

Supplementary Figure 1. (A) Mapping of sequence reads from *S. goreaui* and *S. kawagutii* to five assembled *Symbiodinium* genomes: *S. goreaui* and *S. kawagutii* from this study, *S. kawagutii* (Lin et al. 2015), *S. minutum* (Shoguchi et al. 2013), and *S. microadriaticum* (Aranda et al. 2016). (B) Mapping of *S. kawagutii* sequence reads from this study (left) and from Lin et al. (2015; right) onto the assembled genome from Lin et al. (2015; above), and the preliminary genome assembly from this study (bottom). Mapping at various thresholds of mapping quality (MAPQ) are shown.

Supplementary Figure 2. Mapping of ten *S. kawagutii* fosmid sequences from Lin et al. (2015) onto the assembled genome from Lin et al. (2015) and the preliminary SPAdes genome assembly from this study, based on observed (A) number of mismatches and (B) number of gaps in the aligned regions.

Supplementary Figure 3. Interspersed repeat landscape for each genome of (A) *S. microadriaticum*, (B) *S. minutum*, (C) *S. goreaui* and (D) *S. kawagutii*, shown for only known repetitive elements on the left, and for all repetitive elements (including unknown repeats) on the right.

Supplementary Figure 4. Codon usage profiles based on predicted gene models in *S. goreaui* (this study), *S. kawagutii* (this study), *S. kawagutii* (Lin et al., 2015), *S. microadriaticum* and *S. minutum*.

Supplementary Figure 5. Amino acid profiles based on predicted gene models in *S. goreaui* (this study), *S. kawagutii* (this study), *S. kawagutii* (Lin et al., 2015), *S. microadriaticum* and *S. minutum*.

Supplementary Figure 6. Non-canonical splice sites in the genomes of *S. goreaui* (A) and *S. kawagutii* (B), shown for the donor (left) and the acceptor (right).

Supplementary Figure 7. Recovery of (A) CEGMA and (B) BUSCO genes in *Symbiodinium* using the default programs, and the recovery of CEGMA genes based on (C) a suite of BLAST analyses using the predicted proteins of *Symbiodinium* and their genome scaffolds. (D) The overlapping CEGMA genes in each genome based on TBLASTX analysis. (E) Number and percentage of homologous protein sets shared among the four *Symbiodinium* genomes.

Supplementary Figure 8. Schematic workflow for analysis of positive selection in this study, with number of items at the six designated stages (A, B, C, D, E and F) shown for the analyses using the 15-taxon set.

Supplementary Figure 9. Number of "contaminated" genome scaffolds that contain regions with hits to bacterial or viral genomes, shown at different threshold of percentage sequence cover in the scaffolds for (A) *S. goreaui* and (B) *S. kawagutii*. The implicated gene models in the corresponding scaffolds in *S. goreaui* and *S. kawagutii* are shown in (C) and (D) respectively.

number of homologous protein sets (gene families) : 11136

number of homologous protein sets (gene families) : 21196

number of homologous protein sets (gene families) : 24761

Supplementary Figure 10. Analysis of gene gain and gene loss in distinct *Symbiodinium* lineages based on clustering of gene families using inflation parameter *I* at (A) 1.0, (B) 1.5 and (C) 2.0.

Symbiodinium goreaui SCF055-01 (clade C) Insert size Number of raw Total bases of raw Number of Total bases of Library filtered reads (bases) 150-base reads reads filtered reads Paired-end-230-read1 114,097,328 17,114,599,200 112,131,983 16,673,830,321 230 Paired-end-230-read2 114,097,328 17,114,599,200 111,484,222 16,460,439,867 230 Paired-end-500-read1 500 143,659,886 21,548,982,900 143,659,886 21,025,889,473 143,659,886 21,548,982,900 143,659,886 Paired-end-500-read2 500 19,917,972,952 Mate-pair-3k-read1 3000 51,818,233 7,772,734,950 19,716,458 2,338,880,924 Mate-pair-3k-read2 3000 51,818,233 7,772,734,950 19,267,699 2,273,478,043 Mate-pair-6k-read1 6000 46,780,528 7,017,079,200 18,079,228 2,139,909,539 Mate-pair-6k-read2 6000 46,780,528 7,017,079,200 17,651,099 2,079,770,820 30,718,808 4,607,821,200 1,303,946,153 Mate-pair-9k-read1 9000 10,903,776 Mate-pair-9k-read2 9000 30,718,808 4,607,821,200 10,655,510 1,269,966,863 Single-end (after filtering) 78,528,939 5,183,436,887 n/a n/a n/a TOTAL 774,149,566 116,122,434,900 685,738,686 90,667,521,842 Symbiodinium kawagutii CS-156 (=CCMP2468; clade F) Paired-end-230-read1 230 175,549,642 26,332,446,300 171,450,581 25,504,756,026 Paired-end-230-read2 230 175,549,642 26,332,446,300 171,450,581 25,153,088,954 51,491,804 Mate-pair-4k-read1 4000 7,723,770,600 19,529,439 2,335,641,250 51,491,804 Mate-pair-4k-read2 4000 7,723,770,600 19,529,439 2,326,433,751 Mate-pair-6k-read1 6000 52,197,110 7,829,566,500 19,803,840 2,368,759,747 Mate-pair-6k-read2 52,197,110 7,829,566,500 19,803,840 2,357,239,118 6000 Mate-pair-9k-read1 9000 28,050,295 4,207,544,250 10,846,597 1,288,094,198 Mate-pair-9k-read2 9000 28,050,295 4,207,544,250 10,846,597 1,282,668,909 Single-end (after filtering) n/a n/a n/a 178,881,831 2,347,886,305 TOTAL 614,577,702 92,186,655,300 622,142,745 64,964,568,258

Supplementary Table 1. New genome sequencing data generated in this study.

	<i>Symbiodinium goreaui</i> SCF055-01 (clade C, type C1)	<i>Symbiodinium kawagutii</i> CS-156 (=CCMP2468, clade F)
%G+C	44.83	45.72
Total number of scaffolds	41,289	16,959
Total assembled bases (bp)	1,027,792,016	1,048,482,934
N50 length of scaffolds (bp)	98,034	268,823
Maximum scaffold length (bp)	8,337,000	5,159,000
Total number of contigs	267,890	109,980
N50 length of contigs (bp)	6,576	35,743
Maximum contig length (bp)	3,449,000	956,496
Number of scaffolds > 50 Kb	6,160	4,204
% genome in scaffolds > 50 Kb	72.87	88.91
% gap	13.22	15.24
Estimated genome size (bp)	1,189,354,686	1,072,636,679

Supplementary Table 3. Estimation of genome size for *S. goreaui* and *S. kawagutii* based on *k*-mer coverage.

Estimate of genome size (bp)							
k	<i>Symbiodinium goreaui</i> SCF055-01 (clade C, type C1)	<i>Symbiodinium kawagutii</i> CS-156 (=CCMP2468, clade F)					
17	1,155,783,960	1,060,560,949					
19	1,176,285,240	1,075,387,053					
21	1,194,377,556	1,057,483,567					
23	1,210,721,782	1,069,035,022					
25	1,192,813,515	1,080,674,525					
27	1,206,146,062	1,092,678,958					
Mean	1,189,354,686	1,072,636,679					

Sequence	Encoded gene	Sequence length (bp)	Circular	Number of core regions identified
SC1_Plastid_1	psbC/23S rRNA/ psaA/atpB	10,928	No	4
SC1_Plastid_2	psbB/psbA	4,954	No	2
SC1_Plastid_3	16S rRNA/petB	4,255	No	3
SC1_Plastid_4	psaB	2,253	No	1
SC1_Plastid_5	atpA	2,048	No	1
SC1_Plastid_6	psbD	1,781	No	1
SC1_Plastid_7	petD	1,476	No	1
SC1_Plastid_8	psbE	1,006	No	1
SC1_Plastid_9	psbl	2,349	No	1
SC1_Plastid_10	none ("empty")	2,394	No	1

Supplementary Table 4. Putative plastid genome fragments in *S. goreaui* and the encoded genes. Evidence of circularisation and number of core regions identified are shown.

Sequence	Encoded gene	Sequence length (bp)	Circular	Number of core regions identified
SF_Plastid_1	psaB	11,097	No	1
SF_Plastid_2	psbA/atpB	6,627	No	3
SF_Plastid_3	psaA	7,802	Yes	2
SF_Plastid_4	psbC	4,497	No	2
SF_Plastid_5	atpA	4,489	Yes	0
SF_Plastid_6	23S rRNA	3,059	No	0
SF_Plastid_7	psbB	2,237	No	1
SF_Plastid_8	psbD	1,500	No	0
SF_Plastid_9	petD	1,290	No	0
SF_Plastid_10	petB	1,132	No	0
SF_Plastid_11	16S rRNA	1,070	No	0
SF_Plastid_12	16S rRNA	1,696	Yes	1
SF_Plastid_13	psbl	1,581	No	0
SF_Plastid_14	none ("Empty")	1,517	Yes	2
SF_Plastid_15	none ("Empty")	1,293	No	1

Supplementary Table 5. Putative plastid genome fragments in *S. kawagutii* and the encoded genes. Evidence of circularisation and number of core regions identified are shown.

Supplementary Table 6. Length and GC content of the coding and non-coding regions identified in the plastid genome sequences in *Symbiodinium*.

