Supplementary materials
“Identification and replication of RNA-Seq gene network modules associated with depression

severity” by Trang Le et al.

Supplement 1. RNA-Seq data generation

Morning blood samples were obtained from the participants, and peripheral blood mononuclear
cells (PBMC) were isolated using cell preparation tubes. Then, we quantified RNA expression by
analyzing complementary DNA derived from the PBMCs with RNA-Seq. RNA was obtained from
frozen peripheral blood mononuclear cells (Inflammation and neurological disease-related genes are
differentially expressed in depressed patients with mood disorders and correlate with morphometric and
functional imaging abnormalities) using Qiagen (Hilden, Germany) Qiashredder columns to homogenize
the cell lysates coupled with and Qiagen RNeasy Mini Kits (Hilden, Germany) for total RNA extraction.
The RNA isolation procedure included a DNase digestion step as directed by the Qiagen protocol. RNA
was frozen and shipped to the Oklahoma Medical Research Foundation (Oklahoma City, OK).
Concentration of RNA was ascertained via fluorometric analysis on a Thermo Fisher Qubit fluorometer.
Overall quality of RNA was verified using an Agilent Tapestation instrument. Following initial quality
control steps, sequencing libraries were generated using the Illumina Truseq Stranded mRNA with
library prep kit according to the manufacturers protocol. Briefly, mature mRNA was enriched for via
pull down with beads coated with oligo-dT homopolymers. The mRNA molecules were then chemically
fragmented and the first strand of cDNA was generated using random primers. Following RNase
digestion the second strand of cDNA was generated replacing dTTP in the reaction mix with dUTP.
Double stranded cDNA then underwent adenylation of 3° ends following ligation of Illumina-specific

adapter sequences. Subsequent PCR enrichment of ligated products further selected for those strands not



incorporating dUTP, leading to strand-specific sequencing libraries. Final libraries for each sample were
assayed on the Agilent Tapestation for appropriate size and quantity. These libraries were then pooled in
equimolar amounts as ascertained via fluorometric analyses. Final pools were absolutely quantified
using qPCR on a Roche LightCycler 480 instrument with Kapa Biosystems Illumina Library
Quantification reagents. Sequencing was performed on an Illumina Hiseq 3000 instrument with paired-
end 150bp reads. Samples were sequenced to an average depth of 30 million reads and RNA Integrity
Number of 8.6 per sample. RNA-Seq measures gene expression by sequencing, yielding the abundance
of each transcript present. Gene transcripts were computed from transcriptomic sequencing using the
MAP-RSeq bioinformatics pipeline tool'. The Illumin HiSeq 2000 (Illumina, San Diego, CA)
sequencing reads were aligned to the human genome build 37.1 using TopHat (1.3.3) and Bowtie
(0.12.7). Counting genes and mapping the reads to individual exons was carried by HTSeq (0.5.3p3) and
BEDTools (2.7.1), respectively. The total number of read counts was obtained per gene from the mRNA
expression. Quality control was graphically assessed pre- and post-normalization with minus- vs.-
average and box-and-whisker plots. The GC content and gene length adjustments were also evaluated
graphically. Normalization of the gene counts was performed with Conditional Quantile Normalization
(CQN), which accounts for differences in library size and also adjusts for GC content and gene length®.

These normalized values were used for subsequent analyses.



Supplement 2. RNA-Seq data preprocessing

Preprocessing steps described below involved: 1) removal of transcripts with low counts (threshold
defined below) and normalization, ii) outlier detection, iii) batch effect correction, and iv) exclusion of
transcripts of which coefficient of variation were larger than 0.8 in order to eliminate genes with

inconsistent expression across samples.

i) Low expression gene removal and normalization: Removing low-expressed transcripts is a necessary
step because low values can bias the results when certain types of statistical methods are employed’. We
considered a gene to be reasonably expressed if, in at least 10% of the samples, its transcript had at least
2-7 reads, depending on the library size (e.g. the total number of raw counts in each sample). In other
words, since the library size ranged from 220,667 to 675,792 counts, we removed genes with less than
ten counts-per-million (CPM) mapped reads in more than 144 samples, where the CPM reads are
computed as followed:

10° X raw counts
CPM =

library size
We then normalized the raw counts with trimmed mean of M-values (TMM)* to account for
compositional difference between the libraries. TMM method estimates normalization factors between
samples and produces relative expression levels across samples. After removing the low expressed genes
and performing within- and between-library normalization, we computed a matrix of log, counts-per-
million (logCPM) as a variance-stabilizing transformation of the current data set. These steps were

performed using the “edgeR” Bioconductor package”.

ii) Outlier detection: We applied an angle-based outlier (ABO) detection’ to remove samples with

exceptionally small ABO factor. Instead of distances, this method compares the divergence of angles



between pairs of data points. ABO detection has shown to be robust in high dimensional data because it
skips over distance, a measure whose contrast between nearest points and farthest points converges to 0
as the space’s dimensionality increases’. Since ABO factors describe the variance in directions of one
data point relative to the rest, data points with small ABO factors imply that the remaining data points
are clustered in a specific direction and thus show themselves as potential outliers in the data set (Fig.

