
Supplementary Tables   

Supplementary Table 1. Mechanistic models used for growth modeling in growMod, modified from ref1.  

  



Supplementary Table 2. Various machine-learning approaches integrated into HTPmod.  

ID Short name Full name R package* 

Regression Models  

1 BGLM Bayesian generalized linear model arm 

2 BLASSO Bayesian Lasso monomvn 

3 BRNN Bayesian regularized neural networks brnn 

4 GBM Stochastic gradient boosting gbm & plyr 

5 GLM Generalized linear model  

6 GLMNET Lasso and elastic-net regularized generalized linear models glmnet & Matrix 

7 GP-Poly Gaussian process with polynomial kernel kernlab 

8 GP-Radial Gaussian process with radial kernel kernlab 

9 KNN k-nearest neighbors kknn 

10 LASSO Lasso model elasticnet 

11 MARS Multivariate adaptive regression spline earth 

12 MLR Multivariate linear regression  

13 RF Random forest randomForest 

14 RIDGE Ridge regression elasticnet 

15 SVM-Radial Support vector machines with linear kernel kernlab 

16 SVM-Linear Support vector machines with radial kernel e1071 

Classification Models 



1 CART Classification and regression trees rpart 

2 GBM Stochastic gradient boosting gbm & plyr 

3 GLMNET Lasso and elastic-net regularized generalized linear models glmnet & Matrix 

4 KNN k-nearest neighbors kknn 

5 LDA Linear discriminant analysis MASS 

6 LLDA Localized linear discriminant analysis klaR 

7 MARS Multivariate adaptive regression spline earth 

8 MDA Mixture discriminant analysis mda 

9 NBC Naive Bayes naivebayes 

10 NNET Neural network nnet 

11 PDA Penalized discriminant analysis mda 

12 PLS Partial least squares pls 

13 RDA Regularized discriminant analysis klaR 

14 RF Random forest randomForest 

15 SVM-Linear Support vector machines with linear kernel e1071 

16 SVM-Radial Support vector machines with radial kernel kernlab 

Note: some models (e.g., support vector machines and random forest) can be used for both regression and classification purpose.  

 

  



Supplementary Table 3. Example data sets used to test the functionality of HTPmod.  

ID Study / Reference Data for modeling or visualization Tested in Supplementary Figures* 

1 (Chen et al., 2014)2 HTP: using time-series image data to investigate plant growth 

and phenotypic components of drought responses in barley 

(Hordeum vulgare).  

growMod,  

htpdVis 

Supplementary Figs. 3, 5 

and 11 

2 (Chen et al., 2018)3 HTP: using image-derived parameters to prediction plant 

biomass accumulation in three consecutive barley 

experiments.  

predMod, 

htpdVis 

Supplementary Figs. 6-8 

and 10 

3 (Jiao and Meyerowitz, 

2010)4 and (Chen et al.)  

HTS: using ChIP-seq data to predict plant organ-specific gene 

expression patterns.  

predMod Supplementary Fig. 9;  

4 (Fahlgren et al., 2015)5 HTP: using image data to predict plant growth under different 

water conditions in Setaria.  

growMod Supplementary Figs. 4 and 

5 

5 (Jiao and Meyerowitz, 

2010)4 

HTS: using TRAP-seq data to study flower organ-specific gene 

expression patterns in Arabidopsis.  

htpdVis Fig. 4 

6 (Smaczniak et al., 2017)6 HTS: using SELEX-seq data to reflect the difference of DNA 

binding specificity of floral homeotic protein complexes and to 

further predict organ-specific target genes.  

htpdVis Supplementary Fig. 12 

7 (Song et al., 2016)7 HTS: combining RNA-seq and ChIP-seq data to illuminate the 

relationship of differential gene expression patterns and the 

combinatorial regulation by multiple ABA-related TFs.  

predMod Figs. 2 and 3; 

Supplementary Fig. 7  



8 (Wang et al., 2015)8 HTS: use Hi-C and ChIP-seq data to describe chromatin states 

in Arabidopsis  

htpdVis Supplementary Fig. 13 

9 (Zhu et al., 2018)9 HTP: profiling of 980 metabolites in 442 tomato (Solanum 

lycopersicum) accessions.  

htpdvis  Supplementary Fig. 13 

* Note: reanalysis of published data by HTPmod (see online document for how data were collected). Results are shown in the Supplementary 

Figures as below. Although the examples were selected from studies in plants, HTPmod can broadly be used for studies in any other organisms. 