	S. goreaui (clade C)	S. kawagutii (clade F)	<i>Symbiodinium</i> clade C3 (Barbrook et al. 2014)
Total Length (bp)	33,444	50,887	27,303
Total GC%	41.35%	38.88%	41.84%
Coding regions			
Total length (bp)	15,393	23,753	15,828
G+C (%)	36.80	35.46	36.03
Non-coding regions			
Total length (bp)	18,051	27,134	11,475
G+C (%)	45.64	42.56	48.22

Supplementary Table 7. Core conserved regions identified in plastid genomes of *S. goreaui* and *S. kawagutii*.

Species	Core conserved region	Length (bp)
S. goreaui	TAATGGGCTGGGTGCCCTACCCAGCCCATATGGGCCCACGCTTCG CGGGGCCCATAACGGCCCTTCGGGCCTTCAAAAA	79
S. kawagutii	GTGATTCCCAAGGACCGGAAGCCGGACCTTGGGAATCAGCG	41

Supplementary Table 8. Statistics of predicted gene models in *Symbiodinium* genomes.

	S. microadriaticum	S. minutum	S. kawagutii	S. goreaui	S. kawagutii
Symbiodinium clade	Α	В	F	С	F
Reference	Aranda et al. 2016	Shoguchi et al. 2013	Lin et al. 2015	This study	This study
Assembly					
Total assembled bases (bp)	808,242,489	609,476,485	935,067,369	1,027,792,016	1,048,482,934
G+C content (%)	50.51	43.46	43.97	44.83	45.72
Genes					
Number of genes	49,109	47,014	36,850	35,913	26,609
Mean length of genes (CDS+introns) (bp)	12,898	*11,961	3,788	6,967	6,507
Mean length of transcripts (CDS) (bp)	*2,377	*2,068	1,041	1,766	1,736
Gene models supported by transcriptome (%)	76.30	77.20	72.82	67.02	64.40
Gene Content (total gene length/ total assembled bases x 100) (%)	*78.37	*68.12	14.93	24.36	16.51
G+C content of CDS (%)	*57.67	*50.80	*52.69	56.70	54.95
Exons					
Number of exons per gene	21.8	*19.6	4.1	10	8.7
Average length (bp)	109.5	*100.8	256	175.9	199.5
Total length (Mb)	117.3	*83.0	38.4	63.4	46.2
Introns					
Number of genes with introns (%)	98.2	*94.7	64.1	92.9	94
Average length (bp)	504.7	*500.4	893	575.1	619.4
Total length (Mb)	516.1	*332.2	101.2	186.8	126.9
Intergenic regions					
Average length (bp)	3,633	*1,993	17,888	10,627	23,042

*: values calculated in this study

Ourskie disium -	Percentag	e of 5′-donor s	G following		
genome	GAGCGT(non-canonical)(canonical)(non-canonical)		AG acceptor sites	References and/or remarks	
S. microadriaticum (clade A)	21.9	52.1	26.0	96.2	Aranda et al. 2016
S. minutum (clade B)	15.3	35.9	47.0	93.7	Shoguchi et al. 2013; numbers from Aranda et al. 2016
<i>S. kawagutii</i> (clade F)	2.3	23.2	65.6	86.4	Lin et al. 2015; numbers from Aranda et al. 2016. No splice sites were specified in gene prediction in Lin et al. 2015.
S. goreaui (clade C)	20.6	43.0	36.3	95.5	This study
S <i>. kawagutii</i> (clade F)	19.4	36.3	44.3	94.4	This study

Supplementary Table 9. Percentage of donor splice sites in *Symbiodinium* genomes.

Supplementary Table 10. Syntenic collinear blocks between each possible pair of four *Symbiodinium* genomes. Each genome is identified by the clade: *S. microadriaticum* (A), *S. minutum* (B), *S. goreaui* (C) and *S. kawagutii* (F).

Number of genes in a	f Number of identified collinear blocks in each genome-pair				Number of genes implicated in collinear blocks in each genome-pair				blocks			
block	A-B	A-C	A-F	B-C	B-F	C-F	A-B	A-C	A-F	B-C	B-F	C-F
5	1	2	0	4	1	2	5	10	0	20	5	10
6	152	42	52	58	65	99	912	252	312	348	390	594
7	77	24	30	47	36	220	539	168	210	329	252	1540
8	51	11	18	22	26	154	408	88	144	176	208	1232
9	32	4	8	9	17	110	288	36	72	81	153	990
10	23	1	3	7	13	73	230	10	30	70	130	730
11	11	0	2	2	9	64	121	0	22	22	99	704
12	7	2	4	3	2	33	84	24	48	36	24	396
13	7	0	2	1	0	25	91	0	26	13	0	325
14	2	0	1	0	1	30	28	0	14	0	14	420
15	4	0	1	2	1	17	60	0	15	30	15	255
16	1	0	0	0	1	8	16	0	0	0	16	128
17	2	0	0	0	1	11	34	0	0	0	17	187
18	0	0	0	0	0	5	0	0	0	0	0	90
19	0	0	0	0	0	6	0	0	0	0	0	114
20	0	0	0	0	0	4	0	0	0	0	0	80
21	0	0	0	0	0	3	0	0	0	0	0	63
22	0	0	0	0	0	3	0	0	0	0	0	66
23	0	0	0	0	0	1	0	0	0	0	0	23
24	0	0	0	0	0	2	0	0	0	0	0	48
25	0	0	0	0	0	2	0	0	0	0	0	50
26	0	0	0	0	0	2	0	0	0	0	0	52
27	0	0	0	0	0	4	0	0	0	0	0	108
28	0	0	0	0	0	2	0	0	0	0	0	56
29	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	2	0	0	0	0	0	60
31	0	0	0	0	0	1	0	0	0	0	0	31
32	0	0	0	0	0	1	0	0	0	0	0	32
33	0	0	0	0	0	1	0	0	0	0	0	33
34	0	0	0	0	0	0	0	0	0	0	0	0
35	0	0	0	0	0	0	0	0	0	0	0	0
36	0	0	0	0	0	1	0	0	0	0	0	36
37	0	0	0	0	0	0	0	0	0	0	0	0
38	0	0	0	0	0	0	0	0	0	0	0	0
39	0	0	0	0	0	1	0	0	0	0	0	39
40	0	0	0	0	0	0	0	0	0	0	0	0
53	0	0	0	0	0	1	0	0	0	0	0	53
76	0	0	0	0	0	1	0	0	0	0	0	76
TOTAL	370	86	121	155	173	889	2816	588	893	1125	1323	8621

	S. gor	eaui	S. kawa	agutii
	number	%	number	%
Total number of gene models	35,913	100.00	26,609	100.00
Number of gene models with UniProt hits	31,646	88.12	21,947	82.48
Number of gene models with Swiss-Prot top hits	17,420	48.51	9,966	37.45
Number of gene models with TrEMBL top hits	14,226	39.61	11,981	45.03
Number of gene models with GO terms associated with Swiss-Prot or TrEMBL hits	29,198	81.30	20,153	75.74
Number of gene models with association with KEGG orthologs	11,604	32.31	6,162	23.16
Number of gene models with annotated Pfam domains	19,718	54.90	11,628	43.70

Supplementary Table 11. Statistics of annotated gene models in S. goreaui and S. kawagutii.

Supplementary Table 12. List of top ten most abundant protein domains in *Symbiodinium*.

Pfam ID	Domain	Count
Symbiodini	<i>um goreaui</i> (Clade C)	
PF00069	Protein kinase domain	494
PF00005	ABC transporter	441
PF07727	Reverse transcriptase (RNA-dependent DNA polymerase)	344
PF00520	Ion transport protein	314
PF12796	Ankyrin repeats (3 copies)	292
PF00072	Response regulator receiver domain	226
PF02518	Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase	220
PF00884	Sulfatase	218
PF07690	Major Facilitator Superfamily	198
PF00145	C-5 cytosine-specific DNA methylase	176
Symbiodini	um kawagutii (Clade F)	
PF07727	Reverse transcriptase (RNA-dependent DNA polymerase)	538
PF00145	C-5 cytosine-specific DNA methylase	445
PF00069	Protein kinase domain	374
PF12796	Ankyrin repeats (3 copies)	302
PF00078	Reverse transcriptase (RNA-dependent DNA polymerase)	260
PF00520	Ion transport protein	246
PF00665	Integrase core domain	177
PF00005	ABC transporter	149
PF00075	RNase H	124
PF00226	DnaJ domain	122
Symbiodini	um microadriaticum (Clade A)	
PF07727	Reverse transcriptase (RNA-dependent DNA polymerase)	1347
PF12796	Ankyrin repeats (3 copies)	994
PF00078	Reverse transcriptase (RNA-dependent DNA polymerase)	797
PF00069	Protein kinase domain	745
PF00520	Ion transport protein	640
PF00665	Integrase core domain	368
PF13499	EF-hand domain pair	304
PF00226	DnaJ domain	239
PF13637	Ankyrin repeats (many copies)	230
PF13812	Pentatricopeptide repeat domain	217
Symbiodini	um minutum (Clade B)	
PF07727	Reverse transcriptase (RNA-dependent DNA polymerase)	772
PF00069	Protein kinase domain	756
PF12796	Ankyrin repeats (3 copies)	679
PF00520	Ion transport protein	668
PF13499	EF-hand domain pair	386
PF00226	DnaJ domain	285
PF13041	PPR repeat family	216
PF13812	Pentatricopeptide repeat domain	215
PF00076	RNA recognition motif. (a.k.a. RRM; RBD; or RNP domain)	211
PF00665	Integrase core domain	211

Supplementary Table 13. Reference proteins from 31 eukaryote species used in the Pfam domain enrichment analysis.

