
 
 
Supplementary Fig. 1 K-space representation of one-way and two-way focusing. a, The imaged object 
has spectral components from -km to km. b, For one-way focusing (such as plane wave transmission with 
synthetic focusing on receive), the lateral k-space transfer function is rectangular in shape with a cutoff 
frequency of kc. c, The Fourier transform of the received image for plane wave imaging is the multiplication 
of the Fourier transform of the object and the rectangular k-space transfer function. The result is low-pass 
filtering of the object. d, The transfer function for two-way beam formation is equal to the convolution 
between the transfer function on transmit and receive. Assuming both are rectangles with the same width, 
the transmit-receive transfer function is a triangle with twice the cutoff frequency compared to transmission 
alone. e, The Fourier transform of the received image for two-way focusing is the multiplication of the Fourier 
transform of the object and the triangular transfer function, resulting in attenuation of high frequencies. 

  



 

 
 
Supplementary Fig. 2 Line profiles acquired at the focal depth (30 mm) of the emitted fields 
presented in Fig. 4. a, Simulated emitted ultrasound field for continuous wave (CW) transmission, using 
the modified Gerchberg–Saxton algorithm for Δd=1.1 mm (0.5/kc). b, Simulated emitted ultrasound field for 
1 cycle transmission, using the modified Gerchberg–Saxton algorithm for Δd=1.1 mm. c, Experimental 
hydrophone measurement of the pattern presented in b. d, Simulated emitted field for 1 cycle transmission 
using the multiline transmit (MLT) method for Δd=1.1 mm. e, Experimental hydrophone measurement of 
the pattern presented in d. 

 

 
 
 
 
 
 
 
  



 

Supplementary Fig. 3 The influence of foci spacing on the generated pattern. a-c, Simulated emitted 
ultrasound field for 1 cycle transmission, using the modified Gerchberg–Saxton algorithm for Δd= 0.8 
(0.7/kc), 0.58 (0.97/kc) and 0.55 (1/kc) mm, respectively. Results are normalized with axes and colorbar 
identical to Fig. 4. d-f, Line profiles acquired at the focal depth of the emitted fields presented in a-c 
respectively. 

  



 

Supplementary Fig. 4. Comparison to ultrasound blind deconvolution. Images are presented with a 

dynamic range of 25 dB. a-c, Simulation results of 5 wires. a, Two-way focused image of the wires. b, 

Result of ultrasound deconvolution on a. c, Cross section of a and b along the two closely spaced wires 

(z=30 mm). d, Two-way focused image of the lateral resolution target presented in Fig 6d. e, Result of 

ultrasound deconvolution on d. f, Cross section along the lateral resolution target (z = 29.3 mm), for d,e 

and the ASI result from Fig. 6o.  



 
 

Supplementary Fig. 5. Images of a cyst in a homogeneous multipurpose ultrasound imaging 

phantom. Images with a dynamic range of 25 dB are displayed for an image acquired with: a, one-way 

focusing. b, coherent compounding of 5-angled plane waves. c, two-way focusing, and d, ASI imaging.   



 

Supplementary Fig. 6 Transducer apodization and delay profiles and the generated patterns. Upper 
and lower rows represent depths of 30 and 65 mm respectively. a,e, apodization profiles. b,f, transducer 
delay profile. (c),(g) line profile of the generated pattern at the focal depth. (d),(h) Fourier transform of (c),(g) 
respectively.  

 
 
 
 
 
  



 

 Contrast 
(dB) 

CNR 
(dB) 

Speckle cell 
size (mm) 

PW -14.12 5.33 0.91 

5 angles -18.53 6.7 0.79 

Two way focusing -20.9 7.46 0.76 

ASI -20.56 7.25 0.52 

 
 
Supplementary Table 1. Calculation of the contrast, contrast to noise ratio (CNR), and speckle resolution 
cell size were for a anechoic cyst target using the four ultrasound imaging methods presented in 
Supplementary Fig. 5. 

  



Supplementary Note 1: Mathematical framework for ASI 
 
First, let us consider the case of plane wave imaging that is focused only on receive to form the 
plane wave image (PW(x)). On receive, the image is convolved with the point spread function of 
the focused transducer. 
 

