ppm	RT	50 ppm – 250 ppm		NH ₃	[66]
Conductom etric	PVP	Acetylacetone, DI water and ethanol	titanium(IV) butoxide			20	15	600 °C for 3 h	PANI/Ti O ₂ composit e	NFs	72- 90 nm		RT	25 - 200 ppb		NH ₃	[67]
Conductom		acetic acid and	FDOT		0.3			500 °C	TiO ₂ -	Core- sheath nanoca	Core = ~78	0.86%/30 0 ppb		7-300 ppb		NO ₂	
etric	PVP	ethanol	Ti(OiPr) ₄	23 G	ml/h	7	5	for 3 h	PEDOT	ble	nm	0.222%/1 o ppm	RT	675 ppb- 10 ppm		NH ₃	[68]
Conductom etric	PVB	DMF and ethanol	SnCl ₂ ·2H ₂ O	ID = 0.7 mm	0.2 ml/h	8	15		SnO ₂ /PPy	NFs	100- 200 nm	~6.2%/pp m In range of 1-10.7 ppm	RT	~257 ppb- 10.7 ppm	259s/ 468 s	NH ₃	[69]
Conductom etric	PAN	DMF	SnCl ₂ .2H ₂ O			15	20	800 °C	SnO ₂ - carbon	NFs	150 - 500 nm	~16.3/100 ppm	200 °C	100- 35,00 0 ppm	4s/ 16s	H ₂	[70]
Conductom etric	PAN	DMF	SnCl ₄ .5H ₂ O	ID = 0.5 mm	0.4 ml/h	10	20	270 °C for 2 h	Sn- SnO ₂ /car	NFs	350- 400	46.15/100 0 ppm	240 °C	10- 2000		ethanol	[71]

	Electrospinni	ing parameters		-	-			-				Sensing Per	rformance		-	-	
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
								in air, and 800 °C for 30 min in Ar	bon		nm			ppm			
Conductom etric	PVA	DI Water	(CH ₃ CO ₂) ₂ Zn and rGO	21 G	0.03 ml/h	15	20	500 °C for 5 h in air	rGO-ZnO	NFs	150 nm	119/5 ppm	400 °C	1 ppm	143s/ 259s	NO ₂	[72]
Conductom etric	PVAc	DMF and ethanol	SnCl ₂ .2H ₂ O graphene					600 °C for 30 min in air	rGO- SnO ₂	NFs	200 - 300 nm	3.13/1pp m	300 °C	1 ppm	51.2 s/330 s	C ₇ H ₈	[73]
Conductom etric	PVAc	DMF and ethanol	SnCl ₂ .2H ₂ O GO PdCl ₂ H2PtCl6. <i>n</i> H ₂ O	ID = 0.51 mm	0.03 ml/h	15	20	600 °C for 30 min in air	SnO ₂ rGO- SnO ₂ rGO-Pd- SnO ₂ rGO-Pt- SnO ₂	NFs		1.6/1 ppm 3.3/1 ppm 8.3/1 ppm 255.5%/1 ppm	200 °C	1 ppm- 5 ppm		C ₆ H ₆ C ₆ H ₆ C ₆ H ₆ C ₇ H ₈	. [74]
Conductom etric	PVP	DMF and ethanol (2:1)	SnCl ₂ .2H ₂ O rGO					450 °C for 2 h in air	rGO/SnO 2	NFs		32.2/10 ppm	150 °C		6 min/3 0 min	NO ₂	[75]
SAW	PEO	DI Water and ethanol	polyethylene glycol (PEG)			27	25		PEO	NFs	100 – 300 nm	-4 Hz/MHz /30% -20 Hz/MHz /30% -32 Hz/MHz /30% -30 Hz/MHz /30%	RT	10% - 90% saturat ed vapou rs	60 – 120 s/60 s	Isopropan ol nitrobenz ene toluene hydrogen peroxide	[76]

	Electrospinni	ng parameters						Sensing Pe	rformance	e							
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
		DMF	PVB		0.5 ml/h	6	15		PVB	NFs		0.425 MHz/90% RH					
		Chloroform	PEO		0.5 ml/h	4	15		PEO			3.428 MHz/90% RH					
SAW		Ethanol	PVP		0.5 ml/h	6	15		PVP			8.134 MHz/90% RH	RT	10 %- 90% RH		Humidity	[77]
		DMF	РММА		1 ml/h	6	12	_	РММА	_		0.312 MHz/90% RH					
		DMF	PVDF		1 ml/h	6	12		PVDF			0.334 MHz/90% RH					
SAW	PANI	DMF	PVB		0.5 ml/h	10	12	100 °C for 2 h	PANI/PV B	NFs	100- 200 nm	~75 kHz/ %RH from 20 to 90%RH	RT	0.5%- 90% RH	1s/2s	Humidity	[77]
SAW	PVP	ethanol	CeO ₂			12	12	65 °C for 12 h	CeO ₂ - PVP	NFs	450 nm	-2.5 MHz/fro m 11% to 95% RH	RT	11%- 95% RH	~16s/ 16s	Humidity	[78]
SAW	PVP	DI water	PVP			12	8.5		PVP	NFs	340 nm	5.6kHZ/1 %	RT	0.125- 1%	10s/2 00s	Hydrogen	[79]
SAW	PVP	alcohol	MWCNTs, Nafion		0.2 ml /h	15	10		MWCNT s/Nafion	NFs		400 kHz/%RH in the range of 10%-80% RH	RT	1%- 80%R H	3s/	humidity	[80]
QCM	PVP	ethanol	PVP		100 μl/h	19	10		PVP	Fs	7-12 μm	~220 Hz/5 mg/l	RT	5-30 mg/l	500s/ 2700 s	ethanol	[81]
QCM	PEI, PS	Water, ethanol,	PS, PEI		4	20	15	dried	PEI-PS	NFs	110 -	19	RT	3-140		formaldeh	[82]

	Electrospinni					Sensing Pe	rformance	e									
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
		THF, DMF			ml/h			at 25 °C in vacuu m for 2 h			870 nm	Hz/140 ppm		ppm		yde	
QCM	PS	Water, ethanol, THF, DMF	PEI, PA 6		1 ml/h	20	15	dried at 25 °C in vacuu m for 12 h	PEI-PA 6	NFN	26 nm	52.8 Hz/100 ppm	RT	50 ppb- 100 ppm	100s/ 	formaldeh yde	[83]
QCM	PVA	H ₂ O and ethanol	РАА			20	5		PAA/PV A	NFs	350 nm	60 Hz /1 ppm	RT	130 ppb- 200 ppm	10mi n/ 60mi n	NH ₃	[84]
QCM	PS-b-PMA	Acetone and DMF	PS- <i>b</i> -PMA		0.8 ml/h	25	19	dried i n vacuu m at RT for 1 h	PS- <i>b</i> - PMA	NFs	261- 744 nm	28.2 Hz/50 ppm	RT	1.5-50 ppm		NH3	[85]
QCM	PA and PS	DMF and ethanol			1 ml⁄ h	25	19	dried for 1 h at 70 °C in vacuu m	PA/PS	NFs	488 nm	2.1 Hz/25 ppm	RT	1.5-50 ppm		NH ₃	[86]
QCM	PVA and PAA	DI water				15	10	dried at 80 °C in vacuu m for 2 h	PVA- PAA	NFs	200- 330 nm	40 Hz/50 ppm at 0%RH 330 Hz/50 ppm at 60%RH	RT	50- 200 ppm		NH ₃	[87]

	Electrospinni	ing parameters						Sensing Per	rformance	•							
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
QCM	PS	THF, DMF, acetic acid and ethanol	titanium tetraisopropoxide, PEI		4 ml/ h	20	20	at 450 °C for 5 h in air	PEI-TiO ₂	NFs	625 nm	13.7/100 ppm	RT	1-100 ppm	120s/ 	formaldeh yde	[88]
QCM	PS	THF, DMF and DI water	carboxyl graphene (G- COOH), PS		1 ml /h	25	19	dried at 80 °C in vacuu m for 1 h	G- COOH/P S	NFs	569 nm	3.5 Hz/40 ppm	RT	1-40 ppm		NH ₃	[89]
Optical (photolumi nescence spectroscop y)	PAN	DMF		0.7 mm	3 ml/h	25	25		PAN/Zn O	NFs	250- 350 nm	$\begin{array}{ccc} \text{NBE=} \\ 0.83 & \pm \\ 0.04 \\ \text{DLE=} \\ 1.31 & \pm \\ 0.03 \end{array}$	RT	150 ppm		ethanol	[90]
Optical (FTIR spectroscop y)	PAN		Fe ₂ O ₃ , ZnO, Sb- SnO ₂ NPs						PAN- MOx	NFs	50 - 150 n m	Highest response for PAN- Fe ₂ O ₃	RT	2000 ppm		CO ₂	[91]
Optical (fluorescen ce quenching)	PS	DMF	Р		0.6 ml/h	25	25	40 °C for 12 h	Р	NFs	800 - 1000 nm	fluorescen ce quenching efficiency is PA>TNT >DNT>N B with values of 85%, 65%, 25% and 12%	RT	0.5-3 mM		PA, TNT, DNT, NB	[92- 93]
Optical (absorbanc e)	PAA	water			1 ml/ h	18.5	22		РАА	NFs	0.59± 0.15 μm	2 dB/95% RH	RT	30%- 95%	340m s/210 ms	Humidity	[94]