Phylum/ Group	Subgroup	Species	Data source
Alveolata	Apicomplexa	Plasmodium falciparum	ftp://ftp.ensemblgenomes.org/pub/protists/release- 32/fasta/plasmodium_falciparum/pep/Plasmodium_falciparum.ASM276v1.pep.all.fa.gz
Alveolata	Apicomplexa	Toxoplasma gondii	ftp://ftp.ensemblgenomes.org/pub/protists/release- 32/fasta/toxoplasma_gondii/pep/Toxoplasma_gondii.ToxoDB-7.1.pep.all.fa.gz
Alveolata	Ciliate	Paramecium biaurelia	http://paramecium.cgm.cnrs-gif.fr/download/species/pbiaurelia/biaurelia_V1- 4_annotation_v1.protein.fa
Alveolata	Ciliate	Paramecium caudatum	http://paramecium.cgm.cnrs- gif.fr/download/species/pcaudatum/caudatum_43c3d_annotation_v1.protein.fa
Alveolata	Ciliate	Paramecium sexaurelia	http://paramecium.cgm.cnrs-gif.fr/download/species/psexaurelia/sexaurelia_AZ8- 4_annotation_v1.protein.fa
Alveolata	Ciliate	Paramecium tetraurelia	ftp://ftp.ensemblgenomes.org/pub/protists/release- 32/fasta/paramecium_tetraurelia/pep/Paramecium_tetraurelia.GCA_000165425.1.pep.all.f a.gz
Alveolata	Dinoflagellate*	Alexandrium tamarense CCMP1771; MMETSP0382	http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/
Alveolata	Dinoflagellate*	Amphidinium carterae CCMP1314; MMETSP0398/MMETSP0399/ MMETSP0258/MMETSP0259	http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/
Alveolata	Dinoflagellate*	Gambierdiscus australes CAWD149; MMETSP0766	http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/
Alveolata	Dinoflagellate*	Heterocapsa triquetra CCMP448; MMETSP0448	http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/
Alveolata	Dinoflagellate*	Karenia brevis CCMP2229; MMETSP0029	http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/
Alveolata	Dinoflagellate*	Karlodinium micrum CCMP2283; MMETSP1015	http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/
Alveolata	Dinoflagellate*	Lingulodinium polyedra CCMP1738; MMETSP1033	http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/
Alveolata	Dinoflagellate*	Polarella glacialis CCMP1383; MMETSP0227; CCMP2088; MMETSP1440	http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/
Alveolata	Dinoflagellate*	Prorocentrum minimum CCMP1329; MMETSP0053	http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/
Alveolata	Dinoflagellate*	Scrippsiella hangoei SHTV5; MMETSP0359/MMETSP0360	http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/
Alveolata	Dinoflagellate*	Symbiodinium goreaui	This study
Alveolata	Dinoflagellate*	Symbiodinium kawagutii	This study
Alveolata	Dinoflagellate*	Symbiodinium microadriaticum	http://smic.reefgenomics.org/download/Smic.genome.annotation.pep.longest.fa.gz
Alveolata	Dinoflagellate*	Symbiodinium minutum	http://marinegenomics.oist.jp/symb/download/symbB.v1.2.augustus.prot.fa.gz
Alveolata	Perkinsea*	Perkinsus marinus	http://mirrors.vbi.vt.edu/mirrors/ftp.ncbi.nih.gov/genomes/refseq/protozoa/Perkinsus_marin us/representative/GCF_000006405.1_JCVI_PMG_1.0/GCF_000006405.1_JCVI_PMG_1.0 _protein.faa.gz
Stramenopiles	Diatom	Phaeodactylum tricornutum	ftp://ftp.ensemblgenomes.org/pub/protists/release- 32/fasta/phaeodactylum_tricornutum/pep/Phaeodactylum_tricornutum.ASM15095v2.pep.al I.fa.gz
Stramenopiles	Diatom	Thalassiosira pseudonana	ftp://ftp.ensemblgenomes.org/pub/protists/release- 32/fasta/thalassiosira_pseudonana/pep/Thalassiosira_pseudonana.ASM14940v2.pep.all.fa .gz
Archaeplastida	Angiosperm	Arabidopsis thaliana	ftp://ftp.arabidopsis.org/home/tair/Proteins/TAIR10_protein_lists/TAIR10_pep_20101214
Archaeplastida	Green algae	Chlamydomonas reinhardtii	ftp://ftp.ensemblgenomes.org/pub/plants/release- 32/fasta/chlamydomonas_reinhardtii/pep/Chlamydomonas_reinhardtii.v3.1.pep.all.fa.gz
Archaeplastida	Green algae	Micromonas commoda RCC299	http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism=Phytozome
Archaeplastida	Green algae	Micromonas pusilla CCMP1545	ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/151/265/GCF_000151265.2_Micromonas_ pusilla_CCMP1545_v2.0/GCF_000151265.2_Micromonas_pusilla_CCMP1545_v2.0_prote in.faa.gz
Archaeplastida	Red algae	Chondrus crispus	ftp://ftp.ensemblgenomes.org/pub/plants/release- 32/fasta/plants_rhodophyta1_collection/chondrus_crispus/pep/Chondrus_crispus.ASM350 22v2.pep.all.fa.gz
Archaeplastida	Red algae	Cyanidioschyzon merolae	ftp://ftp.ensemblgenomes.org/pub/plants/release- 32/fasta/cyanidioschyzon_merolae/pep/Cyanidioschyzon_merolae.ASM9120v1.pep.all.fa.g z
Archaeplastida	Red algae	Galdieria sulphuraria	ftp://ftp.ensemblgenomes.org/pub/plants/release- 32/fasta/plants_rhodophyta1_collection/galdieria_sulphuraria/pep/Galdieria_sulphuraria.AS M34128v1.pep.all.fa.gz
Archaeplastida	Red algae	Porphyridium purpureum	http://cyanophora.rutgers.edu/porphyridium/Porphyridium_genemodels_UPDATED.fasta

*: The 14 dinoflagellates and 1 Perkinsea species constitute the 15-taxon set.

Supplementary Table 14. Homologous protein sets used in this study.

	31-taxon set	15-taxon set
Number of proteins	1,136,347	880,969
Number of homologous sets*	56,530	44,282
Number of singletons	310,288	266,335
Number of homologous proteins in a set	826,059	614,634
Percentage of proteins in homologous sets	72.20	69.80
Number of orthogroups containing only proteins from Symbiodinium ^A	2,776	3,180
Number of Symbiodinium singletons^	21,812	24,508
Mean size of homologous protein sets	14.60	13.90

*: a set here is referred to as an "orthogroup" in OrthoFinder (Emms and Kelly, 2015); each "orthogroup" consists of homologous proteins including orthologs and paralogs.

^: all proteins in these two sets are considered Symbiodinium-specific.

Supplementary Table 15. *Symbiodinium* genes with putative functions relevant to mycosporine-like amino acid biosynthesis.

