Supplementary Information

Spatial and Temporal Variations in Hemodynamic Forces Regulate Cardiac Trabecular

Initiation and Consequent Contractile Function

Juhyun Lee^{1,2*}, Vijay Vedula^{3*}, Kyung In Baek^{2*}, Junjie Chen², Jeffrey J. Hsu¹, Yichen Ding¹,

Chih-Chiang Chang², Hanul Kang⁴, Peng Fei⁵, Cheng-ming Chuong⁶, Rongsong Li¹, René R.

Sevag Packard^{1, 4}, Alison L. Marsden³, Tzung K. Hsiai^{1,2,4,7}

 ¹Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA
²Department of Bioengineering, UCLA, Los Angeles, CA
³Department of Pediatrics and Bioengineering, Stanford University, Stanford, CA
⁴Division of Cardiology, VA Greater Los Angeles Healthcare System, Los Angeles, CA
⁵School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, China
⁶Department of Pathology, University of Southern California, Los Angeles, CA
⁷Medical Engineering, California Institute of Technology, Pasadena, CA

*These authors contributed equally to this work.

Corresponding Author: Tzung K. Hsiai, M.D., Ph.D. Department of Medicine and Bioengineering University of California, Los Angeles Los Angeles, CA 90073 Email: <u>thsiai@mednet.ucla.edu</u> Telephone: 310-268-3839 Fax: 310-268-4288

Supplementary materials:

Fig. S1	Sequential Notch in WT zebrafish from confocal mircoscopy
Fig. S2	NICD mRNA injection to control zebrafish
Fig. S3	Pulse-wave (PW) Doppler image of adult wild type zebrafish
Video S1	Registration of 4-D beating heart with segmented fluid domain
Video S2	4-D WSS profile of WT zebrafish
Video S3	4-D streamline traces of WT zebrafish heart
Video S4	Cardiomyocytes proliferation of WT zebrafish at 5 dpf
Video S5	Cardiomyocytes proliferation of gata1a MO injected zebrfish at 5
	dpf
Video S6	Cardiomyocytes proliferation of rescue zebrafish with NICD
	mRNA injection at 5 dpf

Fig. S1. Sequential Notch in WT zebrafish from confocal microscopy. (A-C) At 3 dpf, Tp1 signal, Notch promoter, activity initially resided in the endocardial layer and AV canal. (D-F) At 4 dpf, Notch activity appeared to be more prominent in the epicardium than in the endocardium. Epicardial Tp1 signal and trabecular ridges were organizing into an interspersed pattern. (G-H) As trabeculae developed to form a network structure, Notch activity was prominent in both the epi- and endocardium. Notch activity was absent in the myocardium.

Fig. S2

Fig. S2. NICD mRNA injection to WT zebrafish *Tg(cmlc:mcheery;tp1:gfp).* (A) At 3dpf, tp1 signal was initially expressed in endocardium as other groups. However, ventricular thickness was thicker than WT. (B) At 4 dpf, ventricle was over trabeculated and Notch activity was shown in both endocardium and myocardium. (C) Large amount of myocardium was separated from ventricular wall and form a trabecular network by interconnecting with thin bridges (arrow).

Fig. S3

Fig. S3. Pulse-wave (PW) Doppler image of adult wild type zebrafish. PW Doppler provides assessment of passive filling of the ventricle (early [E]-wave velocity) and active filling during atrial systole (atrial [A]-wave velocity). Unlike <u>in</u> human hearts, atrial contraction (A-wave) is stronger than passive filling by ventricular relaxation, therefore, E/A ratio is < 1 at baseline. For *wea* mutant, A-wave would be negligible due to lack to atrial contraction.

Supplementary Video Legends

- Video S1. Registration of 4-D beating heart with segmented fluid domain.
- Video S2. 4-D WSS profile of WT zebrafish
- Video S3. 4-D streamline traces of WT zebrafish heart
- Video S4. Cardiomyocytes proliferation of WT zebrafish at 5 dpf
- Video S5. Cardiomyocytes proliferation of gata1a MO injected zebrfish at 5 dpf
- Video S6. Cardiomyocytes proliferation of rescue zebrafish with NICD mRNA injection

at 5 dpf