	Electrospinning parameters											Sensing Pe	rformance	•			
Sensing Platform	Polymer	Solvent	Precursor	Needle Type	Flow Rate	Applied Voltage (KV)	Working Distance (cm)	Post-treatment	Material	Morphology	Diameter	Response	Optimum Operating Temperature	Detection Range	Response/Recovery Time	Analyte Gas	Ref.
Optical (fluorescen ce intensity)		HFP, DCM, Toluene	PCL, PDMS		1 ml/ h	25	20		PDMS - PCL	Core- shell NFs	570± 192 nm	24/100%	RT	20- 100%	0.49 ± 0.13s /0.70 ± 0.15s	oxygen	[95]
Optical (luminesce nce)	PS	2-butanone, cationic surfactant hexadecyl- trimethyl ammoniumbromide	PtTFPP	a hypoder mic needle with ID = 0.2 mm	0.5 ml/m in	10	10	80 ℃ at 1 mbar for 1 h	PtTFPP	Band like	Widt h:620 nm thick ness: 100 nm		RT	100%	2.2s/- -	oxygen	[96- 97]
Optical (fluorescen ce intensity)	PPI	DMAc			1 ml/h	16	12	60 °C	PPI	NFs	350 ± 54nm	~0.95 a.u./50 ppm	RT	1.25 ppm – 100 ppm	10s/	HCl	[98]

PVA (polyvinyl alcohol); PEI (Polyethyleneimine); PANI (polyaniline); PMMA (Polymethyl methacrylate); PS (polystyrene); PVP (Polyvinylpyrrolidone); PAA (polyacrylic acid); PAN (Polyacrylonitrile); DMF (Dimethyl Formamide); DMSO (Dimethyl Sulfoxide); THF (Tetra Hydro Furan); PA polymer (Phenyl acetic acid); PPy (polypyrrole); PPI (porphyrinated polyimide); PCL (polycaprolactone); BPO (benzoyl peroxide); HCSA (Camphorsulfonic acid); PEO (polyethylene); CSA ((±)-10-camphorsulfonic acid); LPG (liquefied petroleum gas); HCl (hydrochloric acid); RT (room temperature); DI (distilled water); OD (outer diameter); ID (inner diameter); NFs (nanofibers); NTs (nanotubes); NWs (nanowires); HNFs (hollow nanofibers); NSs (nanosheets); NRs (nanorods); NRbs (nanoribbons); HFs (hollow fibers); rGO (reduced graphene oxide); RH (relative humidity); MWCNTs (multi carbon nanotubes); CNTs (carbon nanotubes); NFN (nanofiber net); NBE (near band emission); DLE (deep level emission); PA (picric acid), TNT (trinitrotoluene), DNT (2,4-dinitrotoluene), NB (nitrobenzene); **P** (benzothiophene based conjugated polymer with sulfur-containing fused rings as the backbone); HFIP (1,1,1,3,3,3-hexafluoro-2-propanol); DCM (Dichloromethane);

PtTFPP (platinum-tetra(pentafluorophenyl) porphyrine); PEDOT (polyethylenedioxythiophene); PSSA (poly(styrene sulfonic acid)); PVB (poly(vinyl butyral)); PVDF (poly(vinylidene fluoride)); DMAc (*N*,*N*'-Dimethyl acetamide)

Material	Morphology	Diameter (nm)	Operating Temperature (°C)	Response	Analyte gas	Response /Recovery time	Reference
TiO2	NFs	400 - 500	200	4.4/25 ppm	CO	32–86 s/ 84–109 s	[99]
TiO ₂	NFs	350 - 500	180	3.4/25 ppm	СО	32–86 s/ 84–109 s	[100]
TiO ₂	HNFs	200	RT	Rg 70K/0.1 ppm	СО	-	[101]
SnO ₂	NFs	200 - 400	300	3.8/500 ppm	СО	260 s/15 min	[102]
ZnO	NFs	35 - 150	200	1.51/2 ppm	СО	168–237 s/270–350 s	[103]
In ₂ O ₃	NFs	100	300	~540%/100 ppm	СО	-	[8]
TiO ₂	NRs	500	500	9.0/10 ppm	Acetone	11–14 s/4–8 s	[28]
WO ₃	NFs	275	270	55.6/50 ppm	Acetone	6-13 s/4-9 s	[104]
WO ₃	NTs	200	250	19.7/40 ppm	Acetone	5 s/22 s	[105]
SnO ₂	NBs	140	260	6.7/5 ppm	Acetone	38 s / 9 s	[106]
ZnO	HNFs	145	220	7.1/1 ppm	Acetone	12–17 s/11–23 s	[107]
ZnO	NTs	95	500	12.3/2000 ppm	Acetone	5 s/10 s	[108]
In ₂ O ₃	HNFs	250 - 310	300	151/5 ppm	Acetone	5 s/2 s	[109]
TiO2	NFs	120 - 200	450	30/50 ppm	NO_2	2-4 min/20 s	[110]
WO ₃	NFs	100	75	12.4/400 ppb	NO_2	33 min/38 min	[3, 110-111]
SnO ₂	NFs	200 - 400	185	368/50 ppm	NO_2	400 s/200 s	[102, 105]
SnO ₂	HNFs	300–500	300	81.4/2 ppm	NO_2	55 s/5 min	[3, 111-112]
In ₂ O ₃	NRs	20 - 300	200	~68.5/12 ppm	NO_2	43 min/93 min	[9, 104]
α -Fe ₂ O ₃	NFs	150 - 280	300	2.3/100 ppm	Ethanol	3 s/5 s	[105, 113]
SnO ₂	NTs	200	300	76/500 ppm	Ethanol	12 s/8 s	[113-114]
SnO ₂	NFs	100	330	4.5/10 ppm	Ethanol	13 s/13.9 s	[14-15]

Table S2: Sensing performance of electrospun pure MOx nanofibers categorized based on the analyte gas.

Material	Morphology	Diameter (nm)	Operating Temperature (°C)	Response	Analyte gas	Response /Recovery time	Reference
In ₂ O ₃	NFs	160 - 200	300	379/15000 ppm	Ethanol	1 s/5 s	[114-115]
In ₂ O ₃	NFs	30 - 100	220	~3.75/30 ppm	Ethanol	6 s/10 s	[39, 106]
Co ₃ O ₄	NFs	100 - 200	301	51.2/100 ppm	Ethanol	7.9s-22.7 s/58.7s-2.4 s	[43]
SnO ₂	NTs	80-400	150	2.4/1.0 ppm	H_2	21 s/333 s	[14-15]
ZnO	NTs	200	200	3.6/100 ppm	H_2	20 min/10 min	[102, 116]
ZnO	NFs	250	350	109.1/10 ppm	H_2	-	[102, 117]
ZnO	NFs	500 - 600	RT	12.61/100 ppm	Formaldehyde	32 s/17 s	[107, 118]
In ₂ O ₃	NFs	150 - 200	340	3.11/100 ppm	Formaldehyde	18 s/17 s	[118-119]
In ₂ O ₃	NWs	120	RT	141.1/20 ppm	H_2S	199 s/317 s	[57]
In ₂ O ₃	NTs	80	RT	166.6/20 ppm	H_2S	287 s/636 s	[57]
In ₂ O ₃	NTs	370	340	5.88/40 ppm	Toluene	3 s/17 s	[39, 120]
WO ₃	NFs	200	200	5.5/100 ppm	NH ₃	1 s/5 s	[105]

NBs (nanobelts)