Query	Query -	Query -	Gene	UniProt	Query protein Que	S. mia y (S. microadriaticum S. minutum (clade A) (clade B)		S. goreaui (clade C)			S. kawagutii (clade F)				
group	of organism	function	name	Identifer	description le	n. Hit	E-value Aln len.	Hit	E-value	Aln len.	Hit	E-value	Aln len.	Hit	E-value	Aln len.
Actinobacte ria	Actinosynnema mirum DSM 43827	ATP-grasp	ACU381 11.1	C6WIM1_A CTMD	D-alanineD-alanine 33 ligase	9 Smic31 738	7.00E-75 335	NA	NA	NA	SymbC1.scaffol d2594.3	8.00E-25	185	SymbF.scaffo Id249.18	3.00E-10	198
Actinobacte ria	Actinosynnema mirum DSM 43827	ATP-grasp	ACU381 12.1	C6WIM2_A CTMD	Uncharacterized 42 protein	9 Smic19 143	6.00E-35 351	NA	NA	NA	NA	NA	NA	NA	NA	NA
Actinobacte ria	Pseudonocardia sp. P1	ATP-grasp	WP_010 243315. 1	WP_01024 3315.1 (NCBI)	D-alanineD-alanine 34 ligase	6 Smic31 738	3.00E-67 332	NA	NA	NA	SymbC1.scaffol d2594.3	2.00E-24	183	SymbF.scaffo Id37.151	3.00E-09	129
Actinobacte ria	Pseudonocardia sp. P1	ATP-grasp	WP_010 243317. 1	WP_01024 3317.1 (NCBI)	ATP-grasp domain- 41 containing protein	1 Smic19 143	1.00E-33 308	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cnidaria	Nematostella vectensis	ATP-grasp	EDO413 19	A7S4P1_N EMVE	ATP-grasp domain- containing protein	4 Smic19 143	3.00E-19 307	NA	NA	NA	NA	NA	NA	NA	NA	NA
ria	Anabaena variabilis ATCC 29413 Aphanothece	ATP-grasp	ava:Ava _3856	Q3M6C5_A NAVT	Ike protein	8 Smic19 143	2.00E-59 350		NA	NA	NA	4.00E-27	159	NA SymbE scaffo	2.00E-10	203
ria	halophytica	Arr grasp	s:BAO51 916.1	PHHA	ligase	738	2.002 00 000	101	104	11/1	d2594.3	4.002 27	100	ld249.18	2.00E 10	200
Cyanobacte ria	Aphanothece halophytica	ATP-grasp	saltStres s:BAO51 915.1	W8VTF0_A PHHA	C-N ligase 44	4 Smic19 143	1.00E-43 332	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanobacte ria	Nostoc punctiforme ATCC 29133	ATP-grasp	npu:Npu n_F5597	B2J6X6_N OSP7	D-alanineD-alanine 34 ligase	8 Smic31 738	3.00E-78 335	NA	NA	NA	SymbC1.scaffol d2594.3	5.00E-29	185	SymbF.scaffo Id249.18	6.00E-11	203
Cyanobacte ria	Nostoc punctiforme	ATP-grasp	npu:Npu n_R559 8	B2J6X7_N OSP7	Uncharacterized 46 protein	1 Smic19 143	1.00E-39 369	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanobacte ria	Scytonema cf crispum UCFS10	ATP-grasp	ANY589 85.1	A0A1B2CW F7_9CYAN	ATP-grasp domain- containing protein	3 Smic19 143	5.00E-40 392	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanobacte ria	Scytonema cf crispum UCFS10	ATP-grasp	ANY589 92.1	A0A1B2CW G9_9CYAN	ATP-grasp domain- 46 containing protein	3 Smic19 143	5.00E-40 392	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanobacte ria	Scytonema cf crispum UCFS15	ATP-grasp	ACLA_0 55830	A1C9L1_A SPCL	Uncharacterized 49 protein	6 Smic19 143	2.00E-25 391	NA	NA	NA	NA	NA	NA	NA	NA	NA
Actinobacte ria	Actinosynnema mirum DSM	DHQS	ACU381 14.1	C6WIM4_A CTMD	3-dehydroquinate 40 synthase	6 Smic43 919	4.00E-64 366	symbB.v1.2.0 28953.t1	3.00E-28	244	SymbC1.scaffol d2.2020	6.00E-46	346	SymbF.scaffo Id11.23	5.00E-28	343
Actinobacte ria	Pseudonocardia sp. P1	DHQS	WP_010 243321. 1	WP_01024 3321.1 (NCBI)	3-dehydroquinate 40 synthase	9 Smic43 919	5.00E-69 369	symbB.v1.2.0 28953.t1	3.00E-29	244	SymbC1.scaffol d21.53	8.00E-41	341	SymbF.scaffo Id11.23	3.00E-33	335
Actinobacte ria	Streptomyces hygroscopicus subsp. jinggangensis 5008	DHQS	4P53:A PDBID C HAIN SE QUENC E	VALA_STR HJ	2-epi-5-epi-valiolone 42 synthase	0 Smic43 919	7.00E-58 356	symbB.v1.2.0 28953.t1	6.00E-34	274	SymbC1.scaffol d2.2020	8.00E-64	380	SymbF.scaffo Id11.23	3.00E-31	355
Cnidaria	Nematostella vectensis	DHQS	EDO404 76	A7S759_N EMVE	DHQ synthase 35	2 Smic43 919	1.00E-172 351	symbB.v1.2.0 28953.t1	4.00E-24	253	SymbC1.scaffol d2.2020	3.00E-26	345	SymbF.scaffo Id11.23	4.00E-21	333
Cyanobacte ria	Anabaena variabilis ATCC 29413	DHQS	ava:Ava _3858	DDGS_AN AVT	Demethyl-4- 41 deoxygadusol synthase	0 Smic43 919	6.00E-76 372	symbB.v1.2.0 28953.t1	7.00E-27	242	SymbC1.scaffol d2.2020	8.00E-42	349	SymbF.scaffo Id11.23	3.00E-23	324
Cyanobacte ria	Aphanothece halophytica	DHQS	saltStres s:BAO51	W8VKF5_A PHHA	Demethyl 4- 58 deoxygadusol	7 Smic35 309	4.00E-173 569	symbB.v1.2.0 28953.t1	3.00E-21	248	SymbC1.scaffol d8151.2	2.00E-36	283	SymbF.scaffo Id11.23	4.00E-15	334
Cyanobacte ria	Nostoc punctiforme	DHQS	npu:Npu n_R560	DDGS_NO SP7	Demethyl-4- 41 deoxygadusol	0 Smic21 16	2.00E-71 370	symbB.v1.2.0 28953.t1	8.00E-25	242	SymbC1.scaffol d2.2020	4.00E-48	332	SymbF.scaffo Id11.23	1.00E-26	322
Cyanobacte ria	Scytonema cf crispum UCFS10	DHQS	ANY589 86.1	A0A1B2CW G1_9CYAN	/ 3-dehydroquinate 40 synthase	9 Smic43 919	1.00E-72 382	symbB.v1.2.0 28953.t1	2.00E-26	246	SymbC1.scaffol d2.2020	2.00E-50	335	SymbF.scaffo Id11.23	2.00E-31	340
Cyanobacte ria	Scytonema cf crispum UCFS15	DHQS	ANY589 93.1	A0A1B2CW G5_9CYAN	/ 3-dehydroquinate 40 synthase	9 Smic43 919	1.00E-72 382	symbB.v1.2.0 28953.t1	2.00E-26	246	SymbC1.scaffol d2.2020	2.00E-50	335	SymbF.scaffo Id11.23	2.00E-31	340
Fungi	Aspergillus clavatus NRRL 1	DHQS	ACLA_0 55850	A1C9L3_A SPCL	3-dehydroquinate 45 synthase, putative	9 Smic21 16	3.00E-72 371	symbB.v1.2.0 28953.t1	7.00E-28	265	SymbC1.scaffol d2.2020	2.00E-34	351	SymbF.scaffo Id11.23	3.00E-25	328
Fungi	Aspergillus nidulans FGSC A4	DHQS	tr Q5AZ7 7 Q5AZ7 7_EMEN	7 Q5AZ77_E 7 MENI I	3-dehydroquinate 48 synthase	3 Smic43 919	1.00E-69 368	symbB.v1.2.0 28953.t1	6.00E-25	265	SymbC1.scaffol d2.2020	3.00E-34	351	SymbF.scaffo Id11.23	2.00E-24	327
Metazoa	Danio rerio	DHQS	tr E7EX W6 E7E XW6_D	E7EXW6_D ANRE	2-epi-5-epi-valiolone 47 synthase	0 Smic21 16	1.00E-49 413	symbB.v1.2.0 28953.t1	6.00E-27	259	SymbC1.scaffol d2.2020	2.00E-48	368	SymbF.scaffo Id11.23	9.00E-24	339
Metazoa	Danio rerio	DHQS	tr Q5BL E6 Q5B LE6_DA	Q5BLE6_D ANRE	Zgc:113054 55	1 Smic21 16	3.00E-45 268	symbB.v1.2.0 20911.t1	3.00E-29	264	SymbC1.scaffol d2.1851	4.00E-38	248	SymbF.scaffo Id11.10	7.00E-36	243
Dinoflagella ta	Heterocapsa triquetra	DHQS/O- MT	ABF617 66	Q15BR2_H ETTR	Chloroplast 3- 95 dehydroquinate synthase/O- methyltransferase fusion	1 Smic21 16	0.00 943	symbB.v1.2.0 28953.t1	2.00E-19	255	SymbC1.scaffol d8151.2	2.00E-90	269	SymbF.scaffo Id313.28	8.00E-11	140
Cyanobacte ria	Anabaena variabilis ATCC	NRPS	ava:Ava _3855	Q3M6C6_A NAVT	Amino acid 88 adenylation	8 Smic36 90	2.00E-101 616	symbB.v1.2.0 12436.t1	8.00E-78	474	SymbC1.scaffol d70.75	0.00	720	SymbF.scaffo Id1354.11	4.00E-68	481
Cyanobacte ria	Scytonema cf crispum UCFS10	NRPS	ANY589 84.1	A0A1B2CW G3_9CYAN	/ Non-ribosomal 132 synthetase	8 Smic36 90	7.00E-104 808	symbB.v1.2.0 12436.t1	6.00E-90	982	SymbC1.scaffol d70.75	0.00	1169	SymbF.scaffo ld213.33	3.00E-63	635
Cyanobacte ria	Scytonema cf crispum UCFS15	NRPS	ANY589 91.1	A0A1B2CW H8_9CYAN	/ Non-ribosomal 132 synthetase	8 Smic36 90	7.00E-104 808	symbB.v1.2.0 12436.t1	6.00E-90	982	SymbC1.scaffol d70.75	0.00	1169	SymbF.scaffo ld213.33	3.00E-63	635
Actinobacte ria	Actinosynnema mirum DSM 43827	O-MT	ACU381 13.1	C6WIM3_A CTMD	O-methyltransferase 28 family 3	4 Smic13 33	2.00E-38 230	symbB.v1.2.0 06248.t1	2.00E-26	191	SymbC1.scaffol d2377.8	2.00E-28	192	SymbF.scaffo Id308.24	9.00E-13	113
Actinobacte ria	Pseudonocardia sp. P1	O-MT	WP_010 243319. 1	WP_01024 3319.1 (NCBI)	SAM-dependent 25 methyltransferase	0 Smic21 16	2.00E-42 257	symbB.v1.2.0 06248.t1	7.00E-19	241	SymbC1.scaffol d25.7	8.00E-23	175	SymbF.scaffo Id313.28	2.00E-10	160
Cnidaria	Nematostella vectensis	O-MT	EDO404 75	A7S758_N EMVE	O-methyltransferase 17 activity	4 Smic13 33	2.00E-27 179	symbB.v1.2.0 06248.t1	6.00E-12	185	SymbC1.scaffol d25.7	1.00E-21	168	SymbF.scaffo Id308.24	6.00E-07	109

