
Appendix 1 

 

Value of information analysis 

 

We started the analysis by estimating the EVPI. For a cost-effectiveness analysis  

informing a decision on a number of interventions (i) with unknown parameters (θ), Monte 

Carlo simulation takes K samples from the joint distribution of θ, and generates a 

corresponding set of K net benefits (NB (i, θ1),…, NB (i, θK)), for each intervention. 

Averaging these values, the optimal decision with current information is to adopt the 

intervention with the maximum expected NB, maxi Eθ NB (i, θ). If we have perfect 

information on θ, the maximized NB becomes maxi NB (i, θ); however,  because the true 

value of θ is unknown, averaging the maximized values gives the expected maximum NB 

under perfect information, Eθ maxi NB (i, θ). The EVPI is the difference between the expected 

NB of a decision with perfect information and the decision based on current information:  

EVPI = Eθ maxi NB (i, θ) - maxi Eθ NB (i, θ)     Equation 1  

EVPI calculated using Equation 1 is an estimate for an individual patient episode (i.e., 

per-patient EVPI); however, because decisions are taken at the population level, population 

VOI measures should be determined,  which is the per-patient estimate multiplied by the total 

number of patients who will benefit from additional information over the expected lifetime of 

the intervention. Given the acute nature of the interventions, the population VOI measure can 

be expressed as follows:  

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑉𝑂𝐼 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  𝑉𝑂𝐼 𝑚𝑒𝑠𝑢𝑟𝑒 . (∑
𝐼𝑡

(1+𝑟)𝑡
𝑇
𝑡=1  )  Equation 2 

Where T is the lifetime of the intervention, It  is the incidence in each future time period t, and 

r is the annual discount rate which we set at 5%. Time horizons in this study ranged from five 

to ten years. Sensitivity analyses were performed to test the impact of varying the time 

horizon and the WTP threshold on VOI estimates.  



 When the population EVPI appears to be too small compared with the expected 

research costs, additional research would not be required, and accordingly, the decision 

would be to adopt or reject the intervention based on the current evidence. On the other hand, 

when the population EVPI is likely to exceed the costs of additional research, then further 

research is potentially worthwhile. In this case the EVPPI would be calculated to know the 

focus and type of the additional research. 

For a subset of one or more parameters where (θI) is the parameters of interest and 

(θC) is the complementary set of parameters, the optimal decision would be that with the 

maximum expected NB after averaging over the distribution of θC, conditional on θI,  

𝑚𝑎𝑥𝑖 𝐸(𝜃C|𝜃I)𝑁𝐵(𝑖, 𝜃𝐼 , 𝜃𝐶). Again, because we do not have perfect information on θI we 

must take the expectation with respect to θI which is 𝐸𝜃I
𝑚𝑎𝑥𝑖 𝐸(𝜃C|𝜃I)𝑁𝐵(𝑖, 𝜃𝐼 , 𝜃𝐶). The 

EVPPI is the difference between the expected NB with perfect information and the expected 

NB with current information:  

𝐸𝑉𝑃𝑃𝐼𝜃𝐼
 =  𝐸𝜃I

𝑚𝑎𝑥𝑖 𝐸(𝜃C|𝜃I)𝑁𝐵(𝑖, 𝜃𝐼 , 𝜃𝐶)  − 𝑚𝑎𝑥𝑖  𝐸𝜃𝑁𝐵(𝑖, 𝜃)   Equation 3  

The Monte Carlo solution to the conditional term in Equation 3 is to run a two-level 

simulation. The outer-loop samples from θI, and then the inner loop samples from θC 

conditional on the outer sampled value of θI. Convergence of the EVPPI estimates informed 

the number of inner and outer simulations. Nevertheless, When the model is linear (e.g., 

decision tree) with no correlation between input parameters, a one-level simulation approach 

can be used in which we sample from θI, but keep the complementary parameters θC fixed at 

their prior means:  

𝐸𝑉𝑃𝑃𝐼𝜃𝐼
 =  𝐸𝜃𝐼

𝑚𝑎𝑥𝑖 𝑁𝐵(𝑖, 𝜃𝐼 , 𝐸(𝜃𝐶))  −  𝑚𝑎𝑥𝑖 𝐸𝜃𝑁𝐵(𝑖, 𝜃)      Equation 4 



The next step was to estimate the EVSI for a future study with a sample size n that 

will provide additional information D for θI. Assuming that θI and θC are a priori independent, 

the expected optimal NB given D is found by taking the expectation over the posterior 

distribution of θI given D and the prior distribution of θC, which is 

 𝑚𝑎𝑥 𝐸𝜃𝐶,(𝜃𝐼|𝐷) 𝑁𝐵(𝑖, 𝜃𝐼 , 𝜃𝐶). As D is unknown, we average over the distribution of D, 

which gives 𝐸𝐷𝑚𝑎𝑥𝑖 𝐸𝜃𝐶,(𝜃𝐼|𝐷) 𝑁𝐵(𝑖, 𝜃𝐼 , 𝜃𝐶). The EVSI is the difference between this, and 

the expected NB with current information:  

𝐸𝑉𝑆𝐼𝑛 = 𝐸𝐷𝑚𝑎𝑥𝑖 𝐸𝜃𝐶,𝜃𝐼| 𝐷 𝑁𝐵(𝑖, 𝜃𝐼 , 𝜃𝐶)  − 𝑚𝑎𝑥𝑖 𝐸𝜃𝑁𝐵(𝑖, 𝜃) Equation 5 

The first term in Equation 5 has a two-level Monte Carlo solution. The inner 

expectation requires a Bayes update of θI given data D, and the averaging of the NB function 

over this posterior distribution combined with the prior distribution of θC. This is made 

assuming that the likelihood for the proposed data D is conjugate with prior parameter 

distributions, which means that the parameters for posterior distributions can be estimated 

using closed forms and to scalar priors with no correlations. The nested simulation can be 

avoided in linear models with no parameter correlation.                                                                                                                                                                                                        

           𝐸𝑉𝑆𝐼𝑛 = 𝐸𝐷𝑚𝑎𝑥𝑖 𝑁𝐵(𝑖, 𝐸(𝜃𝐼|𝐷), 𝐸(𝜃𝐶))  −  𝑚𝑎𝑥𝑖 𝐸𝜃𝑁𝐵(𝑖, 𝜃)               Equation 6 
 