Material	Structure (NTs/NFs/HNF s/NRs/NWs)	Dopant	Temperature (°C)	Response	Detection Limit	Response/recovery time	Analyte gas	Reference
SnO ₂	HNFs	Y	300	174/500 ppm	50 ppm	9-30s/6-9s	Acetone	[22, 121]
SnO_2	HNFs	Ni	340	64.9/100 ppm	2 ppm	7s/30s	Acetone	[122]
SnO_2	NFs	Pd	275	98.8/100 ppm	1 ppm		Acetone	[123]
SnO_2	HNFs	Ag	160	117/200 ppm	5 ppm	6s/10s	Acetone	[124]
a-Fe ₂ O ₃	NTs	La	240	26/50 ppm	1 ppm	3s/10s	Acetone	[125]
a-Fe ₂ O ₃	NTs	Nd	240	44/50 ppm	500 ppb	19s/50s	Acetone	[126]
a-Fe ₂ O ₃	NTs	Sm	240	33/50 ppm	500 ppb	6s/11s	Acetone	[127]
a-Fe ₂ O ₃	NTs	Ce	240	21.5/50 ppm	1 ppm	3s/8s	Acetone	[128]
a-Fe ₂ O ₃	NTs	Ca	200	24.9/100	5 ppm	1s/3s	Acetone	[129]
ZnO	NFs	Ce	230	71.2/500 ppm	10 ppm		Acetone	[130]
ZnO	HNFs	Ce	260	75.04/100 ppm	5 ppm	-	Acetone	[131]
ZnO	NFs	Mn	340	76.2/50 ppm	50 ppm	17s/4s	Acetone	[132]
ZnO	NFs	Co	360	16/100 ppm	5 ppm	6s/4s	Acetone	[133]
ZnO	NFs	La	340	64/200 ppm	-	16s/8s	Acetone	[134]
WO ₃	NFs	La ₂ O ₃	350	12.7/100 ppm	0.8 ppm		Acetone	[135]
WO ₃	HNFs	Cu	300	6.43/20 ppm	0.25 ppm	5s/20s	Acetone	[136]
WO ₃	Hemitube	Pt	350	4.11/2 ppm	120 ppb	-	Acetone	[137]
In ₂ O ₃	NTs	Eu	240	20/20 ppm	200 ppb	3s/90s	Acetone	[138]
a-Fe ₂ O ₃	NTs	Al_2O_3	240	41.8/50 ppm	300 ppb	20s/60s	Ethanol	[22]
a-Fe ₂ O ₃	NTs	Ca	200	26.8/100	5 ppm	1s/26s	Ethanol	[129]
SnO ₂	NFs	Cu	300	56/500 ppm	5 ppm	1s/10s	Ethanol	[139]
SnO ₂	HNFs	Pr	300	64.33/200 ppm	1 ppm	116s/11s	Ethanol	[140-141]
SnO ₂	NFs	Sr	260	18.9/100 ppm	-	2s/8s	Ethanol	[142]

Table S3: Sensing performance of electrospun metal doped MOx nanofibers categorized based on the analyte gas.

Material	Structure (NTs/NFs/HNF s/NRs/NWs)	Dopant	Temperature (°C)	Response	Detection Limit	Response/recovery time	Analyte gas	Reference
SnO ₂	HNFs	Yb	340	170/500 ppm	-	7s/8s	Ethanol	[139, 143]
SnO ₂	HNFs	Ce	250	~265/50 ppm	-	-	Ethanol	[144]
SnO ₂	NFs	Fe	300	15.3/100 ppm	10 ppm	1s/3s	Ethanol	[145]
SnO ₂	NFs	Co	300	40.1/100 ppm	2 ppm	-	Ethanol	[146]
ZnO	NTs	In	275	81.7/100 ppm	-	-	Ethanol	[48]
ZnO	NFs	Er	240	37.3/200 ppm	1 ppm	12s/3s	Ethanol	[132]
ZnO	NFs	Al	250	8.6/100 ppm	-	5s/9s	Ethanol	[11]
ZnO	NFs	Cr_2O_3	300	24/100 ppm	1 ppm	1s/5s	Ethanol	[41]
In ₂ O ₃	NWs	Co	300	16.5/100 ppm	-	2s/3s	Ethanol	[140, 147]
In ₂ O ₃	NFs	Pd	200	18/50 ppm	1 ppm	1s/10s	Ethanol	[148-149]
In ₂ O ₃	NTs	Mg	250	25.82/100 ppm	-	-	Ethanol	[12, 150]
In ₂ O ₃	NTs	Eu_2O_3	260	44/50 ppm	0.2 ppm	3s/21s	Ethanol	[151]
In ₂ O ₃	NFs	Au	140	13.8/500 ppm	50 ppm	12s/24s	Ethanol	[25]
SnO ₂	NFs	Co ₃ O ₄	300	38/100 ppm	-	-	Ethanol	[152]
NiO	NTs	Pt	400	11.7/100 ppm	1 ppm	-	Ethanol	[153]
ZnO-SnO ₂	HNFs	Ag	200	128.6/100 ppm	1 ppm	-	Ethanol	[154]
a-Fe ₂ O ₃	NWs	Pt	175	157/10 ppm	-	-	H_2S	[141]
ZnO	NFs	Cu	230	18.7/10 ppm	-	18s/20s	H_2S	[143, 155]
In ₂ O ₃	NTs	Mg	150	173.14/10 ppm	-	-	H_2S	[12, 121]
In ₂ O ₃	NFs	V	90	13.9/50 ppm	-	15s/18s	H_2S	[144, 156]
In ₂ O ₃	NFs	Pt	200	1490/600 ppm	50 ppm	60s/120s	H_2S	[24]
SnO ₂	HNFs	CuO	125	410/10 ppm		-	H_2S	[157]
SnO ₂	NFs	Pt	300	5100/20 ppm	-	-	H_2S	[150]
WO ₃	NFs	Pd	350	1.36/1 ppm	1 ppm	-	H_2S	[158]
TiO ₂	NFs	Ag	350	~120/1 ppm	1 ppm	-	H ₂ S	[159]

Material	Structure (NTs/NFs/HNF s/NRs/NWs)	Dopant	Temperature (°C)	Response	Detection Limit	Response/recovery time	Analyte gas	Reference
SnO ₂	NTs	Al	240	7.82/1000 ppb	-	-	Formaldehyde	[23]
SnO ₂	HNFs	Pd	160	18.8/100 ppm	-	2s/7s	Formaldehyde	[160]
In ₂ O ₃	NTs	Er	260	12/20 ppm	100 ppb	5s/38s	Formaldehyde	[122, 161]
In ₂ O ₃	Ruptured NTs	Nd	240	46.8/100 ppm	100 ppb	8s/22s	Formaldehyde	[162]
In ₂ O ₃	NTs	Nd	240	44.6/100 ppm	100 ppb	15s/50s	Formaldehyde	[163]
In ₂ O ₃	NTs	Sm	240	54.37/100 ppm	100 ppb	9s/40s	Formaldehyde	[164]
In ₂ O ₃	NFs	Ag	115	28/50 ppm	5 ppm	5s/10s	Formaldehyde	[165]
a-Fe ₂ O ₃	NTs	SnO_2	220	25.4/500 ppm	1 ppm	-	Formaldehyde	[166]
SnO ₂	NFs	V_2O_5	325	6.32/25 ppm	-	-	benzene	[167]
SnO ₂	NFs	Al	340	7.7/100 ppm	10 ppm	-	H_2	[53]
SnO ₂	NFs	Co	330	24/100 ppm	-	2s/3s	H_2	[149]
ZnO	NFs	Pr	380	7.38/400 ppm	-	51s/40s	acetic acid	[29]
ZnO	NFs	Ni	250	16.9/2000 ppm	-	5s/10s	C_2H_2	[26]
SnO ₂	NFs	Au	300	18.98/10 ppm	1 ppm	-	СО	[168]
SnO ₂	NFs	Au	300	84/5ppm	-	22s/235s	СО	[169]
ZnO	NFs	Pd	220	5.5/20 ppm	1 ppm	25-29s/12-17s	СО	[33]
NiO	NTs	W	375	8.74/200 ppm	15 ppm	178s/152s	xylene	[170]
TiO ₂	NFs	Pd	180	38/2.1 ppm	0.16 ppm	-	NO ₂	[171]
SnO ₂	NFs	Pt	300	11.9/10 ppm	1 ppm	-	Toluene	[172]
WO ₃	NFs	Pd	350	5.5/1 ppm	20 ppb	10.9s/16.1s	Toluene	[158]
WO ₃	NFs	Au	250	229.7/100 ppm	1 ppm	5–43 s/ 10–122 s	n-butanol	[173]

Table S4: Sensing performance of electrospun MO_x-MO_x nanofibers categorized based on the analyte gas.