Query	Query -	Query -	Gene	UniProt	Query protein	S. microadriaticum S. minutum Query protein Query (clade A) (clade B)		<i>inutum</i> de B)		S.g (cla	o <i>reaui</i> de C)	S. kawagutii (clade F)						
group	of organism	function	name	Identifer	description	len.	Hit	E-value	Aln len.	Hit	E-value	Aln len.	Hit	E-value	Aln len.	Hit	E-value	Aln len.
Cyanobacte ria	Anabaena variabilis ATCC 29413	O-MT	ava:Ava _3857	Q3M6C4_A NAVT	O-methyltransferase family 3	279	Smic21 16	5.00E-45	238	symbB.v1.2.0 06248.t1	5.00E-25	194	SymbC1.scaffol d2377.8	5.00E-33	195	SymbF.scaffo Id308.24	1.00E-10	116
Cyanobacte ria	Aphanothece halophytica	O-MT	saltStres s:BAO51 914.1	W8VY25_A PHHA	O-methyltransferase	279	Smic21 16	2.00E-49	273	symbB.v1.2.0 18440.t1	6.00E-20	216	SymbC1.scaffol d25.7	4.00E-26	174	SymbF.scaffo Id308.24	2.00E-13	122
Cyanobacte ria	Nostoc punctiforme ATCC 29133	O-MT	npu:Npu n_R559 9	B2J6X8_N OSP7	O-methyltransferase family 3	277	Smic13 33	1.00E-45	253	symbB.v1.2.0 18440.t1	2.00E-24	205	SymbC1.scaffol d2377.8	8.00E-28	191	SymbF.scaffo Id308.24	4.00E-11	124
Cyanobacte ria	Scytonema cf crispum UCFS15	O-MT	ANY589 87.1	A0A1B2CW H0_9CYAN	O-methyltransferase	296	Smic21 16	2.00E-47	225	symbB.v1.2.0 18440.t1	1.00E-28	200	SymbC1.scaffol d2377.8	1.00E-28	191	SymbF.scaffo Id308.24	1.00E-12	124
Cyanobacte ria	Scytonema cf crispum UCFS15	O-MT	ANY589 94.1	A0A1B2CW H5_9CYAN	O-methyltransferase	296	Smic21 16	2.00E-47	225	symbB.v1.2.0 18440.t1	1.00E-28	200	SymbC1.scaffol d2377.8	1.00E-28	191	SymbF.scaffo Id308.24	1.00E-12	124
Fungi	Aspergillus clavatus NRRL 1	O-MT	ACLA_0 55840	A1C9L2_A SPCL	O-methyltransferase putative	286	Smic31 139	9.00E-24	194	symbB.v1.2.0 14617.t2	5.00E-26	201	SymbC1.scaffol d2416.1	3.00E-23	179	SymbF.scaffo Id593.9	1.00E-23	205
Fungi	Aspergillus nidulans FGSC A4	O-MT/ATP- grasp	tr Q5AZ7 8 Q5AZ7 8_EMEN I	Y Q5AZ78_E Y MENI I	Uncharacterized protein	816	Smic19 143	2.00E-26	402	symbB.v1.2.0 14617.t2	3.00E-26	240	SymbC1.scaffol d5773.1	9.00E-22	183	SymbF.scaffo Id593.9	1.00E-23	205
Cyanobacte ria	Scytonema cf crispum UCFS10	Short-chain dehydrogen ase	ANY589 88.1	A0A1B2CW F8_9CYAN	/ Short-chain dehydrogenase	293	Smic14 13	5.00E-27	236	symbB.v1.2.0 20911.t1	3.00E-24	258	SymbC1.scaffol d2890.25	1.00E-34	252	SymbF.scaffo Id270.25	1.00E-24	233
Cyanobacte ria	Scytonema cf crispum UCFS10	Short-chain dehydrogen ase	ANY589 95.1	A0A1B2CW H2_9CYAN	/ short-chain dehydrogenase	293	Smic14 13	5.00E-27	236	symbB.v1.2.0 20911.t1	3.00E-24	258	SymbC1.scaffol d2890.25	1.00E-34	252	SymbF.scaffo Id270.25	1.00E-24	233

Supplementary Table 16. BLASTP hits ($E < 10^{-5}$) in *Symbiodinium* for each of the 18 *Nostoc punctiforme* proteins involved in scytonemin biosynthesis.

Destain	S. microadriaticum () S. minutum (B)		S. goreaui (C)		S. kawagutii (F)		
Protein	Hit(s) E-va	ie Hit(s) E	E-value	Hit(s)	E-value	Hit(s)	E-value	
UniProt ID: B2IXH5 Gene: <i>scyA</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1276	Smic28555 5.00E Smic21519 3.00E Smic26902 6.00E	4 symbB.v1.2.035008.t1 5.0 1 symbB.v1.2.032800.t1 8.0 1 symbB.v1.2.034800.t2 1.0 symbB.v1.2.034800.t1 2.0	00E-19 00E-14 00E-10 00E-10	SymbC1.scaffold2.2026 SymbC1.scaffold1.2344 SymbC1.scaffold4.363 SymbC1.scaffold4.284 SymbC1.scaffold4.284 SymbC1.scaffold5.1134 SymbC1.scaffold5.1134 SymbC1.scaffold5.119 SymbC1.scaffold5.414 SymbC1.scaffold5.40.25 SymbC1.scaffold1.1273 SymbC1.scaffold1.1273 SymbC1.scaffold1.1273 SymbC1.scaffold1.1273 SymbC1.scaffold1.1273 SymbC1.scaffold1.1273 SymbC1.scaffold1.1273 SymbC1.scaffold1.1273 SymbC1.scaffold1.1273 SymbC1.scaffold1.1273 SymbC1.scaffold2.950 SymbC1.scaffold35850.1 SymbC1.scaffold5156.2 SymbC1.scaffold5156.2 SymbC1.scaffold5156.2 SymbC1.scaffold3142.3 SymbC1.scaffold3142.3 SymbC1.scaffold1672.2 SymbC1.scaffold21415.1 SymbC1.scaffold2131.1 SymbC1.scaffold241.24	1.00E-40 5.00E-32 2.00E-27 4.00E-27 2.00E-25 1.00E-24 1.00E-23 1.00E-22 4.00E-22 1.00E-20 6.00E-20 8.00E-20 8.00E-20 8.00E-20 8.00E-20 8.00E-20 8.00E-20 8.00E-19 3.00E-19 3.00E-19 1.00E-18 8.00E-17 3.00E-15 1.00E-14 1.00E-12 7.00E-08 9.00E-08 7.00E-07 7.00E-06	SymbF.scaffold35.95 SymbF.scaffold3271.1 SymbF.scaffold520.14 SymbF.scaffold1982.4	3.00E-28 3.00E-20 7.00E-16 4.00E-08	
UniProt ID: B2IXH4 Gene: <i>scyB</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1275	No hits 1	A No hits	N/A	SymbC1.scaffold1093.35 SymbC1.scaffold2.1837 SymbC1.scaffold14551.5 SymbC1.scaffold32.93 SymbC1.scaffold37069.1	6.00E-83 3.00E-22 8.00E-18 2.00E-14 1.00E-11	SymbF.scaffold8.273 SymbF.scaffold3240.3	8.00E-86 5.00E-06	
UniProt ID: B2IXH3 Gene: <i>scyC</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1274	No hits N	A No hits	N/A	No hits	N/A	No hits	N/A	
UniProt ID: B2IXH2 Gene: <i>scyD</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1273	No hits No	A No hits	N/A	No hits	N/A	No hits	N/A	
UniProt ID: B2IXH1 Gene: <i>scyE</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1272	No hits	A No hits	N/A	No hits	N/A	No hits	N/A	
UniProt ID: B2IXH0 Gene: <i>scyF</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1271	Smic37965 4.00E Smic11872 6.00E Smic722 1.00E Smic37012 2.00E	6 symbB.v1.2.008932.t1 3.0 2 symbB.v1.2.008932.t1 9.0 1 symbB.v1.2.000102.t1 2.0 6 symbB.v1.2.034012.t1 3.0 symbB.v1.2.040186.t1 1.0	00E-14 00E-10 00E-13 00E-08 00E-07	SymbC1.scaffold1093.35 SymbC1.scaffold2.1837 SymbC1.scaffold14551.5 SymbC1.scaffold32.93 SymbC1.scaffold37069.1 SymbC1.scaffold4.1475 SymbC1.scaffold8194.1	6.00E-83 3.00E-22 8.00E-18 2.00E-14 1.00E-11 1.00E-07 6.00E-07	SymbF.scaffold74.4 SymbF.scaffold27.38	4.00E-07 6.00E-06	