S1).

iii) Batch effect adjustment: Since erroneous modules of genes can be generated if batch effects are not
controlled®, we adjusted for the batch effect with the function “removeBatchEffect” from the R package
“limma”’ (Fig. S2). Nonetheless, as advised by Nygaard'®, we still included batch as a covariate in our
downstream regression models. We also note that although the data contain batch effects, the
phenotypes were evenly distributed across batches (Figure S2). This balanced batch-phenotype
configuration allows batch adjustment to remove most of the variance attributed to batch without

affecting between-group variance and hence help increase statistical power'".

iv) Highly varied expression values filtering: Finally, prior to the network analysis, among transcripts
that have significant counts in at least 16 samples, we excluded transcripts with coefficient of variation
larger than 0.8 to obtain genes whose expression values were roughly consistent across samples. We
reasoned that expression values that differ greatly across subjects are likely due to technical variability'".

Filtering by coefficient of variation also helps increase power and prevent false discoveries, hence

improves the number of differentially expressed genes in downstream identification analysis'>.



Supplement 3. Figure S1. Angle based outlier (ABO) factors of 159 samples. In the high dimensional
RNASeq data, potential outliers are shown in red, corresponding to data points with distinctly small
ABO factors.
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Supplement 4. Figure S2. Two groups of diagnoses equally represented in all batches. The vertical axis
(count) represents the number of HC/MDD subjects in each batch.
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Supplement 5. Figure S3. Number of genes in each module.
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Supplement 6. Figure S4. The plot of the modules’ composite importance associated with MADRS. At
the false discovery rate threshold of 5%, DGM-17 and DGM-5 have significant association with

depression severity.

Modules’ Associations with MADRS

S . O005FDR

k]

]

E 0.1 FDR

= AT 44N IR RO R S A SR QU S S ) ot P ey
8

D

S

M M2 M3 M4 M5 Me M7 M8 M9 MI0 MI1 Mi2 MI3 Mi4 Mi5 Mi6 Mi7 Mis M9 M20 M21 M2 M23

Module



A2MP1
AFAP1-AS1
AKAPS5
AKT1
ALG12
ALOX12
ALS2CR12
AMPH
ANAPC15
ANXA6
AQP11
ARAP1
ARHGAP27
ARHGEF26
ATADS
ATG14
ATP1A1-AS1
ATP2C2
ATP5H
B9D2

BAD
BCS1L
BMP8A
BSN
BTBD2
Cllorf42
Cl1orf80
C120rf73
C170rf53
C190rf68
Clorfl46
C20rf88
C6orf136
C9orf169
CACNB2
CALB1
CAMK1

Supplement 7. Gene list 1. List of genes in module DGM-5.

CARD14
CCDC104
CCDC181
CCT6P3
CD160
CD48
CD72
CERS5
CFD
CLASRP
CLEC2B
CNTRL
COAS
COL4A4
COQ6
COX20
CREB1
CRLF3
CUL4AA
DARS2
DCDC2B
DCLRE1C
DDX56
DENND4A
DHODH
DNAH1
DNAJC17
DNAJC9-AS1
DOTI1L
DPP7
DRG1
ECT2L
EFR3B
EGLN1
EML4
ENTPD3
ERCC6L

EVA1C
EZR-AS1
FAM103A1
FAM13A
FAM160B2
FAM184B
FAM86HP
FAMO98B
FAS

FDPS
FKBP4
FOCAD
FOXM1
FOXP3
FTSJ3
FXR2
GALNS
GALNT10
GINS3
GLE1
GNB4
GNPTG
GOLGAS8H
GPM6B
GPR137
GPR155
GPR18
GRTP1
GSE1
GSTO1
GTF2F1
GUCY1B2
GZF1
HACL1
HDAC5
HECTD1
HEXA-AS1