Material	Structure	Diameter (nm)	Operating	Response	Detection limit	Response/recover	Analyte	Referen
			(°C)			y time	gas	ce
NiO/SnO ₂	Heteroiunctions NFs	180	300	27.5/100 ppm	50 ppb	2.98/4.78	Ethanol	[174]
SiQ ₂ @SnQ ₂	core_shell NFs	160 - 320	-	37/200 ppm	50 ppm	138/168	Ethanol	[175]
2				• ··· = • • FF	- • FF			[270]
SnO ₂ –ZnO	Heterostructured NFs	50 - 80	300	78/100 ppm	5 ppm	25s/9s	Ethanol	[176]
ZnO-SnO ₂	HNFs	150	260	168.3/200 ppm	20 ppm	4-7s/4-5s	Ethanol	[16]
SnO ₂ /CeO ₂	NTs	200	320	49.1/100 ppm	50 ppm	11s/10s	Ethanol	[177]
ZnO-SnO ₂	Core-shell hetrostructure	370	200	392.29/100 ppm	5 ppm	74s/12s	Ethanol	[178]
SnO ₂ /α-Fe ₂ O ₃	NTs	65	200	27.45/100 ppm	5 ppm	3s/14s	Ethanol	[54]
Sn-SnO ₂ /C	heterostructure NFs	350 - 400	220	46.15/1000 ppm	10 ppm	-	Ethanol	[179]
SnO ₂ /α-Fe ₂ O ₃	hierarchically Core-shell HNFs	100 - 200	340	20.370/100 ppm	2 ppm	15s/25s	Ethanol	[180]
SnO ₂ /ZnO	Composite NFs	60 - 80	360	17.5/3000 ppm	27.7	5s/1s	Ethanol	[181]
ZnO-TiO ₂	Hierarchical heterojunctions NFs	100 – 300 nm	320	50.6/500 ppm	20 ppm	50.6s/5-10 s	Ethanol	[62]
NiO-In ₂ O ₃	Composite NFs	152	300	78/100 ppm	20 ppm	-	Ethanol	[182]
Eu ₂ O ₃ -In ₂ O ₃	Composite NTs	160	260	44/50 ppm	0.2 ppm	3s/21s	Ethanol	[151]
TiO ₂ -SnO ₂	core-shell heterostructure NFs	120 - 250	280	13.7/100 ppm	10 ppm	2s/60s	Acetone	[183]
SnO ₂ –ZnO	Heterojunctions NFs	120	300	84/100 ppm	5 ppm	19s/9s	Acetone	[184]
SnO ₂ /α-Fe ₂ O ₃	NTs	65	200	10.07/100 ppm	5 ppm	4s/12s	Acetone	[54]
SnO ₂ /α-Fe ₂ O ₃	hierarchically Core-shell HNFs	100 - 200	340	30.363/100 ppm	2 ppm	5s/13s	Acetone	[180]
a-Fe ₂ O ₃ /SnO ₂	Cage-like composite NFs	160	275	5.3/100 ppm	100 ppm	1.5s/2.5s	Acetone	[185]
ZnO-In ₂ O ₃	Composite NTs	300	280	43.2/60 ppm	0.125 ppm	5s/25s	Acetone	[186]
In ₂ O ₃ -Fe ₂ O ₃	Composite NTs	130	240	25/100 ppm	1 ppm	3s/7 s	Acetone	[187]
In ₂ O ₃ –WO ₃	Heterojunction NFs	170	275	12.9/50 ppm	0.4 ppm	6s/64s	Acetone	[63]
α -Fe ₂ O ₃ /SnO ₂	Heterostructure NTs	90	300	33.4/100 ppm	1 ppm	4.9–5.9 s/15.8–	Acetone	[188]
SnO./In.O.	Hetrojunction NTs	80 - 120	300	118/50 ppm	250 pph	22.38 60s/97s	Formalde	[60]
51107/111203	neuojunenon 1013	00 120	500	110/50 ppm	230 pp0	003/773	hyde	[00]
SnO ₂ /In ₂ O ₃	Hetero HNFs (nano needles on NTs)	450 - 500	290	13.85/10 ppm	0.5 ppm	20s/40s	Formalde	[61]
		100 250	275	7.5/10	0.5		hyde	F1001
SnO_2/In_2O_3	hetero-INFS	100 - 250	375	7.5/10 ppm	0.5 ppm	-	hyde	[189]
In ₂ O ₃ -Fe ₂ O ₃	Composite NTs	130	260	15/100 ppm	1 ppm	4s/7 s	Formalde	[187]
				0.00/100			hyde	
$ln_2O_3 - SnO_2$	Hetrojunction NRs	230-470	RT	8.98/100 ppm	0.1 ppm	4.67 s/-	NO _x	[19]
ZnO-SnO ₂	Heterostructure (NF–NWstem-branch)	120	350	35/0.1 ppm	0.1 ppm	-	NO ₂	[190]
SnO ₂ –ZnO	Composite NFs	55 - 80	200	105/4 ppm	400 ppb	-	NO ₂	[191]
In_2O_3	Beads on composite NFs	150 - 250	RT	95/97 ppm	0.3 ppm	4.3s/-	NO_2	[45]
Beads@ $I1O_2$ -In ₂ O ₃		200	DT	41.10/ /07	07.1	2.1	NO	[20]
$\frac{\ln_2 O_3 / 11O_2}{\ln_2 O_3 / 11O_2}$	Mesoporous NFs	200	KT DT	41.1%/9/ ppm	97 ppb	<u>58/-</u>	NO _x	[20]
$Al_2O_3-In_2O_3$	Mesoporous composite NFs	200	KT 100	100/97 ppm	291 ppb	288/-	NO _x	[18]
SnO_2-ZnO	HNFs	80 - 160	190	15.6/50 ppm	1 ppm	0-118/12-238	Toluene	[192]
N_1O-SnO_2	Composite NFs	80 - 160	330	11/50 ppm	50 ppm	1.2 s/ 4 s	Toluene	[60, 193]
$ZnO-SnO_2$	Composite NFs	100 - 200	360	9.8/100 ppm	10 ppm	55/65	Toluene	[183, 194]

Material	Structure	Diameter (nm)	Operating	Response	Detection limit	Response/recover	Analyte	Referen
			Temperature			y time	gas	ce
			(°C)					
$In_2O_3-SnO_2$	Composite NFs	40 - 100	80	8.1/1 ppm	50 ppb	1s/6s	Trimethyl	[2]
							amine	
NiO/ZnO	Heterojunction NFs	100	260	892/100 ppm	0.5 ppm	30s/35s	trimethyla	[195]
							mine	
In ₂ O ₃ -SnO ₂	Composite NFs	60 - 100	280	~29/100 ppm	2 ppm	8s/15s	Methanol	[196]
SnO ₂ -ZnO	Heterostructure HNFs	160 - 380	350	~9.0/10 ppm	1 ppm	20s/40s	Methanol	[197]
CuO/SnO ₂	Composite NFs	~300	200	23/1 ppm	0.01 ppm	23s/25s	H_2S	[198]
ZnO–CuO	Composite NFs	150 - 200	150	4489.9/10 ppm	1 ppm	-	H_2S	[199]
CuO/SnO ₂	Mixed NFs	110	300	522/10 ppm	10 ppm	1s/305s	H_2S	[42]
SnO ₂ -CuO	Heterojunctions NFs	130 - 200	235	95/10 ppm	-	37s/80s	CO	[200]
$SnO_2 - C$	Hierarchical heterostructured NFs (nanosheets on	150 - 500	200	~16.5/100 ppm	1 ppm	4s/16s	H ₂	[70]
	NFs)				_			
ZnO/CoNiO ₂	Composite HNFs	60 - 80	220	240/100 ppm	-	8s/11s	NH ₃	[201]

NRs: Nanorods, NBs: Nanobelts

References

[1] Liang, X.; Kim, T.-H.; Yoon, J.-W.; Kwak, C.-H.; Lee, J.-H., *Sensors and Actuators B: Chemical* **2015**, *209*, 934-942.

[2] Qi, Q.; Zou, Y.-C.; Fan, M.-H.; Liu, Y.-P.; Gao, S.; Wang, P.-P.; He, Y.; Wang, D.-J.; Li, G.-D., *Sensors and Actuators B: Chemical* **2014**, *203*, 111-117.

[3] Giancaterini, L.; Emamjomeh, S. M.; De Marcellis, A.; Palange, E.; Resmini, A.; Anselmi-Tamburini, U.; Cantalini, C., *Sensors and Actuators B: Chemical* **2016**, *229*, 387-395.

[4] Senthil, T.; Anandhan, S., *Journal of colloid and interface science* **2014**, *432*, 285-296.

[5] Qi, Q.; Zhao, J.; Xuan, R.-F.; Wang, P.-P.; Feng, L.-L.; Zhou, L.-J.; Wang, D.-J.; Li, G.-D., *Sensors and Actuators B: Chemical* **2014**, *191*, 659-665.

[6] Jang, B.-H.; Landau, O.; Choi, S.-J.; Shin, J.; Rothschild, A.; Kim, I.-D., *Sensors and Actuators B: Chemical* **2013**, *188*, 156-168.

[7] Feng, Q.; Li, X.; Wang, J.; Gaskov, A. M., *Sensors and Actuators B: Chemical* **2016**, 222, 864-870.

[8] Lim, S. K.; Hwang, S.-H.; Chang, D.; Kim, S., Sensors and Actuators B: Chemical **2010**, *149*, 28-33.

[9] Sowti Khiabani, P.; Hosseinmardi, A.; Marzbanrad, E.; Ghashghaie, S.; Zamani, C.; Keyanpour-Rad, M.; Raissi, B., *Sensors and Actuators B: Chemical* **2012**, *162*, 102-107.

[10] Landau, O.; Rothschild, A., Sensors and Actuators B: Chemical **2012**, 171–172, 118-126.

[11] Zhao, M.; Wang, X.; Cheng, J.; Zhang, L.; Jia, J.; Li, X., *Current Applied Physics* **2013**, *13*, 403-407.

[12] Zhao, C.; Huang, B.; Xie, E.; Zhou, J.; Zhang, Z., *Sensors and Actuators B: Chemical* **2015**, *207*, *Part A*, 313-320.