	S. microadria	ticum (A)	S. minutum (I	В)	S. goreaui (C)	S. kawagutii (F)		
Protein	Hit(s)	E-value	Hit(s)	E-value	Hit(s)	E-value	Hit(s)	E-value	
UniProt ID: B2IXG9 Gene: Glycosyl- transferase Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1270	Smic44385 Smic5216	9.00E-12 8.00E-06	symbB.v1.2.002866.t1 symbB.v1.2.002866.t2 symbB.v1.2.026225.t1	2.00E-09 2.00E-09 3.00E-07	SymbC1.scaffold410.29 SymbC1.scaffold2.386 SymbC1.scaffold9.56 SymbC1.scaffold7.9 SymbC1.scaffold5.1082 SymbC1.scaffold2.875 SymbC1.scaffold80.139 SymbC1.scaffold2.657 SymbC1.scaffold2.92 SymbC1.scaffold2.660 SymbC1.scaffold1401.15 SymbC1.scaffold5.635	1.00E-42 4.00E-39 1.00E-26 1.00E-24 1.00E-22 1.00E-17 8.00E-09 1.00E-08 4.00E-08 9.00E-08 2.00E-07 5.00E-06	SymbF.scaffold2862.5	4.00E-07	
UniProt ID: B2IXG8 Gene: <i>tyrA</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1269	No hits	N/A	No hits	N/A	No hits	N/A	No hits	N/A	
UniProt ID: B2IXG7 Gene: <i>dsbA</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1268	Smic39492 (recovered at 1e-4)	1.01E-04	symbB.v1.2.029824.t1	1.00E-33	SymbC1.scaffold216.15 SymbC1.scaffold5154.6 SymbC1.scaffold19.147	1.00E-23 9.00E-12 5.00E-09	SymbF.scaffold2870.9	1.00E-12	
UniProt ID: B2IXG6 Gene: <i>aroB</i> (<i>DHQS</i>) Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1267	Smic42001 Smic2116 Smic43919 Smic35309 Smic35461 Smic12094	3.00E-32 1.00E-21 1.00E-21 5.00E-21 6.00E-16 5.00E-13	symbB.v1.2.028953.t1	0.00	SymbC1.scaffold11.271 SymbC1.scaffold4.799 SymbC1.scaffold9.107 SymbC1.scaffold2.2020 SymbC1.scaffold21.53 SymbC1.scaffold7772.3 SymbC1.scaffold685.28 SymbC1.scaffold7.65 SymbC1.scaffold24348.2 SymbC1.scaffold22405.1	8.00E-39 2.00E-38 1.00E-35 5.00E-34 9.00E-31 3.00E-30 6.00E-25 1.00E-18 7.00E-07	SymbF.scaffold11.23 SymbF.scaffold3925.3	2.00E-34 2.00E-23	
UniProt ID: B2IXG5 Gene: <i>trpE</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1266	Smic1909	9.00E-42	symbB.v1.2.004052.t1 symbB.v1.2.037466.t1	0.00 6.00E-20	SymbC1.scaffold3197.1 SymbC1.scaffold22.189 SymbC1.scaffold5.278 SymbC1.scaffold5.278 SymbC1.scaffold13906.1 SymbC1.scaffold17352.1 SymbC1.scaffold15.265 SymbC1.scaffold2.1336 SymbC1.scaffold23.168 SymbC1.scaffold482.52 SymbC1.scaffold482.52 SymbC1.scaffold1.483 SymbC1.scaffold80.158 SymbC1.scaffold2.1535 SymbC1.scaffold1.688 SymbC1.scaffold1.688 SymbC1.scaffold3095.7 SymbC1.scaffold3095.7 SymbC1.scaffold4.342 SymbC1.scaffold4.342	0.00 1.00E-53 3.00E-49 8.00E-39 1.00E-33 4.00E-33 1.00E-33 1.00E-30 1.00E-27 3.00E-23 8.00E-21 1.00E-19 6.00E-16 4.00E-11 2.00E-09 3.00E-08 1.00E-07 1.00E-07 3.00E-06 6.00E-06	SymbF.scaffold11.23 SymbF.scaffold3925.3	2.00E-34 2.00E-23	
UniProt ID: B2IXG4 Gene: <i>trpC</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1265	Smic7823	3.00E-33	symbB.v1.2.022171.t1	2.00E-34	SymbC1.scaffold17429.1 SymbC1.scaffold70.43 SymbC1.scaffold80.158 SymbC1.scaffold11.333 SymbC1.scaffold21.296 SymbC1.scaffold17905.1 SymbC1.scaffold21766.1 SymbC1.scaffold2493.1	3.00E-59 1.00E-55 1.00E-55 5.00E-55 3.00E-52 4.00E-46 6.00E-46 6.00E-23	SymbF.scaffold3240.10) 1.00E-09	
UniProt ID: B2IXG3 Gene: <i>trpA</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1264	Smic3643	4.00E-16	symbB.v1.2.000731.t1	2.00E-41	SymbC1.scaffold5.1067 SymbC1.scaffold19.272 SymbC1.scaffold29630.1 SymbC1.scaffold1995.42 SymbC1.scaffold4.230 SymbC1.scaffold219.88 SymbC1.scaffold7.82 SymbC1.scaffold27503.1	2.00E-60 1.00E-56 6.00E-53 6.00E-44 1.00E-43 3.00E-36 6.00E-35 1.00E-24	SymbF.scaffold3240.10	5.00E-21	

	S. microad	riaticum (A)	S. minutum (В)	S. goreaui (C		S. kawagutii (F)		
Protein	Hit(s)	E-value	Hit(s)	E-value	Hit(s)	E-value	Hit(s)	E-value	
UniProt ID: B2IXG2 Gene: <i>tyrP</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1263	Smic7316	2.00E-09	No hits	N/A	No hits	N/A	No hits	N/A	
UniProt ID: B2IXG1 Gene: <i>trpB</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1262	Smic36430 Smic14060	4.00E-37 1.00E-30	symbB.v1.2.000731.t1 symbB.v1.2.014164.t1	1.00E-154 2.00E-32	SymbC1.scaffold1.724 SymbC1.scaffold1995.42 SymbC1.scaffold4.230 SymbC1.scaffold7.82 SymbC1.scaffold51.067 SymbC1.scaffold51.067 SymbC1.scaffold29611.1 SymbC1.scaffold29611.1 SymbC1.scaffold38296.1 SymbC1.scaffold38296.1 SymbC1.scaffold284.2 SymbC1.scaffold29630.1 SymbC1.scaffold540.17 SymbC1.scaffold540.17 SymbC1.scaffold540.17	4.00E-172 4.00E-169 1.00E-166 7.00E-155 2.00E-147 3.00E-147 3.00E-143 3.00E-129 4.00E-111 2.00E-77 4.00E-33 6.00E-30 5.00E-26 1.00E-20	SymbF.scaffold11.353 SymbF.scaffold939.1 SymbF.scaffold15790.1	6.00E-172 3.00E-154 2.00E-51	
UniProt ID: B2IXG0 Gene: <i>trpD</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1261	Smic34102	2.00E-47	symbB.v1.2.012378.t1	5.00E-46	SymbC1.scaffold7.227 SymbC1.scaffold21.296 SymbC1.scaffold80.158 SymbC1.scaffold70.43	2.00E-58 7.00E-52 8.00E-49 6.00E-43	SymbF.scaffold3240.10	3.00E-59	
UniProt ID: B2IXF9 Gene: <i>aroG</i> Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1260	No hits	N/A	No hits	N/A	SymbC1.scaffold11.361 SymbC1.scaffold5.979 SymbC1.scaffold2.1765 SymbC1.scaffold2.1765 SymbC1.scaffold8922.3 SymbC1.scaffold70.31 SymbC1.scaffold18.265 SymbC1.scaffold4.307 SymbC1.scaffold216.60	3.00E-90 3.00E-87 3.00E-81 2.00E-78 2.00E-26 1.00E-24 8.00E-21 1.00E-20 2.00E-18 7.00E-14	SymbF.scaffold3240.10 SymbF.scaffold690.22 SymbF.scaffold5147.8	2.00E-82 9.00E-37 3.00E-13	
UniProt ID: B2IXF8 Gene unknown Gene ID in <i>N.</i> <i>punctiforme</i> : Npun_R1259	No hits	N/A	No hits	N/A	No hits	N/A	No hits	N/A	

Supplementary Table 17. Statistics of preliminary genome assemblies.

	Symbiodi (c	<i>nium goreaui</i> S clade C, type C1	CF055-01)	Symbiodinium kawagutii CS-156 (=CCMP2468, clade F)					
	ALLPATHS- LG	CLC Genomics Workbench	SPAdes*	ALLPATHS- LG	CLC Genomics Workbench	SPAdes			
%G+C	45.40	45.36	44.53	45.40	45.91	45.74			
Total number of scaffolds	28,243	41,412	1,906,899	6,305	85,340	501,627			
Total assembled bases (bp)	1,011,466,282	1,060,349,155	1,452,039,755	913,085,015	1,106,975,017	1,300,991,596			
N50 length of scaffolds (bp)	113,414	101,436	42,733	458,350	272,097	243,842			
Maximum scaffold length (bp)	8,454,000	8,337,350	8,340,000	5,432,874	5,507,473	6,118,942			
Total number of contigs	110,037	270,205	2,185,232	53,712	182,229	615,029			
N50 length of contigs (bp)	15,777	6,805	4,252	31,411	35,785	40,446			
Maximum contig length (bp)	2,989,000	3,449,000	1,859,000	2,124,640	1,933,067	1,245,445			
Number of scaffolds > 50 Kb	6,075	6,206	5,830	2,694	4,264	4,100			
% genome in scaffolds > 50 Kb	78.05	73.64	46.86	97.32	87.82	76.06			
% gap	21.00	12.89	8.81	7.83	14.63	19.80			
% CEGMA genes (eukaryote)	75.11	76.20	85.37	74.45	83.19	74.89			
% BUSCO genes (eukaryote)	37.62	37.62	38.61	38.61	46.86	40.26			

*: This SPAdes assembly is based on *k*-mer size 111 only, thus is more fragmented than the others.

Supplementary Table 18. Proteins used as evidence in evidence-based gene prediction.