HEXIM1

HLA-J
HMBOX1
HSPB9

HSPD1

ICMT

INTS4L2

ITIH2

JAM3

JPX
KCNIP2-AS1
KDELR3
KMT2C
KRTAP5-1
LARS

LCASL

LENG9

LGALS8

LHX4
LOC100129148
LOC100379224
LOC100996385
LOC101241902
LOC101927275
LOC101927901
LOC101928063
LOC101929767
LOC102723809
LOC102723885
LOC102724246
LOC646471
LOC729732
LRP11
LRRC37A2
LRRC37A6P
LYG2

MARCH1

MASP2
MCC
MCM3AP-AS1
MCTP1
MEGF11
METTL25
MIR3661
MIR635
MLLT10P1
MMP19
MPL
MROH6
MRS2
MSL1
MSTO1
MYO19
MYO5B
NDUFA2
NDUFAF2
NFE2L3
NFYC
NR2C2
NREP
NT5C2
NUDT13
NUDTS
OSGEPL1
OXR1
PARD6G
PCCA
PCGF3
PCP4L1
PDE6C
PDHX
PGM3
PIGZ
PLEKHB1

POLR2J4
PP7080
PPARA
PPMIN
PPP1R3B
PPWD1
PRKX
PROX2
PRPF3
PRPF38A
PSMD5
PSMD7
PTPN14
PXK
RAB11B-AS1
RAD17
RASGEF1A
RBM4B
REEPS
REV3L
RHOQ
RNF113A
RNF139-AS1
RNF149
RNF224
RNF39
ROCK2
RPRD1A
RPUSD3
RRP7A
RUFY3
RUSC1
S100A1
SAFB
SBF1
SEC13
SENCR

SENP1
SIGLEC16
SKIvV2L
SLAMF1
SLC13A4
SLC25A25
SLC26A2
SLC48A1
SNRPD2
SNX21
SPAG4
SPDYES
SPRN
STX17
TAC4
TACC1
TAF3
TBC1DS8
TCF7L1
TFIP11
TFPT
THADA
TM6SF1
TMEM131
TMEM139
TMEM217
TMEM221
TMEM259
TMEM263
TMPRSS9
TNFAIP8L1
TNK1
TP5313
TRAF1
TRIM7
TSC1
TTPAL

TUBB1
TXLNA
TYW1
UBE2E1
UBTF
UGDH-AS1
UHRF1
UsSP34
UTP14A
UTP20
VN1R1
VPRBP
WARS2
WIPI1
ZC3H8
ZFP69
ZNF37BP
ZNF407
ZNF506
ZNF544
ZNF546
ZNF552
ZNF57
ZNF646
ZNF790
ZNF805
ZNF814
ZNF83
ZNF865
ZNF878
ZNHIT3
ZSWIM7



Supplement 8. Gene list 2. List of genes in module DGM-17.

ACO2
ACSBG1
ADD3-AS1
AGA
ANAPC10
ANKRD12
ATG7
B3GALNT2
Clorf122
C21orf33
C9orf163
CABLES1
CASC1
CCDC176
CCNL1
CD81-AS1
CEBPZ
CGGBP1
DCBLD1
DDIT3
DHFRL1
DHRS4
DNAJB1
EIF3J
ENO4
FAM216A
FBXO8
FSD2

FYTTD1

HIAT1

HYAL1

IFIT1

IPO9-AS1
IQCH-AS1
ITGAM

JADE1
KANSL1L
KIAA1524
KLF3-AS1
LIMD1-AS1
LNX1
LOC100128494
LOC100130093
LOC100287944
LOC100289511
LOC100506551
LOC101926895
LOC101927151
LOC101927497
LOC101927770
LOC101928243
LOC101928371
LOC101929162
LOC646719
LOC730183
LYSMD1

MAGI3
MAN2A1
MBNL1-AS1
MIR6126
MLX
MTOR-AS1
MYH11
NPC1
NRG4
NUP214
OPRM1
OTUDS
PERM1
PIAS3
PMPCB
PPP3CB
PRNCR1
PSIP1
PTOV1-AS1
RSPH4A
RUNX2
S100A13
SERHL
SETD6
SH3BP5-AS1
SLC20A2
SLC25A5
SLCAA1AP

SMC5
SMIM19
SNRK-AS1
SNX17
SRRD
STXBP5-AS1
SUV39H2
TBCK
TCF7L2
TCHP
TMEM66
TNFAIP1
TPI1
TRAF3IP1
TSC22D1-AS1
TSFM
TUBG1
UBC
VRK2
YARS
ZBTB10
ZCCHC3
ZNF789
ZNF839
ZSCAN2



Supplement 9. Table S1. Reactome results of pathways involved in all modules with Reactome-FDR
g-value < 0.05. Original and adjusted p-values are computed from the linear regression of MADRS
score on module enrichment profile as described in main paper’s Methods section. Modules are ordered
by the significance of association with MADRS. Pathways with NA indicates no pathway enrichment
found for that gene module.