𝑃𝑊(𝑥) = ∫ 𝑂𝑏𝑗(𝑥′)𝑃𝑆𝐹(𝑥 − 𝑥′)𝑑𝑥′

∞

−∞

 (1) 

where Obj is the object to be imaged and PSF is the point spread function for the focused 
transducer. The k-space lateral representation for one-way focusing is the Fourier transform of 
the point spread function. For a rectangle aperture and a monochromatic wave, this k-space 

representation is given by a rectangle function: 𝑟𝑒𝑐𝑡(
𝑘𝑥

𝑘𝑐
), where kx is the lateral spatial frequency 

and kc is the cutoff frequency of the system that is equal to the inverse of the lateral diffraction 
limit, as defined according to Equation 1. 
In ASI, a periodic pattern or grating is superimposed on the object. The Gerchberg–Saxton 
algorithm is used to determine the transducer phase and apodization maps that generate the 
desired encoding pattern at the focal depth. In our design for single cycle transmission, the desired 
grating requested for the Gerchberg–Saxton algorithm in the spatial domain is a sum of delta 
functions spaced by a distance of Δd and in k-space, is also the sum of delta functions. The 
algorithm forward and backward propagates the field between the transducer and focal planes, 
and thus the result is diffraction limited and low pass filtered with the transducer’s cutoff frequency 
kc. If the requested set of delta functions is such that only 3 delta components (-k1, 0, +k1) are 
below kc, the k-space representation of the pattern generated at the focal zone is given by (Fig. 
2b): 
 

�̃�1(𝑘𝑥) = 𝐶 ∙ ∑ 𝛿(𝑘𝑥 − 𝑛𝑘1)

1

𝑛=−1

 (2) 

 
where g̃1 is the Fourier transform of the generated grating g1. In the spatial domain, the grating is 
a raised cosine function:  
 𝑔1(𝑥) = 1 +

1

2
cos(2𝜋𝑥𝑘1). (3) 

 
During transmission, this encoding grating is generated at the object’s position, yielding a spatial 
multiplication of the two, or a frequency mixing that generates duplications of the k-space 
representation of the object, as in Fig. 2c. The grating is then shifted laterally between successive 

transmitted pulses, creating an increasing phase term () for each transmission.  
On receive, one-way focusing is applied to the beamformed echoes and thus the received 

data are lowpass filtered with a cutoff frequency of kc to yield Fig. 2d. In the spatial domain, the 

result (termed Receive(x,)) is therefore: 
 

𝑅𝑒𝑐𝑖𝑒𝑣𝑒(𝑥, 𝜙) =  ∫ 𝑂𝑏𝑗(𝑥′)𝑔1(𝑥′ − 𝜙)𝑃𝑆𝐹(𝑥 − 𝑥′)𝑑𝑥′

∞

−∞

 (4) 

The set of captured images is post processed where each image is multiplied by a second grating 
g2, and summed over a single period of the pattern Δd to form the reconstructed image R(x): 
 

𝑅(𝑥) =
1

𝛥𝑑
∫ ∫ 𝑂𝑏𝑗(𝑥′)𝑔1(𝑥′ − 𝜙)𝑝(𝑥 − 𝑥′)𝑑𝑥′

∞

−∞

𝑔2(𝑥 − 𝜙)𝑑𝜙

𝛥𝑑

0

  (5) 



Since the object is assumed to be stationary during the scan, the integration order can be 
reversed, and integration over the shifted patterns performed first: 
 

𝛼(𝑥, 𝑥′) =
1

𝛥𝑑
∫ 𝑔1(𝑥′ − 𝜙)𝑔2(𝑥 − 𝜙)𝑑𝜙

𝛥𝑑

0

 (6) 

 
g1 can be written explicitly: 
 

𝑔1(𝑥′ − 𝜙) =
1

2
+

1

2
cos[2𝜋(𝑥′ − 𝜙)𝑘1] =

1

2
+

1

4
𝑒2𝜋𝑖(𝑥′−𝜙)𝑘1 +

1

4
𝑒−2𝜋𝑖(𝑥′−𝜙)𝑘1 (7) 

 
Since g2, which is the decoding grating, is added digitally, it can be chosen to be: 
 
 𝑔2(𝑥) = 2 + 8 cos(2𝜋𝑥𝑘1) (8) 

 

g2 is also shifted between subsequent pulses with the same phase term : 
 