Source	Number of sequences
RefSeq release 78 (complete)	49,301,516
Symbiodinium minutum (Shoguchi et al. 2013)	47,014
Symbiodinium kawagutii (Lin et al. 2015)	36,850
Symbiodinium microadriaticum (Aranda et al. 2016)	49,109
Symbiodinium kawagutii MMETSP0132	12,602
Symbiodinium sp. CCMP421; MMETSP1110	72,821
Symbiodinium sp. CCMP2430; MMETSP1115	44,145
Symbiodinium sp. Mp.; MMETSP1122	44,283
Symbiodinium sp. C1; MMETSP1367	43,592
Symbiodinium sp. C15; MMETSP1370	35,777
Symbiodinium sp. D1A; MMETSP1377	45,153
Total number of sequences	49,732,862

Supplementary Note 1

Nuclear genomes of S. goreaui and S. kawagutii

The G+C contents of our assembled genomes of *S. goreaui* (43.8%) and *S. kawagutii* (45.6%) are comparable to the earlier *S. kawagutii* assembly $(44.0\%)^1$ and to *S. minutum* $(43.6\%)^2$, and lower than for *S. microadriaticum* $(50.5\%)^3$. Supplementary Fig. 1A shows the extent of mapped sequence reads from *S. goreaui* and from *S. kawagutii* to each assembled *Symbiodinium* genome. Most reads (>78%) mapped to the corresponding assembly. Only about 16.5% of reads from *S. goreaui* mapped to the two *S. kawagutii* genomes, and conversely 17.6% of *S. kawagutii* reads to *S. goreaui*. This is in contrast to 4.1% of *S. goreaui* reads and 10.3% of *S. kawagutii* reads that mapped to *S. microadriaticum*. These results indicate a high extent of dissimilarity among *Symbiodinium* genomes, greatest between representatives of Clades C and A, and least (although not by far) between C and F.

We adopted a comprehensive *ab initio* approach for predicting genes, combining both evidence-based and unsupervised methods (Methods). Average gene lengths (7671 bp in *S. goreaui*, 6646 bp in *S. kawagutii*) are intermediate between the shortest (3788 bp in the earlier *S. kawagutii* genome)¹ and longest average (12,898 bp in *S. microadriaticum*)³. In addition, we observed similar codon usage (Supplementary Fig. 4) and amino acid profiles (Supplementary Fig. 5) among the genes of *S. goreaui*, *S. kawagutii* and *S. microadriaticum*; the latter shows a slight bias towards high-G+C codons. *S. minutum*² shows a distinctive codon usage profile vis-à-vis the others, with substantially higher contents of arginine, serine and tryptophan in predicted protein sequences (Supplementary Fig. 5).

Proportions of canonical (GC) and non-canonical 5'-donor splice sites (GA, GT) in *Symbiodinium* genomes are shown in Supplementary Table 9. These splice sites occur in similar proportion in the genomes of *S. goreaui* and *S. kawagutii*, with GA << GC < GT (e.g. 19.5% GA, 36.1% GC and 44.4% GT in *S. kawagutii*); a similar pattern was observed in *S. minutum*², whereas in *S. microadriaticum*³ the canonical GC is more prominent (21.9% GA, 52.1% GC and 26.0% GT). Non-canonical 5'-donor sites were not explicitly considered in the gene-prediction process for the earlier *S. kawagutii* genome, although a dominance of GT sites (65.6%) was observed. In all *Symbiodinium* genomes, a non-canonical G usually immediately follows the acceptor splice site (Supplementary Table 9 and Supplementary Fig. 6). Thus *Symbiodinium* of Clades C and F use donor splice sites similarly to Clade B, but

different than Clade A; this is likely related to the higher G+C content in the *S*. *microadriaticum* genome (50.51%) than in the others (43.46-45.59%).

Plastid genomes of S. goreaui and S. kawagutii

Plastid genomes of dinoflagellates occur as minicircles each with one or more protein-coding genes, plus a non-coding region that contains a highly conserved core⁴⁻⁶. We identified putative minicircle sequences with plastid-encoded genes in each of our two genomes: nine sequences encoding 14 genes in *S. goreaui* (Supplementary Table 4), and 13 sequences encoding 13 genes in *S. kawagutii* (Supplementary Table 5). A highly conserved core region was identified, of 79 bp and 41 bp for *S. goreaui* and *S. kawagutii* respectively (Supplementary Table 7). We also identified putative "empty" minicircles (two in *S. goreaui*, one in *S. kawagutii*) that do not encode any gene. Empty minicircles have been described in other dinoflagellates, but were not seen in *Symbiodinium* type C3⁴ or *S. minutum*⁷. Plastid-encoded *psbI*, previously reported in *S. goreaui* and *S. kawagutii*; we did not find direct evidence of circularisation in these sequences, but a core region is present in the *psbI*-encoding sequence from *S. goreaui*. Our results demonstrate that "empty" minicircles and plastid-encoded *psbI* occur in *Symbiodinium*; full-length minicircle sequences in *S. goreaui* and *S. kawagutii* remain to be validated.

Specifically from the *S. goreaui* ALLPATHS-LG assembly we recovered eight scaffolds containing all 13 known plastid-encoded genes (Supplementary Table 4) described previously for *Symbiodinium* type C3, as well as a scaffold containing the *psb1* gene described previously in *S. minutum*. Some of the genes were recovered only in part, and none of the scaffolds shows clear evidence of circularisation. Three of the gene-coding scaffolds (SC1_Plastid_1, SC1_Plastid_2 and SC1_Plastid_3) displayed characteristics that have not been described before in dinoflagellate minicircles. These scaffolds are longer than minicircles observed in other dinoflagellates, and contain multiple core regions. They also encode multiple genes, some of which are fragmentary. Although minicircles with two genes have been observed in other dinoflagellates, studies in *Symbiodinium* type C3 and *S. minutum* have not recovered any such structures^{4,7}.

All plastid genes except *psaA*, 16S rRNA and *psaB* were recovered in *S. goreaui*. The 16S rRNA is fragmented in *Symbiodinium*; we recovered three partial fragments encoded on

SC1 Plastid 3. Only 48% (973/2022 bp) of the psaA gene, representing the end of the sequence, was recovered in a single fragment on SC1 Plastid 1. One full-length and one partial (12%; 128/1029 bp) copy of the *psbA* gene are present in SC1 Plastid 2. The *psaB* gene is encoded over two fragments (representing regions of 50-1319 nt and 1502-2082 nt) that together comprise 89% (1851/2082 bp) of the length of the *psaB* described in type C3. The two fragments of the *psaB* gene are encoded sequentially, separated on the scaffold by 3 bp; the length of the missing sequence between the two fragments is 182 bp. Studies in other dinoflagellates suggest that genes such as *psaA* have undergone internal deletions as a way of reducing size to fit on a minicircle^{4,5}, and such a process could also have impacted the *psaB* gene described in type C3. A 79-bp core (Supplementary Table 7) was identified in S. goreaui and recovered in all scaffolds found to encode plastid genes. SC1 Plastid 8 contains a partial core region that is encoded at the beginning of the sequence and SC1 Plastid 9 contained a full length core region with two mismatches. The core region was used to isolate SC1 Plastid 10 that had not been previously identified as being of plastid origin. It is not circular, and a comparison with the NCBI NR database found no similarity with any known genes. The identity of this scaffold as a minicircle, and whether it is an "empty" minicircle, remain to be validated.

From the *S. kawagutii* data we recovered 13 scaffolds that contain 13 of the known plastid-encoded genes (Supplementary Table 5), with only *psbE* not recovered. Five of the scaffolds (SF_Plastid_1, SF_Plastid_2, SF_Plastid_3, SF_Plastid_4 and SF_Plastid_5) are outside the 2-4 Kbp size range observed in other dinoflagellates⁴. The 16S rRNA was found as two partial fragments encoded on two scaffolds, consistent with our current understanding of the 16S rRNA gene structure in *Symbiodinium*. The *psaB*, *atpB*, *psaA*, *psbC* and *atpA* genes were recovered as multi-copy fragments encoded on the same scaffold. For example, the *atpA* gene in SF_Plastid_5 is present in two nearly complete copies, whereas in SF_Plastid_1 six partial fragments of the *psaB* gene were recovered. Gene structures of this nature have not been observed in any other dinoflagellate.

Three gene-encoding scaffolds (SF_Plastid_3, SF_Plastid_5 and SF_Plastid_12) were found to also be circular in *S. kawagutii*. SF_Plastid_3 has a 139-bp overlap (100% identity) at each end of the sequence, SF_Plastid_5 has a 1874-bp overlap (98% identity) and SF_Plastid_12 a 45-bp overlap (100% identity). A 41-bp core was identified in *S. kawagutii* and was recovered in only six of the plastid gene-encoding scaffolds. Two previously

unidentified scaffolds (SF_Plastid_14 and SF_Plastid_15) were found to contain the *S. kawagutii* core region, with SF_Plastid_14 also found to be circular. Both scaffolds were checked against the NCBI nr database and show no similarity with any known encoded genes. Circularisation of SF_Plastid_14 occurs between the two encoded core regions that are positioned exactly at the start and end of the scaffold. The positioning of the core regions along the scaffold may be an artefact of assembly and so the identity of the scaffold, potentially as an "empty" minicircle, remains to be investigated.

In *S. goreaui* and *S. kawagutii*, some scaffolds identified as being of plastid origin show traits that have not been observed in other dinoflagellates. In both *S. goreaui* and *S. kawagutii* there are scaffolds which exceed the size expected of a minicircle (i.e. 1.3-3.0 Kbp^{4,7}), and encode gene structures that vary significantly from what has been observed for plastids of other dinoflagellates. Duplications within the scaffolds (encompassing genes, core regions and non-coding regions) and scaffolds composed of multiple minicircles could for instance be assembly artifacts. The data generation and assembly strategy adopted in this study was designed to recover nuclear rather than organellar genomes. These data serve as the first analysis platform for the organellar genomes of *S. goreaui* and *S. kawagutii*, and can be extended using a PCR sequencing strategy based on targeted primer design.

