SUPPLEMENTARY TABLES

Compound	Molecular	MW (g mol ⁻¹)	Melting point	Solid color	TLC
	formula		(°C)		Rf
B2	C ₂₀ H ₂₅ N ₃ O	323,4320	311-312	Light brown	0.38
phenyl-3,5-di-tert-	$C_{21}H_{26}N_3O_3$	365,4256	ND	White	0.80
butyl-2-					
hydroxibenzoate*					

Table S1. Characteristic constants of phenyl-3,5-di-tert-butyl-2-hydroxibenzoate* and B1.

MW: Molecular weight

TLC: Thin layer chromatography, using ethyl acetate as solvent

ND: not determined

* Precursor for **B2** synthesis

Compound	Chlo	oroform	Acetonitrile		DMSO	
	λexp	3	λexp	3	λexp	3
B2	332	13.32	327	12.91	332	11.30
	294	19.09	292	18.67	294	15.44
	284	15.51	282	14.88	284	12.23

Table S2. UV-Vis absorption spectra of B2 in different organic solvents at room temperature.

 λ is in nm

 ϵ is in mol⁻¹ dm³ cm⁻¹

Process	Scan-rate vs current- density peak	(Scan- rate) ^{1/2} vs current- density peak	Diff. control?	Process	Scan-rate vs current- density peak	(Scan- rate) ^{1/2} vs current- density peak	Diff. control?
	m	n	R ²	m	n	R ²	
Red ^I (rev)	-5.3×10 ⁵	-2.2×10^2	0.833	-2.1×10 ⁴	-3.2	0.921	yes
Ox ^I (irr)	9.5×10 ⁵	3.6×10 ²	0.989	3.5×10 ⁴	-7.5	0.999	yes
O _X ^{II} (irr)	2.4×10 ⁵	1.1×10^2	0.961	8.9×10 ³	1.5	0.996	yes

Table S3. Scan-rate study for determining diffusional control of described electrochemical processes at B2.

"m", "n" and "R²" are the slope, intercept and linear regression coefficient, respectively.

The scan-rate study provides a fast determination of the nature of electrochemical processes, allowing a differentiation between processes controlled by mass-transport (diffusion) from others. For each identified process for **B2**, several cyclic voltammetry runs must be recorded at different scan rates. Thus, two plots must be constructed, an "Scan-rate vs current-density peak" and a "(Scan-rate)^{1/2} vs current density peak" for each reduction an oxidation identified in the system (see **Table S3**).

Table S4. Results for the geometry optimization of the ground (S_0) and first excited singlet (S_1) state.

Compound	d(N-H)	d(O-H)
S ₀	1.731	0.989
S1	1.673	1.006

	λ (nm)	f*	Assignment
Absorption	271.8	1.1×10 ⁻²	HOMO-2→LUMO+1
			$(n \rightarrow \pi^*)$
	293.4	1.2×10 ⁻²	HOMO-1→LUMO
			$(\pi \rightarrow \pi^*)$
		1.4×10 ⁻¹	HOMO→LUMO
			$(\pi \rightarrow \pi^*)$
Emission	514.8	6.5×10 ⁻³	LUMO→HOMO
			$(\pi^* \rightarrow \pi)$

Table S5. The most important absorption and emission bands for B2 in DMSO.

*The oscillator strength was obtained using COSMO for DMSO as solvent.