HTP: high-throughput phenotyping; HTS: high-throughput sequencing.  

  



Supplementary Figures  

 

Supplementary Figure 1. Screenshot of the homepage of HTPmod.  

 

 

Supplementary Figure 2. HTPmod accepts the simplest tables files (with rows as individuals and 

columns as features; the header line is required) as the only input.  In the modules of predMod 

and htpdVis, HTPmod automatically determine the column types according their contents: 

columns containing non numeric values are considered as either annotation for individuals (in 

grey) or categorical features (in orange). Categorical class columns can be either used for color 

schema purpose in plots or the output feature in the classification analysis. Users need to convert 



numeric categorical features into non-numeric values if input files containing numeric values for 

categorical purposes.  

 

In the subsections, we demonstrated how to use HTPmod functionalities to explore high-

throughput datasets from the selected studies in Supplementary Table 3.  

1. Growth modeling with the growMod module  

 

Supplementary Figure 3. Screenshot of the growMod module. Example shows the growth 

modeling of barley plants under normal growth conditions2.  

 



 

Supplementary Figure 4. Growth modeling of Setaria plants2. 

 



 

Supplementary Figure 5. Performance of growth models in barley2 (top panel; using the example 

data “Chen et al., 2014; Normal-growth plants”) and Setaria5 (bottom panel; using the example 

data “Fahlgren et al., 2015; Group by genotype”). Results showed that Weibull model shows the 

best performance for modeling growth of barley plants while Gompetz model does for Setaria 

plants. Default parameter settings under the “Performance” page were used in the two analyses.  

 

2. Prediction models: the predMod module  



 

Supplementary Figure 6A. Classification of three consecutive HTP experiments3 based on image-

derived features (the example data “Chen et al., 2018; Regression or Classification”).  Note that 

some models were failed to run on this dataset; all other models perfectly separated the 

experiments. Default parameter settings for all the classification models were used in the analysis. 



 

Supplementary Figure 6B. Prediction of plant biomass accumulation with image-derived 

parameters, using HTP data from ref3 (the example data “Chen et al., 2018; Regression or 

Classification”). Each panel shows the prediction result for a regression model. See 

Supplementary Table 2 for the full model names. Default parameter settings for all the regression 

models were used in the analysis. 

Supplementary Figure 6. (A-B) Apply various prediction models on HTP data.  

 



 

Supplementary Figure 7. Evaluation of the model performance in the prediction of plant biomass 

based on image-derived paramters3 (left; the example data “Chen et al., 2018; Regression or 

Classification”) or gene expression changes based on transcription factor binding data7 (right; the 

example data “Song et al., 2016; Regression”).  All parameters were set in default in the analysis.  

 



 

Supplementary Figure 8. Calculate the relative importance of features in regression models. 

Random forest (RF) model was used for prediction of barley biomass accumulation, using image-

derived feature data in three consecutive HTP experiments3 (the example data “Chen et al., 2018; 

Regression or Classification”). The results are consistent to that in the original study.  

 



 

Supplementary Figure 9A. Confusion matrixes for measuring the classification accuracy of 

different models. Note that some models were failed to run on this dataset.   



 

Supplementary Figure 9B. Evaluation of the performance of different classification models. 

Results show that RF (random forest) and KNN (k-nearest neighbors) outperform other models.  