 𝑔2(𝑥 − 𝜙) = 2 + 8 cos[2𝜋(𝑥 − 𝜙)𝑘1] = 2 + 4𝑒2𝜋𝑖(𝑥−𝜙)𝑘1 + 4𝑒−2𝜋𝑖(𝑥−𝜙)𝑘1 (9) 

 
The integral over the shifted patterns presented in Supplementary Equation 6 can be derived as: 
 

𝛼(𝑥, 𝑥′) =
1

𝛥𝑑
∫ 𝑔1(𝑥′ − 𝜙)𝑔2(𝑥 − 𝜙)𝑑𝜙

𝛥𝑑

0

 

=
1

𝛥𝑑
∫ [

1

2
+

1

4
𝑒2𝜋𝑖(𝑥−𝜙)𝑘1 +

1

4
𝑒−2𝜋𝑖(𝑥−𝜙)𝑘1] [2 + 4𝑒2𝜋𝑖(𝑥−𝜙)𝑘1 + 4𝑒−2𝜋𝑖(𝑥−𝜙)𝑘1]𝑑𝜙

𝛥𝑑

0

 

= 

I)     
1

𝛥𝑑
∫ 𝑑𝜙

𝛥𝑑

0

= 1 

II)    
1

𝛥𝑑
∫ 2𝑒2𝜋𝑖(𝑥−𝜙)𝑘1𝑑𝜙

𝛥𝑑

0

=
2

𝛥𝑑
𝑒2𝜋𝑖𝑥𝑘1 ∫ 𝑒−2𝜋𝑖𝜙𝑘1𝑑𝜙

𝛥𝑑

0

= 0 

III)     
1

𝛥𝑑
∫ 2𝑒−2𝜋𝑖(𝑥−𝜙)𝑘1𝑑𝜙

𝛥𝑑

0

=
2

𝛥𝑑
𝑒−2𝜋𝑖𝑥𝑘1 ∫ 𝑒2𝜋𝑖𝜙𝑘1𝑑𝜙

𝛥𝑑

0

= 0 

IV)    
1

𝛥𝑑
∫

1

2
𝑒2𝜋𝑖(𝑥−𝜙)𝑘1𝑑𝜙

𝛥𝑑

0

=
1

2𝛥𝑑
𝑒2𝜋𝑖𝑥′𝑘1 ∫ 𝑒−2𝜋𝑖𝜙𝑘1𝑑𝜙

𝛥𝑑

0

= 0 

V)    
1

𝛥𝑑
∫ 𝑒2𝜋𝑖(𝑥′+𝑥−2𝜙)𝑘1𝑑𝜙

𝛥𝑑

0

=
1

𝛥𝑑
𝑒2𝜋𝑖(𝑥′+𝑥)𝑘1 ∫ 𝑒−4𝜋𝑖𝜙𝑘1𝑑𝜙

𝛥𝑑

0

= 0 

VI)    
1

𝛥𝑑
∫ 𝑒2𝜋𝑖(𝑥′−𝑥)𝑘1𝑑𝜙

𝛥𝑑

0

=
1

𝛥𝑑
𝑒2𝜋𝑖(𝑥′−𝑥)𝑘1 ∫ 𝑑𝜙

𝛥𝑑

0

= 𝑒2𝜋𝑖(𝑥′−𝑥)𝑘1 

VII)    
1

𝛥𝑑
∫ 𝑒−2𝜋𝑖(𝑥′−𝜙)𝑘1𝑑𝜙

𝛥𝑑

0

=
1

𝛥𝑑
𝑒−2𝜋𝑖𝑥′𝑘1 ∫ 𝑒2𝜋𝑖𝜙𝑘1𝑑𝜙

𝛥𝑑

0

= 0 

(10) 



VIII)    
1

𝛥𝑑
∫ 𝑒−2𝜋𝑖(𝑥′−𝑥)𝑘1𝑑𝜙

𝛥𝑑

0

=
1

𝛥𝑑
𝑒−2𝜋𝑖(𝑥′−𝑥)𝑘1 ∫ 𝑑𝜙

𝛥𝑑

0

= 𝑒−2𝜋𝑖(𝑥′−𝑥)𝑘1 

IX)    
1

𝛥𝑑
∫ 𝑒−2𝜋𝑖(𝑥′+𝑥−2𝜙)𝑘1𝑑𝜙

𝛥𝑑

0

=
1

𝛥𝑑
𝑒−2𝜋𝑖(𝑥′+𝑥)𝑘1 ∫ 𝑒+4𝜋𝑖𝜙𝑘1𝑑𝜙

𝛥𝑑

0

= 0 

 

