Appendix A: Proof of Theorem 1

Based on the analysis in Section 2.2, the proposed NTOA scheme (6) can
be reformulated as

JO = 7y — kp(f(0) —1q) — Ky /(f(ﬁ} — rq)dT.

0
which is equivalent to

e(t) = —kpe(t) — kIL e(7)dr,

where e(t) = f(0) — rq and é(t) = JO — 7q with J = 9f(0)/96. (8) is a

compact vector form of the following set of m decoupled equations:

t
(0) = —hees(®) = I [ ei(mar
J0

in which ¢ = 1,---,m. To analyze the ith subsystem (9), the following
Lyapunov function candidate [38, 39| is defined:

i(t) = (1) + by ( fﬂ t ei(*r)d*r)

Evidently, v;(#) > 0 for any e;(f) # 0 or f[; ei(7)dT # 0, and v;;(t) = 0 only
for e;;(t) = fff eij(7)dT = 0. This guarantees the positive-definiteness of the
Lyapunov function candidate v;(¢#). For this Lyapunov function candidate,
the time derivative ©;(t) can be derived as
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i (t) = st 2¢;(t)é;(t) + 2kye;(t) i e;(T)dT = —2kpe; (t) < 0,

which guarantees the negative-definiteness of ©;(¢). On the basis of the Lya-
punov theory, the trajectory of the Cartesian error e(t) for the proposed
NTOA scheme (6) can be concluded to be asymptotically stable. The proof
1s thus completed.



Appendix B: Proof of Theorem 2

Let us define £(t) = f[f e(7)dr € R™. Then, £(t) = e(t) and £(t) = é(t).
The ith subsystem (9) is thus rewritten as follows:

Ez(t) = —kPEi(f) — kﬁ[&'i(t)._.

where £;(1), £;(1), and £;(f) are the ith elements of (1), £(¢), and &(t), re-
spectively.

As defined previously, the design parameters kp and Ay satisfy ki > 4k
numerically. Therefore, let ¥y = (—kp + /kp —4k1)/2 and Uy = (—kp —
V ki — 4ky)/2. Then, considering that £;(0) = 0 and £;,(0) = €;(0), the

analytical solution to (10) is formulated as
() = GO (Exp(9it) — exp(dat))

Because e(t) = £(t), the following result is further obtained:

ei(0) (D exp(vht) — v exp(tat))

Ef_t —
(%) N

The vector-form Cartesian error e(f) is thus derived as follows:

_ e(0) (¥ exp(tht) — Vo exp(dat))
k2 — 4k )

e(t)

On the basis of the above analysis (as well as the proof of Theorem 1),
starting from an initial state e(0) # 0 (i.e., a nonzero initial error), the
trajectory of the Cartesian error e(t) for the proposed NTOA scheme (6) can
be concluded to converge to zero exponentially. In other words, the Cartesian
error e(t) synthesized by (6) has the property of exponential convergence,
which now completes the proof.



Appendix C: Proof of Theorem 3

Based on Appendix A, the noise-polluted NTOA scheme (7) can be re-
formulated as follows:

16 = i — kp(£(0) —ra) — ki fu (F(0) — ra)dr + 5(8),

which is equivalent to

e(t) = —kpe(t) — kl/ﬂ e(T)dT + 6(1).

By using the Laplace transformation [41], the ith subsystem of (11) is as
follows:

sei(s) — e;(0) = —kpe;(s) — %et(s) + 0;(s).

Then, the following result is obtained:

s(e;(0) + 6;(s))
s24+ kps+k;

ei(s) =

Evidently, the transfer function is derived as follows:
s
s2 4+ kps + ki’
of which the poles are (—kp + \/kp — 4k1)/2 and (—kp — \/ ki — 4k1)/2. Note

that, as defined previously, kp and ky satisfy ki > 4k > 0 numerically.

Therefore, such two poles are located on the left half-plane, indicating the
stability of the system (12).

Note that o(f) = ¢ € R™ (being a constant), and thus d;(s) = ¢/s. For
(12), using the final value theorem [41] yields

b 2 4 [-] e
lim e;(t) = lim se;(s) = lim i r(F (0) +¢/s) = 0.
t—ro0 s—0 s—=0 §2 + kps + ki

According to (13), lim;_, |le(t)||2 = 0 with symbol || - ||2 denoting the two
norm of a vector. On the basis of the above analysis, the trajectory of e(#) for
the noise-polluted NTOA scheme (7) can be concluded to converge to zero.
In other words, the Cartesian error e(t) synthesized by (7) has a convergence
property, which now completes the proof.



Appendix D: Proof of Theorem 4

As presented in Appendix C, the noise-polluted NTOA scheme (7) can
be rewritten as follows:

t
S = =Rl = Ty / o(r)dr +8(8),
0
where the ith (Vi =1,--- ,m) subsystem is formulated as
t
Gl(t) = —'k‘p(ii(t) - AI/ C.g(T)(lT + 6l(t)
0

Considering that kp and ky satisfy k3 > 4k; > 0 numerically, the solution to
(14) is obtained as follows:

. e; (0) (¥ exp(V,t) — Vg exp(Pat))

1 t
+ vyexp(U(t — 1
e r2)_4,“/0( Lexp(D(t — 7))

— Yo exp(Va(t — 7)))di(7)dT.

ei(t)

From the triangle inequality,

€i(0) () exp(Vht) — ¥o exp(Dat))| - 5 191 exp (0 (t — 7))||0:(7)|dT
VK2 — 4k VkZ — 4k
. [ 192 exp(92(t — 7))||6:(7)|d7

It follows the above inequality that

lei(t)] <

lei (0) (D1 exp(v:t) — Vo exp(Vat))| 53 2 max |8;(7)].

\/ kiz) — 4k1 \ /ki?) — 4];:' o<t

Therefore, the following result is obtained:

lei(t)] <

m
Jim sup [le(t)]|: < 2 T L 18:(7)|

On the basis of the above analysis, the Cartesian error e(t) synthesized by
the noise-polluted NTOA scheme (7) in the presence of bounded time-varying
noise can be concluded to be bounded, with the steady-state error being
bounded by 2\/m maxo<-<: |0;(7)|/\/kp — 4ki. The proof is thus completed.