[13] Zhang, H.-D.; Tang, C.-C.; Long, Y.-Z.; Zhang, J.-C.; Huang, R.; Li, J.-J.; Gu, C.-Z., *Sensors and Actuators A: Physical* **2014**, *219*, 123-127.

[14] Ab Kadir, R.; Li, Z.; Sadek, A. Z.; Abdul Rani, R.; Zoolfakar, A. S.; Field, M. R.; Ou, J. Z.; Chrimes, A. F.; Kalantar-zadeh, K., *The Journal of Physical Chemistry C* **2014**, *118*, 3129-3139.

[15] Zhang, Y.; He, X.; Li, J.; Miao, Z.; Huang, F., Sensors and Actuators B: Chemical **2008**, *132*, 67-73.

[16] Wan, G. X.; Ma, S. Y.; Sun, X. W.; Sun, A. M.; Li, X. B.; Luo, J.; Li, W. Q.; Wang, C. Y., *Materials Letters* **2015**, *145*, 48-51.

[17] Xu, L.; Song, H.; Dong, B.; Wang, Y.; Chen, J.; Bai, X., *Inorg. Chem.* **2010**, *49*, 10590-10597.

[18] Gao, J.; Wang, L.; Kan, K.; Xu, S.; Jing, L.; Liu, S.; Shen, P.; Li, L.; Shi, K., *Journal of Materials Chemistry A* **2014**, *2*, 949-956.

[19] Xu, S.; Gao, J.; Wang, L.; Kan, K.; Xie, Y.; Shen, P.; Li, L.; Shi, K., *Nanoscale* **2015**, 7, 14643-14651.

[20] Wu, H.; Kan, K.; Wang, L.; Zhang, G.; Yang, Y.; Li, H.; Jing, L.; Shen, P.; Li, L.; Shi, K., *CrystEngComm* **2014**, *16*, 9116-9124.

[21] Liu, L.; Li, S.; Guo, X.; Wang, L.; Liu, L.; Wang, X., *Journal of Materials Science: Materials in Electronics* **2016**, *27*, 5153-5157.

[22] Su, C.; Li, Y.; He, Y.; Liu, L.; Wang, X.; Liu, L., *Materials Science in Semiconductor Processing* **2015**, *39*, 49-53.

[23] Wu, J.; Huang, Q.; Zeng, D.; Zhang, S.; Yang, L.; Xia, D.; Xiong, Z.; Xie, C., Sensors and Actuators B: Chemical 2014, 198, 62-69.

[24] Zheng, W.; Lu, X.; Wang, W.; Li, Z.; Zhang, H.; Wang, Z.; Xu, X.; Li, S.; Wang, C., *Journal of Colloid and Interface Science* **2009**, *338*, 366-370.

[25] Xu, X.; Fan, H.; Liu, Y.; Wang, L.; Zhang, T., Sensors and Actuators B: Chemical **2011**, *160*, 713-719.

[26] Wang, X.; Zhao, M.; Liu, F.; Jia, J.; Li, X.; Cao, L., *Ceramics International* **2013**, *39*, 2883-2887.

[27] Koo, W.-T.; Choi, S.-J.; Kim, N.-H.; Jang, J.-S.; Kim, I.-D., Sensors and Actuators B: Chemical **2016**, 223, 301-310.

[28] Bian, H.; Ma, S.; Sun, A.; Xu, X.; Yang, G.; Gao, J.; Zhang, Z.; Zhu, H., *Superlattices and Microstructures* **2015**, *81*, 107-113.

[29] Wang, C.; Ma, S.; Sun, A.; Qin, R.; Yang, F.; Li, X.; Li, F.; Yang, X., Sensors and Actuators B: Chemical 2014, 193, 326-333.

[30] Song, X.; Liu, L., Sensors and Actuators A: Physical 2009, 154, 175-179.

[31] Han, L.; Andrady, A. L.; Ensor, D. S., Sensors and Actuators B: Chemical 2013, 186, 52-55.

[32] Lou, Z.; Deng, J.; Wang, L.; Wang, R.; Fei, T.; Zhang, T., *RSC Advances* **2013**, *3*, 3131-3136.

[33] Wei, S.; Yu, Y.; Zhou, M., *Materials Letters* **2010**, *64*, 2284-2286.

[34] Choi, S. J.; Chattopadhyay, S.; Kim, J. J.; Kim, S. J.; Tuller, H. L.; Rutledge, G. C.; Kim, I. D., *Nanoscale* **2016**, *8*, 9159-9166.

[35] Liu, C.; Chi, X.; Liu, X.; Wang, S., *Journal of Alloys and Compounds* **2014**, *616*, 208-212.

[36] Katoch, A.; Sun, G.-J.; Choi, S.-W.; Byun, J.-H.; Kim, S. S., *Sensors and Actuators B: Chemical* **2013**, *185*, 411-416.

[37] Bai, H.; Zhao, L.; Lu, C.; Li, C.; Shi, G., *Polymer* **2009**, *50*, 3292-3301.

[38] Low, K.; Horner, C. B.; Li, C.; Ico, G.; Bosze, W.; Myung, N. V.; Nam, J., Sensors and Actuators B: Chemical 2015, 207, Part A, 235-242.

[39] Lu, Q.; Wang, C.; Liu, S.; Ren, M., Materials Transactions 2011, 52, 1206-1210.

[40] Cao, J.; Dou, H.; Zhang, H.; Mei, H.; Liu, S.; Fei, T.; Wang, R.; Wang, L.; Zhang, T., *Sensors and Actuators B: Chemical* **2014**, *198*, 180-187.

[41] Wang, W.; Li, Z.; Zheng, W.; Huang, H.; Wang, C.; Sun, J., Sensors and Actuators B: Chemical **2010**, *143*, 754-758.

[42] Katoch, A.; Kim, J. H.; Kim, S. S., *Journal of Nanoscience and Nanotechnology* **2015**, *15*, 8637-8641.

[43] Yoon, J.-W.; Choi, J.-K.; Lee, J.-H., Sensors and Actuators B: Chemical 2012, 161, 570-577.

[44] Choi, J.-K.; Hwang, I.-S.; Kim, S.-J.; Park, J.-S.; Park, S.-S.; Jeong, U.; Kang, Y. C.; Lee, J.-H., *Sensors and Actuators B: Chemical* **2010**, *150*, 191-199.

[45] Wang, L.; Gao, J.; Wu, B.; Kan, K.; Xu, S.; Xie, Y.; Li, L.; Shi, K., ACS Applied *Materials and Interfaces* **2015**, *7*, 27152-27159.

[46] Patil, P. T.; Anwane, R. S.; Kondawar, S. B., *Procedia Materials Science* 2015, 10, 195-204.

[47] Wei, S.; Wang, S.; Zhang, Y.; Zhou, M., Sensors and Actuators B: Chemical 2014, 192, 480-487.

[48] Huang, B.; Zhao, C.; Zhang, M.; Zhang, Z.; Xie, E.; Zhou, J.; Han, W., *Applied Surface Science* **2015**, *349*, 615-621.

[49] Pang, Z.; Nie, Q.; Wei, A.; Yang, J.; Huang, F.; Wei, Q., *Journal of Materials Science* **2017**, *52*, 686-695.

[50] Mao, Y.; Ma, S.; Li, X.; Wang, C.; Li, F.; Yang, X.; Zhu, J.; Ma, L., *Applied Surface Science* **2014**, 298, 109-115.

[51] Xiong, Y.; Xue, Q.; Ling, C.; Lu, W.; Ding, D.; Zhu, L.; Li, X., Sensors and Actuators, B: Chemical **2017**, 241, 725-734.

[52] Cao, Y.; Zou, X.; Wang, X.; Qian, J.; Bai, N.; Li, G.-D., Sensors and Actuators B: Chemical **2016**, 232, 564-570.

[53] Xu, X.; Sun, J.; Zhang, H.; Wang, Z.; Dong, B.; Jiang, T.; Wang, W.; Li, Z.; Wang, C., *Sensors and Actuators B: Chemical* **2011**, *160*, 858-863.

[54] Zhao, C.; Hu, W.; Zhang, Z.; Zhou, J.; Pan, X.; Xie, E., Sensors and Actuators B: Chemical **2014**, *195*, 486-493.

[55] Pinto, N. J.; Ramos, I.; Rojas, R.; Wang, P.-C.; Johnson Jr, A. T., Sensors and Actuators B: Chemical 2008, 129, 621-627.

[56] Pinto, N. J.; Rivera, D.; Melendez, A.; Ramos, I.; Lim, J. H.; Johnson, A. T. C., Sensors and Actuators B: Chemical 2011, 156, 849-853.

[57] Xu, L.; Dong, B.; Wang, Y.; Bai, X.; Liu, Q.; Song, H., Sensors and Actuators B: Chemical 2010, 147, 531-538.

[58] Chi, X.; Liu, C.; Liu, L.; Li, S.; Li, H.; Zhang, X.; Bo, X.; Shan, H., *Materials Science in Semiconductor Processing* **2014**, *18*, 160-164.

[59] Lee, C.-S.; Kim, I.-D.; Lee, J.-H., *Sensors and Actuators B: Chemical* **2013**, *181*, 463-470.