𝛼(𝑥, 𝑥′) = 1 + 𝑒2𝜋𝑖(𝑥′−𝑥)𝑘1 + 𝑒−2𝜋𝑖(𝑥′−𝑥)𝑘1 
 

Placing it back into Supplementary Equation 5: 
 

𝑅(𝑥) = ∫ 𝑂𝑏𝑗(𝑥′)𝑃𝑆𝐹(𝑥 − 𝑥′)[1 + 𝑒2𝜋𝑖(𝑥′−𝑥)𝑘1 + 𝑒−2𝜋𝑖(𝑥′−𝑥)𝑘1]𝑑𝑥′

∞

−∞

 (11) 

 
which can be rewritten as: 
 
 𝑅(𝑥) = 𝑂𝑏𝑗(𝑥) ∗ [𝑃𝑆𝐹(𝑥) + 𝑃𝑆𝐹(𝑥) ∙ 𝑒2𝜋𝑖𝑥𝑘1 + 𝑃𝑆𝐹(𝑥) ∙ 𝑒−2𝜋𝑖𝑥𝑘1] (12) 

 
In k-space: 
 
 �̃�(𝑘𝑥) = 𝑂𝑏𝑗̃ (𝑘𝑥) ∙ [𝑃𝑆�̃�(𝑘𝑥) + 𝑃𝑆�̃�(𝑘𝑥 + 𝑘1) + 𝑃𝑆�̃�(𝑘𝑥 − 𝑘1)] (13) 

 

where 𝑂𝑏𝑗̃  and 𝑃𝑆𝐹 ̃represent the Fourier transform of the object and the point spread function 

respectively. Since  𝑃𝑆𝐹 ̃  is the rectangular lateral transfer function: 𝑟𝑒𝑐𝑡(
𝑘𝑥

𝑘𝑐
), the result contains 

two additional duplications of the transfer function centered at –k1 and +k1 together with the 
original transfer function centered at 0. The result is thus the sum of three rectangles with a cutoff 
frequency of (kc+k1) (Fig. 2g). In order to achieve a flat effective transfer function, a low resolution 
image (LR(x)) is subtracted from 𝑅(𝑥), which yields the super-resolution image (SR(x)) (Fig. 2f). 
The low-resolution image is an average of the five captured images of ASI (without the additional 
post processing): 
 
 𝑆𝑅(𝑥) = 𝑅(𝑥) − 𝐿𝑅(𝑥) (14) 

 
The effective transfer function (ASI transfer function) for the ASI method (as in Fig. 2g) is 
therefore: 
 
 𝐴𝑆𝐼 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑘𝑥) = 𝑃𝑆�̃�(𝑘𝑥 + 𝑘1) + 𝑃𝑆�̃�(𝑘𝑥 − 𝑘1) (15) 

 
Since the transmitted pattern is limited by the cutoff frequency kc, the maximal enhancement in 
resolution occurs when k1=kc and yields a resolution improvement by a factor of 2 compared to 
plane wave imaging.  
  



Supplementary Note 2: Cyst brightness parameters 
 

Contrast is a measure of the difference in brightness between the cyst and the surrounding region.  
 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
𝜇𝑜 − 𝜇𝑖

𝜇𝑜
 (16) 

 

where o is the mean of a speckle region outside the cyst, and i is the mean of a region inside 
the cyst. Since the cyst signal is lower than the surrounding speckle, the contrast is typically 
presented as a negative value in decibels:  
 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑑𝐵) = 20 log10(1 − 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡) = 20 log10 (

𝜇𝑖

𝜇𝑜
) (17) 

 
The CNR is a parameter that indicates the detectability of a lesion compared to the surrounding 
background.   
 

𝐶𝑁𝑅(𝑑𝐵) = 20 log10 (
𝜇𝑜 − 𝜇𝑖

√𝜎𝑜
2 + 𝜎𝑖

2
) (18) 

 

where o is the standard deviation of a speckle region outside the cyst, and i is the standard 

deviation of a region inside the cyst.  

 