 

Supplementary Figure 9C. Influence of feature selection on classification performance. Results 

from both models show that at least four features are required to retain good classification 

performance. This suggests that (1) plant organ differentiation is not controlled by a single factor, 

but rather depends on the joint behavior of multiple factors and (2) that there might be 

redundancy between factors. 

Supplementary Figure 9. (A-C) Apply classification models to predict plant organ-specific gene 

expression patterns (using the example data “Chen et al., 2018; Classification”). All parameters 

were set as default in the analysis.  

 



3. High-throughput data visualization with the htpdVis module  

 

Supplementary Figure 10A. Principal component analysis (PCA).  

 

Supplementary Figure 10B. t-distributed stochastic neighbor embedding (t-SNE).  



 

Supplementary Figure 10C. Multidimensional scaling (MDS).  

 

Supplementary Figure 10D. Self-organizing map (SOM).  



 

Supplementary Figure 10E. K-means clustering (K-MC).  

 

Supplementary Figure 10F. Hierarchical cluster analysis (HCA) with heatmaps.  

Supplementary Figure 10. (A-F) Apply different visualization tools to the same dataset obtained 

from ref3 (i.e., the example data “Chen et al., 2018; Consecutive HTP experiments”).  

 



 

Supplementary Figure 11. Reanalysis of the HTP data from ref2 (i.e., the example data “Chen et 

al., 2014; Barley HTP data”). Plants in the same genotypes under the same growth condition show 

similar phenotypic profile, as show in SOM (left; 6x6; colored by “Genotype” and shaped by 

“Treatment”) and HCA (right; bars colored by “Genotype”).  

 

 

Supplementary Figure 12. Visualize the DNA binding specificity (based on SELEX-seq data) of floral 

homeotic protein complexes6 (the example  data “Smaczniak et al., 2017; DNA binding specificity 

of MADS proteins”) using t-SNE (left; dimension=3, data points colored by “Cluster”) and HCA 

(right; left bars colored by “Cluster”).  



 

 

Supplementary Figure 13. PCA on chromatin states identified by 16 epigenetic data sets over the 

Arabidopsis epigenome at 400-bp resolution8 (left; the example data “Wang et al., 2015; 

Chromatin states”) or a metabolome dataset with profiling data of 980 metabolites in 442 tomato 

accessions9 (right; the example data “Zhu et al., 2018; Tomato metabolomes”). Results are similar 

to the original studies.  

 

Supplementary References 

1. Chen, D. Dissecting and Modeling the Phenotypic Components of Plant Growth and 

Drought Responses Based on High-throughput Image Analysis. (Doctoral Diss. Martin-

Luther-Universität Halle-Wittenberg) (2017). 

2. Chen, D. et al. Dissecting the phenotypic components of crop plant growth and drought 

responses based on high-throughput image analysis. Plant Cell 26, 4636–4655 (2014). 

3. Chen, D. et al. Predicting plant biomass accumulation from image-derived parameters. 

Gigascience (2018). doi:10.1093/gigascience/giy001 

4. Jiao, Y. & Meyerowitz, E. M. Cell-type specific analysis of translating RNAs in developing 

flowers reveals new levels of control. Mol. Syst. Biol. 6, (2010). 



5. Fahlgren, N. et al. A versatile phenotyping system and analytics platform reveals diverse 

temporal responses to water availability in Setaria. Mol. Plant 8, 1520–1535 (2015). 

6. Smaczniak, C., Muiño, J. M., Chen, D., Angenent, G. C. & Kaufmann, K. Differences in 

DNA-binding specificity of floral homeotic protein complexes predict organ-specific 

target genes. Plant Cell 29, tpc.00145.2017 (2017). 

7. Song, L. et al. A transcription factor hierarchy defines an environmental stress response 

network. Science (80-. ). 354, aag1550-aag1550 (2016). 

8. Wang, C. et al. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. 

Genome Res. 25, 246–256 (2015). 

9. Zhu, G. et al. Rewiring of the Fruit Metabolome in Tomato Breeding. Cell 172, 249–

261.e12 (2018). 

 

 