[60] Liu, J.; Li, X.; Chen, X.; Niu, H.; Han, X.; Zhang, T.; Lin, H.; Qu, F., *New Journal of Chemistry* **2016**, *40*, 1756-1764.

[61] Du, H.; Wang, J.; Sun, Y.; Yao, P.; Li, X.; Yu, N., *Sensors and Actuators B: Chemical* **2015**, *206*, 753-763.

[62] Deng, J.; Yu, B.; Lou, Z.; Wang, L.; Wang, R.; Zhang, T., Sensors and Actuators B: Chemical 2013, 184, 21-26.

[63] Feng, C.; Li, X.; Ma, J.; Sun, Y.; Wang, C.; Sun, P.; Zheng, J.; Lu, G., Sensors and Actuators B: Chemical 2015, 209, 622-629.

[64] Qi, Q.; Wang, P.-P.; Zhao, J.; Feng, L.-L.; Zhou, L.-J.; Xuan, R.-F.; Liu, Y.-P.; Li, G.-D., *Sensors and Actuators B: Chemical* **2014**, *194*, 440-446.

[65] Ji, S.; Li, Y.; Yang, M., Sensors and Actuators B: Chemical 2008, 133, 644-649.

[66] Wang, Q.; Dong, X.; Pang, Z.; Du, Y.; Xia, X.; Wei, Q.; Huang, F., Sensors (Switzerland) **2012**, *12*, 17046-17057.

[67] Li, Y.; Gong, J.; He, G.; Deng, Y., *Materials Chemistry and Physics* **2011**, *129*, 477-482.

[68] Wang, Y.; Jia, W.; Strout, T.; Ding, Y.; Lei, Y., Sensors 2009, 9, 6752-6763.

[69] Li, Y.; Ban, H.; Yang, M., Sensors and Actuators B: Chemical 2016, 224, 449-457.

[70] Wang, Z.; Liu, S.; Jiang, T.; Xu, X.; Zhang, J.; An, C.; Wang, C., *RSC Advances* **2015**, *5*, 64582-64587.

[71] Yan, S.; Wu, Q., Sensors and Actuators B: Chemical 2014, 205, 329-337.

[72] Abideen, Z. U.; Katoch, A.; Kim, J.-H.; Kwon, Y. J.; Kim, H. W.; Kim, S. S., *Sensors and Actuators B: Chemical* **2015**, *221*, 1499-1507.

[73] Abideen, Z. U.; Park, J. Y.; Kim, H. W.; Kim, S. S., *Nanotechnology* **2017**, *28*, 035501.

[74] Kim, J. H.; Zheng, Y.; Mirzaei, A.; Kim, H. W.; Kim, S. S., Journal of Electronic Materials 2017, 1-11.

[75] Guo, J.; Liu, X.; Wang, H.; Sun, W.; Sun, J., Materials Letters 2017, 209, 102-105.

[76] Liu, S.; Sun, H.; Nagarajan, R.; Kumar, J.; Gu, Z.; Cho, J.; Kurup, P., *Sensors and Actuators A: Physical* **2011**, *167*, 8-13.

[77] Lin, Q.; Li, Y.; Yang, M., Analytica Chimica Acta 2012, 748, 73-80.

[78] Liu, Y.; Huang, H.; Wang, L.; Cai, D.; Liu, B.; Wang, D.; Li, Q.; Wang, T., Sensors and Actuators B: Chemical 2016, 223, 730-737.

[79] He, X.; Arsat, R.; Sadek, A. Z.; Wlodarski, W.; Kalantar-zadeh, K.; Li, J., Sensors and Actuators B: Chemical 2010, 145, 674-679.

[80] Sheng, L.; Dajing, C.; Yuquan, C., *Nanotechnology* **2011**, *22*, 265504.

[81] Aria, M. M.; Irajizad, A.; Astaraei, F. R.; Shariatpanahi, S. P.; Sarvari, R., *Measurement* **2016**, *78*, 283-288.

[82] Zhang, C.; Wang, X.; Lin, J.; Ding, B.; Yu, J.; Pan, N., Sensors and Actuators B: Chemical **2011**, *152*, 316-323.

[83] Ding, B.; Wang, X.; Yu, J.; Wang, M., *Journal of Materials Chemistry* **2011**, *21*, 12784-12792.

[84] Ding, B.; Yamazaki, M.; Shiratori, S., Sensors and Actuators B: Chemical 2005, 106, 477-483.

[85] Jia, Y.; Yan, C.; Yu, H.; Chen, L.; Dong, F., Sensors and Actuators B: Chemical 2014, 203, 459-464.

[86] Jia, Y.; Yu, H.; Zhang, Y.; Chen, L.; Dong, F., Sensors and Actuators B: Chemical **2015**, *212*, 273-277.

[87] Ding, B.; Kim, J.; Miyazaki, Y.; Shiratori, S., Sensors and Actuators B: Chemical **2004**, *101*, 373-380.

[88] Wang, X.; Cui, F.; Lin, J.; Ding, B.; Yu, J.; Al-Deyab, S. S., Sensors and Actuators B: Chemical **2012**, *171–172*, 658-665.

[89] Jia, Y.; Chen, L.; Yu, H.; Zhang, Y.; Dong, F., *RSC Advances* **2015**, *5*, 40620-40627.

[90] Viter, R.; Chaaya, A. A.; Iatsunskyi, I.; Nowaczyk, G.; Kovalevskis, K.; Erts, D.; Miele, P.; Smyntyna, V.; Bechelany, M., *Nanotechnology* **2015**, *26*, 105501.

[91] Luoh, R.; Hahn, H. T., Composites Science and Technology 2006, 66, 2436-2441.

[92] Long, Y.; Chen, H.; Wang, H.; Peng, Z.; Yang, Y.; Zhang, G.; Li, N.; Liu, F.; Pei, J., *Analytica chimica acta* **2012**, *744*, 82-91.

[93] Long, Y.; Chen, H.; Yang, Y.; Wang, H.; Yang, Y.; Li, N.; Li, K.; Pei, J.; Liu, F., *Macromolecules* **2009**, *42*, 6501-6509.

[94] Urrutia, A.; Goicoechea, J.; Rivero, P. J.; Matías, I. R.; Arregui, F. J., Sensors and Actuators B: Chemical 2013, 176, 569-576.

[95] Xue, R.; Behera, P.; Xu, J.; Viapiano, M. S.; Lannutti, J. J., Sensors and Actuators B: Chemical **2014**, *192*, 697-707.

[96] Wolf, C.; Tscherner, M.; Köstler, S., Sensors and Actuators B: Chemical 2015, 209, 1064-1069.

[97] Wolf, C.; Tscherner, M.; Köstler, S.; Ribitsch, V. Optochemical sensors based on polymer nanofibers with ultra-fast response characteristics. In *Proceedings of SENSORS*, 2014 IEEE, 2014; 950-953.

[98] Lv, Y.-Y.; Wu, J.; Xu, Z.-K., Sensors and Actuators B: Chemical 2010, 148, 233-239.

[99] Park, J.-A.; Moon, J.; Lee, S.-J.; Kim, S. H.; Zyung, T.; Chu, H. Y., *Materials Letters* **2010**, *64*, 255-257.

[100] Park, J. A.; Moon, J.; Lee, S. J.; Kim, S. H.; Zyung, T.; Chu, H. Y., *Thin Solid Films* **2010**, *518*, 6642-6645.

[101] Zhang, J.; Choi, S.-W.; Kim, S. S., *Journal of Solid State Chemistry* **2011**, *184*, 3008-3013.

[102] Kim, I.-D.; Jeon, E.-K.; Choi, S.-H.; Choi, D.-K.; Tuller, H. L., *Journal of electroceramics* **2010**, *25*, 159-167.

[103] Park, J.-A.; Moon, J.; Lee, S.-J.; Lim, S.-C.; Zyung, T., *Current Applied Physics* **2009**, *9*, S210-S212.

[104] Wei, S.; Zhao, G.; Du, W.; Tian, Q., Vacuum 2016, 124, 32-39.

[105] Chi, X.; Liu, C.; Liu, L.; Li, Y.; Wang, Z.; Bo, X.; Liu, L.; Su, C., Sensors and Actuators B: Chemical 2014, 194, 33-37.

[106] Li, W. Q.; Ma, S. Y.; Luo, J.; Mao, Y. Z.; Cheng, L.; Gengzang, D. J.; Xu, X. L.; Yan, S. H., *Materials Letters* **2014**, *132*, 338-341.

[107] Wei, S.; Zhou, M.; Du, W., Sensors and Actuators B: Chemical 2011, 160, 753-759.

[108] Yu, X.; Song, F.; Zhai, B.; Zheng, C.; Wang, Y., *Physica E: Low-dimensional Systems and Nanostructures* **2013**, *52*, 92-96.

[109] Liang, X.; Jin, G.; Liu, F.; Zhang, X.; An, S.; Ma, J.; Lu, G., *Ceramics International* **2015**, *41*, 13780-13787.