The G+C contents of the coding and non-coding regions for the plastid sequences in *S. goreaui* and *S. kawagutii* are summarised in Supplementary Table 6. In the plastid minicircles of *Symbiodinium* type C3, G+C content within the coding regions (36.03%) is lower than that within the non-coding regions (48.22%)⁴. The gene-coding regions identified in our *S. goreaui* data have G+C content (36.80%) close to that published for type C3 (36.03%). The G+C content of the non-coding regions (45.64%), however, is three percentage points lower than the published data (48.22%), possibly due to the increased length of identified non-coding sequences (18,051 bp in *S. goreaui* and 11,475 bp in type C3). Our *S. kawagutii* data have G+C content in their coding (35.46%) and non-coding regions (42.56%) below that observed in type C3 and in our *S. goreaui* data. For *S. kawagutii* both the length of the recovered coding and non-coding sequence are much higher than that of type C3. Many of the scaffolds encode duplicate regions of genes, increasing the total length of the coding sequence recovered beyond what is observed for type C3.

Mitochondrial genomes of S. goreaui and S. kawagutii

We identified one scaffold from *S. goreaui*, and two from *S. kawagutii*, that contain genes known to be encoded in the mitochondrial genome of dinoflagellates. For *S. goreaui*, SC1_Mitochondria_1 (length 55,144 bp) was found to contain the *cox3*, *cox1* and *cob* genes, with a fragment of the LSU rRNA between the *cox3* and *cox1* genes. For *S. kawagutii* SF_Mitochondria_1 (length 62,663 bp) the *cox3*, *cox1* and *cob* genes were all recovered, and the LSU rRNA was found between the *cox3* and *cox1* genes. SF_Mitochondria_2 (length 35,965 bp) from *S. kawagutii* contains only the *cox1* gene. This configuration of *cox3*-LSU rRNA-*cox1-cob* is well-characterised in the apicomplexa *Plasmodium falciparum*⁸ and has been observed in dinoflagellates^{9,10}. The size of the mitochondria_1 from *S. kawagutii* both display characteristics of dinoflagellate mitochondrial genomes but are 55,144 and 62,663 bp in length respectively. Our findings suggest that the mitochondrial genome of *Symbiodinium* is considerably larger than what has been described previously at 42 Kbp⁹ in dinoflagellates.

DMSP and DMS

Dimethysulphoniopropionate (DMSP) serves as an osmolyte and antioxidant for both the alga and the coral, as a nutrient for associated bacteria¹¹ and as a signal in maintaining the complex interactions among holobiont partners¹². In coral-associated *Symbiodinium*¹³ and other biological systems, DMSP lyase converts DMSP into dimethylsulphide (DMS). DMS, in turn, is the major input of biogenic sulphur into the marine boundary layer¹⁴ and can contribute to sulphate aerosols that nucleate cloud condensation, thereby lowering global temperatures¹⁵. DMSP concentrations are positively correlated with the thermal tolerance of *Symbiodinium*, and with bleaching tolerance of the coral *Acropora millepora*¹⁶.

Investigating the salinity-induced production of DMSP, Lyon et al.¹⁷ identified candidate enzymes of DMSP biosynthesis in the sea-ice diatom *Fragilariopsis cylindrus*. DMS production correlates with expression of *Alma1* (encoding DMSP lyase) in the bloomforming cryptophyte *Emiliania huxleyi*^{18,19}. Here we used BLASTP to search these sequences against our *Symbiodinium* gene models. We found three putative DMSP lyase genes in *S. goreaui*, and four in *S. kawagutii* (Supplementary Data 3 and 4); the predicted proteins show significant sequence similarity ($E < 10^{-100}$ and nearly full-length alignment) to *Alma* genes in *E. huxleyi* and the Alma1 protein described in *Symbiodinium* Clade D, indicative of capacity to degrade DMSP into DMS. Since Raina et al.²⁰ showed that corals can also produce DMSP, we further examined whether coral could degrade DMSP by searching for ALMA orthologs. We find that *A. digitifera* has the molecular machinery that potentially encodes Alma1 and produce DMS. Since both coral and symbiotic alga have the genetic capacity to produce DMSP and DMS, we encourage future studies to confirm whether DMS is produced by corals and explore the mechanisms that regulate the dynamics of DMS(P) production and its influence on the complex interplay among corals, *Symbiodinium* spp. and other symbiotic microbes, especially those using DMSP as a source of sulphur.

Evolution of gene families

The results of gene gain and gene loss along *Symbiodinium* lineages with respect to the outgroup *P. glacialis* are shown in Supplementary Fig. 10. Overall we observed a higher number of gene losses in the lineage leading to *S. kawagutii* (Clade F) than in that leading to *S. goreaui* (Clade C), i.e. 3122 versus 1375 genes respectively among protein sets generated at I = 1.0 (Supplementary Fig. 10A). More gene losses are inferred when the clustering is more granular, e.g. 6314 versus 3482 genes at I = 2.0 (Supplementary Fig. 10C). In comparison, the lineages leading to *S. minutum* (Clade B) and *S. microadriaticum* (Clade A) appear to have gained more genes (186 and 218 genes respectively) than those leading to *S. kawagutii* and *S. goreaui* (97 and 69 respectively) (I = 2.0; Supplementary Fig. 10C). The greater inferred number of gene loss in the lineages leading to Clades C and F, and of gene gain in lineages leading to Clades A and B, while interesting, remain to be validated with more-complete genome data from *Symbiodinium*.

Supplementary References

- 1. Lin, S. et al. The *Symbiodinium kawagutii* genome illuminates dinoflagellate gene expression and coral symbiosis. *Science* **350**, 691-694 (2015).
- 2. Shoguchi, E. et al. Draft assembly of the *Symbiodinium minutum* nuclear genome reveals dinoflagellate gene structure. *Curr. Biol.* **23**, 1399-1408 (2013).
- 3. Aranda, M. et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. *Sci. Rep.* **6**, 39734 (2016).
- 4. Barbrook, A.C., Voolstra, C.R. & Howe, C.J. The chloroplast genome of a *Symbiodinium* sp. Clade C3 isolate. *Protist* **165**, 1-13 (2014).
- 5. Howe, C.J., Nisbet, R.E.R. & Barbrook, A.C. The remarkable chloroplast genome of dinoflagellates. *J. Exp. Bot.* **59**, 1035-1045 (2008).

- 6. Zhang, Z., Green, B.R. & Cavalier-Smith, T. Single gene circles in dinoflagellate chloroplast genomes. *Nature* **400**, 155-159 (1999).
- 7. Mungpakdee, S. et al. Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome. *Genome Biol. Evol.* **6**, 1408-1422 (2014).
- 8. Feagin, J.E. The 6-kb element of *Plasmodium falciparum* encodes mitochondrial cytochrome genes. *Mol. Biochem. Parasitol.* **52**, 145-148 (1992).
- 9. Jackson, C.J. et al. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria. *BMC Biol.* **5**, 41 (2007).
- 10. Nash, E.A., Nisbet, R.E.R., Barbrook, A.C. & Howe, C.J. Dinoflagellates: a mitochondrial genome all at sea. *Trends Genet.* **24**, 328-335 (2008).
- Teplitski, M., Krediet, C.J., Meyer, J.L. & Ritchie, K.B. Microbial interactions on coral surfaces and within the coral holobiont. In *The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters* (eds. Goffredo, S. & Dubinsky, Z.) 331-346 (Springer International Publishing, Cham, Switzerland, 2016).
- Raina, J.B., Dinsdale, E.A., Willis, B.L. & Bourne, D.G. Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? *Trends Microbiol.* 18, 101-108 (2010).
- 13. Yost, D.M. & Mitchelmore, C.L. Dimethylsulfoniopropionate (DMSP) lyase activity in different strains of the symbiotic alga *Symbiodinium microadriaticum*. *Mar. Ecol. Prog. Ser.* **386**, 61-70 (2009).
- 14. Liss, P.S., Hatton, A.D., Malin, G., Nightingale, P.D. & Turner, S.M. Marine sulphur emissions. *Phil. Trans. R. Soc. B* **352**, 159-169 (1997).
- 15. Charlson, R.J., Lovelock, J.E., Andreae, M.O. & Warren, S.G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. *Nature* **326**, 655-661 (1987).
- 16. Jones, G.B. & King, S. Dimethylsulphoniopropionate (DMSP) as an indicator of bleaching tolerance in scleractinian corals. *J. Mar. Sci. Eng.* **3**, 444-465 (2015).
- 17. Lyon, B.R., Lee, P.A., Bennett, J.M., DiTullio, G.R. & Janech, M.G. Proteomic analysis of a sea-ice diatom: salinity acclimation provides new insight into the dimethylsulfoniopropionate production pathway. *Plant Physiol.* **157**, 1926-1941 (2011).
- 18. Alcolombri, U. et al. Identification of the algal dimethyl sulfide-releasing enzyme: a missing link in the marine sulfur cycle. *Science* **348**, 1466-1469 (2015).
- 19. Alcolombri, U., Lei, L., Meltzer, D., Vardi, A. & Tawfik, D.S. Assigning the algal source of dimethylsulfide using a selective lyase inhibitor. *ACS Chem. Biol.* **12**, 41-46 (2017).
- 20. Raina, J.B. et al. DMSP biosynthesis by an animal and its role in coral thermal stress response. *Nature* **502**, 677-680 (2013).