[110] KARIMI, E. Z.; ESMAEILZADEH, J.; MARZBANRAD, E., Bulletin of Materials Science 2015, 38, 209-214.

[111] Giancaterini, L.; Emamjomeh, S. M.; De Marcellis, A.; Palange, E.; Cantalini, C., *Procedia Engineering* **2015**, *120*, 791-794.

[112] Cho, N. G.; Yang, D. J.; Jin, M.-J.; Kim, H.-G.; Tuller, H. L.; Kim, I.-D., Sensors and Actuators B: Chemical 2011, 160, 1468-1472.

[113] Zheng, W.; Li, Z.; Zhang, H.; Wang, W.; Wang, Y.; Wang, C., *Materials Research Bulletin* **2009**, *44*, 1432-1436.

[114] Cheng, L.; Ma, S. Y.; Wang, T. T.; Li, X. B.; Luo, J.; Li, W. Q.; Mao, Y. Z.; Gz, D. J., *Materials Letters* **2014**, *131*, 23-26.

[115] Zheng, W.; Lu, X.; Wang, W.; Li, Z.; Zhang, H.; Wang, Y.; Wang, Z.; Wang, C., *Sensors and Actuators B: Chemical* **2009**, *142*, 61-65.

[116] Liu, Y.; Gao, C.; Pan, X.; An, X.; Xie, Y.; Zhou, M.; Song, J.; Zhang, H.; Liu, Z.; Zhao, Q.; Zhang, Y.; Xie, E., *Applied Surface Science* **2011**, *257*, 2264-2268.

[117] Katoch, A.; Choi, S.-W.; Kim, H. W.; Kim, S. S., *Journal of Hazardous Materials* **2015**, 286, 229-235.

[118] Cui, J.; Shi, L.; Xie, T.; Wang, D.; Lin, Y., Sensors and Actuators B: Chemical 2016, 227, 220-226.

[119] Li, Z.; Fan, Y.; Zhan, J., European Journal of Inorganic Chemistry 2010, 3348-3353.

[120] Chi, X.; Liu, C.; Zhang, J.; Liu, L.; Li, H.; He, Y.; Bo, X.; Liu, L., *Journal of Semiconductors* **2014**, *35*, 064005.

[121] Cheng, L.; Ma, S. Y.; Li, X. B.; Luo, J.; Li, W. Q.; Li, F. M.; Mao, Y. Z.; Wang, T. T.; Li, Y. F., *Sensors and Actuators B: Chemical* **2014**, *200*, 181-190.

[122] Cheng, J. P.; Wang, B. B.; Zhao, M. G.; Liu, F.; Zhang, X. B., Sensors and Actuators B: Chemical **2014**, 190, 78-85.

[123] Tang, W.; Wang, J.; Qiao, Q.; Liu, Z.; Li, X., *Journal of Materials Science* **2015**, *50*, 2605-2615.

[124] Xu, X.; Chen, Y.; Zhang, G.; Ma, S.; Lu, Y.; Bian, H.; Chen, Q., *Journal of Alloys and Compounds* **2017**, *703*, 572-579.

[125] Shan, H.; Liu, C.; Liu, L.; Li, S.; Wang, L.; Zhang, X.; Bo, X.; Chi, X., Sensors and Actuators B: Chemical 2013, 184, 243-247.

[126] Su, C.; Zou, Y.; Xu, X.; Liu, L.; Liu, Z.; Liu, L., Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 472, 63-68.

[127] Su, C.; Liu, C.; Liu, L.; Ni, M.; Li, H.; Bo, X.; Liu, L.; Chi, X., *Applied Surface Science* **2014**, *314*, 931-935.

[128] Liu, C.; Shan, H.; Liu, L.; Li, S.; Li, H., Ceramics International 2014, 40, 2395-2399.

[129] Zhao, C.; Bai, J.; Huang, B.; Wang, Y.; Zhou, J.; Xie, E., Sensors and Actuators B: Chemical **2016**, 231, 552-560.

[130] Wan, G. X.; Ma, S. Y.; Li, X. B.; Li, F. M.; Bian, H. Q.; Zhang, L. P.; Li, W. Q., *Materials Letters* **2014**, *114*, 103-106.

[131] Li, W.; Ma, S.; Yang, G.; Mao, Y.; Luo, J.; Cheng, L.; Gengzang, D.; Xu, X.; Yan, S., *Materials Letters* **2015**, *138*, 188-191.

[132] Sun, Y.; Zhao, Z.; Li, P.; Li, G.; Chen, Y.; Zhang, W.; Hu, J., *Applied Surface Science* **2015**, *356*, 73-80.

[133] Liu, L.; Li, S.; Zhuang, J.; Wang, L.; Zhang, J.; Li, H.; Liu, Z.; Han, Y.; Jiang, X.; Zhang, P., *Sensors and Actuators B: Chemical* **2011**, *155*, 782-788.

[134] Xu, X. L.; Chen, Y.; Ma, S. Y.; Li, W. Q.; Mao, Y. Z., Sensors and Actuators B: Chemical 2015, 213, 222-233.

[135] Feng, C.; Wang, C.; Cheng, P.; Li, X.; Wang, B.; Guan, Y.; Ma, J.; Zhang, H.; Sun, Y.; Sun, P.; Zheng, J.; Lu, G., *Sensors and Actuators B: Chemical* **2015**, *221*, 434-442.

[136] Bai, X.; Ji, H.; Gao, P.; Zhang, Y.; Sun, X., Sensors and Actuators B: Chemical 2014, 193, 100-106.

[137] Choi, S.-J.; Lee, I.; Jang, B.-H.; Youn, D.-Y.; Ryu, W.-H.; Park, C. O.; Kim, I.-D., *Analytical chemistry* **2013**, *85*, 1792-1796.

[138] Lian, H.; Wang, G.; Yue, H.; Liu, L.; Guo, X.; Wang, X., *Micro and Nano Letters* **2016**, *11*, 825-827.

[139] Liu, L.; Zhang, T.; Wang, L.; Li, S., *Materials Letters* 2009, 63, 2041-2043.

[140] Li, W. Q.; Ma, S. Y.; Li, Y. F.; Li, X. B.; Wang, C. Y.; Yang, X. H.; Cheng, L.; Mao, Y. Z.; Luo, J.; Gengzang, D. J.; Wan, G. X.; Xu, X. L., *Journal of Alloys and Compounds* **2014**, *605*, 80-88.

[141] Guo, L.; Xie, N.; Wang, C.; Kou, X.; Ding, M.; Zhang, H.; Sun, Y.; Song, H.; Wang, Y.; Lu, G., *Sensors and Actuators B: Chemical* **2018**, *255*, 1015-1023.

[142] Jiang, Z.; Jiang, T.; Wang, J.; Wang, Z.; Xu, X.; Wang, Z.; Zhao, R.; Li, Z.; Wang, C., *Journal of Colloid and Interface Science* **2015**, *437*, 252-258.

[143] Wang, T. T.; Ma, S. Y.; Cheng, L.; Luo, J.; Jiang, X. H.; Jin, W. X., Sensors and Actuators B: Chemical 2015, 216, 212-220.

[144] Mohanapriya, P.; Segawa, H.; Watanabe, K.; Watanabe, K.; Samitsu, S.; Natarajan, T. S.; Jaya, N. V.; Ohashi, N., *Sensors and Actuators B: Chemical* **2013**, *188*, 872-878.

[145] Wang, Z.; Liu, L., *Materials Letters* **2009**, *63*, 917-919.

[146] Kou, X.; Wang, C.; Ding, M.; Feng, C.; Li, X.; Ma, J.; Zhang, H.; Sun, Y.; Lu, G., Sensors and Actuators, B: Chemical **2016**, 236, 425-432.

[147] Li, Z.; Dzenis, Y., *Talanta* **2011**, *85*, 82-85.

[148] Liu, L.; Zhang, T.; Li, S.; Wang, L.; Tian, Y., Materials Letters 2009, 63, 1975-1977.

[149] Liu, L.; Guo, C.; Li, S.; Wang, L.; Dong, Q.; Li, W., Sensors and Actuators B: Chemical 2010, 150, 806-810.

[150] Dong, K.-Y.; Choi, J.-K.; Hwang, I.-S.; Lee, J.-W.; Kang, B. H.; Ham, D.-J.; Lee, J.-H.; Ju, B.-K., *Sensors and Actuators B: Chemical* **2011**, *157*, 154-161.

[151] Lian, H.; Feng, Y.; Wang, Z.; Liu, L.; Guo, X.; Wang, X., Applied Physics A: Materials Science and Processing 2017, 123, 123:158.

[152] Chen, D. D.; Li, Z.; Jin, X.; Yi, J. X., Chin. J. Chem. Phys. 2017, 30, 474-478.

[153] Cho, N. G.; Woo, H.-S.; Lee, J.-H.; Kim, I.-D., *Chemical Communications* **2011**, *47*, 11300-11302.

[154] Ma, L.; Ma, S. Y.; Kang, H.; Shen, X. F.; Wang, T. T.; Jiang, X. H.; Chen, Q., *Materials Letters* **2017**, *209*, 188-192.

[155] Zhao, M.; Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L., Sensors and Actuators B: Chemical 2011, 156, 588-592.

[156] Liu, J.; Guo, W.; Qu, F.; Feng, C.; Li, C.; Zhu, L.; Zhou, J.; Ruan, S.; Chen, W., *Ceramics International* **2014**, *40*, 6685-6689.

[157] Yang, J.; Gao, C.; Yang, H.; Wang, X.; Jia, J., Eur. Phys. J. Appl. Phys. 2017, 79, 30101.

[158] Kim, N.-H.; Choi, S.-J.; Yang, D.-J.; Bae, J.; Park, J.; Kim, I.-D., Sensors and Actuators B: Chemical 2014, 193, 574-581.

[159] Ma, S.; Jia, J.; Tian, Y.; Cao, L.; Shi, S.; Li, X.; Wang, X., *Ceramics International* **2016**, *42*, 2041-2044.

[160] Lin, Y.; Wei, W.; Li, Y.; Li, F.; Zhou, J.; Sun, D.; Chen, Y.; Ruan, S., *Journal of Alloys and Compounds* **2015**, *651*, 690-698.

[161] Wang, X.; Zhang, J.; Wang, L.; Li, S.; Liu, L.; Su, C.; Liu, L., *Journal of Materials Science & Technology* **2015**, *31*, 1175-1180.

[162] Wang, X.; Li, H.; Ni, M.; Wang, L.; Liu, L.; Wang, H.; Guo, X., *Journal of Electronic Materials* **2017**, *46*, 363-369.

[163] Wang, X.; Zhang, J.; He, Y.; Wang, L.; Liu, L.; Wang, H.; Guo, X.; Lian, H., *Chemical Physics Letters* **2016**, 658, 319-323.

[164] Liu, C.; Wang, X.; Xie, F.; Liu, L.; Ruan, S., *Journal of Materials Science: Materials in Electronics* **2016**, *27*, 9870-9876.

[165] Wang, J.; Zou, B.; Ruan, S.; Zhao, J.; Chen, Q.; Wu, F., *Materials Letters* **2009**, *63*, 1750-1753.

[166] He, Y.; Wang, D.; Ge, F.; Liu, L., Journal of Semiconductors 2015, 36, 083005.

[167] Feng, C.; Li, X.; Wang, C.; Sun, Y.; Zheng, J.; Lu, G., *RSC Advances* **2014**, *4*, 47549-47555.

[168] Kim, J. H.; Zheng, Y.; Mirzaei, A.; Kim, S. S., *Korean Journal of Materials Research* **2016**, *26*, 741-750.

[169] Katoch, A.; Byun, J.-H.; Choi, S.-W.; Kim, S. S., Sensors and Actuators B: Chemical **2014**, 202, 38-45.

[170] Feng, C.; Wang, C.; Zhang, H.; Li, X.; Wang, C.; Cheng, P.; Ma, J.; Sun, P.; Gao, Y.; Zhang, H.; Sun, Y.; Zheng, J.; Lu, G., *Sensors and Actuators B: Chemical* **2015**, *221*, 1475-1482.

[171] Moon, J.; Park, J.-A.; Lee, S.-J.; Zyung, T.; Kim, I.-D., Sensors and Actuators B: Chemical **2010**, *149*, 301-305.

[172] Kim, J. H.; Abideen, Z. U.; Zheng, Y.; Kim, S. S., Sensors 2016, 16, 1857.

[173] Yang, X.; Salles, V.; Kaneti, Y. V.; Liu, M.; Maillard, M.; Journet, C.; Jiang, X.; Brioude, A., *Sensors and Actuators B: Chemical* **2015**, *220*, 1112-1119.

[174] Wang, Y.; Zhang, H.; Sun, X., Applied Surface Science 2016, 389, 514-520.

[175] Liu, Y.; Yang, P.; Li, J.; Matras-Postolek, K.; Yue, Y.; Huang, B., *RSC Advances* **2016**, *6*, 13371-13376.

[176] Yan, S. H.; Ma, S. Y.; Li, W. Q.; Xu, X. L.; Cheng, L.; Song, H. S.; Liang, X. Y., Sens Actuators, B Chem 2015, 221, 88-95.

[177] Liu, Y.; Yang, P.; Li, J.; Matras-Postolek, K.; Yue, Y.; Huang, B., *RSC Advances* **2015**, *5*, 98500-98507.

[178] Li, W.; Ma, S.; Li, Y.; Yang, G.; Mao, Y.; Luo, J.; Gengzang, D.; Xu, X.; Yan, S., *Sens Actuators, B Chem* **2015**, *211*, 392-402.

[179] Yan, S.; Wu, Q., Sens Actuators, B Chem 2014, 205, 329-337.

[180] Wang, B. B.; Fu, X. X.; Liu, F.; Shi, S. L.; Cheng, J. P.; Zhang, X. B., *Journal of Alloys and Compounds* **2014**, *587*, 82-89.

[181] Khorami, H. A.; Keyanpour-Rad, M.; Vaezi, M. R., *Applied Surface Science* **2011**, 257, 7988-7992.

[182] Yan, C.; Lu, H.; Gao, J.; Zhu, G.; Yin, F.; Yang, Z.; Liu, Q.; Li, G., *Journal of Alloys and Compounds* **2017**, *699*, 567-574.

[183] Li, F.; Gao, X.; Wang, R.; Zhang, T.; Lu, G., Sensors and Actuators, B: Chemical **2016**, 812-819.

[184] Yan, S. H.; Ma, S. Y.; Xu, X. L.; Li, W. Q.; Luo, J.; Jin, W. X.; Wang, T. T.; Jiang, X. H.; Lu, Y.; Song, H. S., *Materials Letters* **2015**, *159*, 447-450.

[185] Li, X.; Zhang, H.; Feng, C.; Sun, Y.; Ma, J.; Wang, C.; Lu, G., *RSC Advances* **2014**, *4*, 27552-27555.

[186] Chi, X.; Liu, C.; Li, Y.; Li, H.; Liu, L.; Bo, X.; Liu, L.; Su, C., *Materials Science in Semiconductor Processing* **2014**, *27*, 494-499.

[187] Liu, L.; Li, S.; Guo, X.; He, Y.; Wang, L., Journal of Semiconductors 2016, 37, 013005.

[188] Yu, Q.; Zhu, J.; Xu, Z.; Huang, X., Sensors and Actuators B: Chemical **2015**, 213, 27-34.

[189] Du, H.; Wang, J.; Su, M.; Yao, P.; Zheng, Y.; Yu, N., Sensors and Actuators B: Chemical 2012, 166–167, 746-752.

[190] Choi, S.-W.; Katoch, A.; Sun, G.-J.; Kim, S. S., Sensors and Actuators B: Chemical **2013**, *181*, 787-794.

[191] Park, J.-A.; Moon, J.; Lee, S.-J.; Kim, S. H.; Chu, H. Y.; Zyung, T., Sensors and Actuators B: Chemical 2010, 145, 592-595.

[192] Wei, S.; Zhang, Y.; Zhou, M., Solid State Communications 2011, 151, 895-899.

[193] Liu, L.; Zhang, Y.; Wang, G.; Li, S.; Wang, L.; Han, Y.; Jiang, X.; Wei, A., Sensors and Actuators B: Chemical 2011, 160, 448-454.

[194] Song, X.; Zhang, D.; Fan, M., Applied Surface Science 2009, 255, 7343-7347.

[195] Li, C.; Feng, C.; Qu, F.; Liu, J.; Zhu, L.; Lin, Y.; Wang, Y.; Li, F.; Zhou, J.; Ruan, S., *Sensors and Actuators B: Chemical* **2015**, *207, Part A*, 90-96.

[196] Zheng, W.; Lu, X.; Wang, W.; Dong, B.; Zhang, H.; Wang, Z.; Xu, X.; Wang, C., *Journal of the American Ceramic Society* **2010**, *93*, 15-17.

[197] Tang, W.; Wang, J.; Yao, P.; Li, X., Sensors and Actuators B: Chemical 2014, 192, 543-549.

[198] Zhao, Y.; He, X.; Li, J.; Gao, X.; Jia, J., Sensors and Actuators B: Chemical 2012, 165, 82-87.

[199] Katoch, A.; Choi, S.-W.; Kim, J.-H.; Lee, J. H.; Lee, J.-S.; Kim, S. S., Sensors and Actuators B: Chemical 2015, 214, 111-116.

[200] Bai, S.; Guo, W.; Sun, J.; Li, J.; Tian, Y.; Chen, A.; Luo, R.; Li, D., Sensors and Actuators B: Chemical 2016, 226, 96-103.

[201] Alali, K. T.; Liu, T.; Liu, J.; Liu, Q.; Fertassi, M. A.; Li, Z.; Wang, J., *Journal of Alloys and Compounds* **2017**, *702*, 20-30.