*For the purpose of exploration, the Reactome’s enrichment FDR g-value threshold for DGM-5 and
DGM-17 is increased to 0.2. The enrichment of the Apoptosis pathway in DGM-5 may suggest a genetic
signature involving brain region-specific volume reduction due to cell loss in MDD'>'*. The enriched
PI3K/AKT activation pathway is also involved in apoptosis and plays a role in mRNA translation of
type I interferon-dependent genes'”.

Module p-value | p.adjust | # genes | Pathways involved

1 | DGM-17* 6.16-05 0.002 109 * Interactions of Vpr with host cellular proteins
* Apoptosis

¢ Signaling by B Cell Receptor

¢ PIP3/AKT and PI3K/AKT signaling activation
* GABI signalosome

* PI3K events in ERBB4 and ERBB2 signaling
* tRNA Aminoacylation

2 | DGM-5% 0.002 0.016 291 * AKT phosphorylates targets in the cytosol

* Metabolism of lipids and lipoproteins

* Immune System

* Phospholipid metabolism

3 | DGM-16 0.011 0.085 271 * Developmental Biology
4 | DGM-4 0.024 0.134 282 NA
* The citric acid (TCA) cycle and respiratory electron
transport
* Formation of transcription-coupled NER (TC-NER)
5 | DGM-20 0.029 0.134 176 repair complex
* Activation of the AP-1 family of transcription factors
6 | DGM-23 0.039 0.143 110 * DSCAM interactions
* Axon guidance
7 | DGM-13 0.044 0.143 134 * Developmental Biology
DGM-11 0.063 0.181 133 NA

* NFkB and MAP kinases activation mediated by TLR4
signaling repertoire

e TRIF mediated TLR3 signaling

* TRAF6 mediated induction of NFkB and MAP kinases
upon TLR7/8 or 9 activation

* MyD88:Mal cascade initiated on plasma membrane

* Activated TLR4 signaling

* Fatty acid, triacylglycerol, and ketone body metabolism

* Metabolism of lipids and lipoproteins

* Toll Receptor Cascades

* Signaling by NGF

9 | DGM-14 0.093 0.234 164 * Pre-NOTCH Transcription and Translation

* Adaptive Immune System

10 | DGM-3 0.102 0.234 746 * Downstream Signaling Events Of B Cell Receptor




Immune System

Signaling by the B Cell Receptor (BCR)
Processing of Capped Intronless Pre-mRNA

GABI signalosome

Processing of Intronless Pre-mRNAs

Signaling by PDGF

RNA Polymerase II Transcription

Cleavage of Growing Transcript in the Termination
Region

11

DGM-12

0.183

0.383

704

Hemostasis

Platelet activation, signaling and aggregation
Signalling by NGF

Metabolism of proteins

G alpha (12/13) signalling events

Integration of energy metabolism

Platelet homeostasis

Pre-NOTCH Expression and Processing

p75 NTR receptor-mediated signalling
Signaling by Rho GTPases

12

DGM-7

0.262

0.503

187

NA

13

DGM-8

0.365

0.646

525

mRNA Splicing

mRNA Processing

Immune System

Processing of Capped Intron-Containing Pre-mRNA
Genes involved in Translation

Metabolism of proteins

Metabolism of mRNA

Metabolism of RNA

Adaptive Immune System

3' -UTR-mediated translational regulation

14

DGM-9

0.469

0.647

157

RNA Polymerase II Pre-transcription Events
Abortive elongation of HIV-1 transcript in the absence
of Tat

MicroRNA (miRNA) Biogenesis

Regulatory RNA pathways

Immune System

Elongation arrest and recovery

Formation of the HIV-1 Early Elongation Complex
RNA Polymerase II Transcription Pre-Initiation And
Promoter Opening

Late Phase of HIV Life Cycle

RNA Polymerase II Transcription

15

DGM-22

0.483

0.647

165

Developmental Biology

Transcriptional Regulation of White Adipocyte
Differentiation

Immune System

16

DGM-19

0.515

0.647

146

Immune System

Myogenesis

Adaptive Immune System

Metabolism of carbohydrates

Class I MHC mediated antigen processing &
presentation




¢ Inflammasomes

* Signaling by TGF-beta Receptor Complex

* Platelet activation, signaling and aggregation
¢ Antigen processing-Cross presentation

* Response to elevated platelet cytosolic Ca2+

17

DGM-21

0.520

0.647

99

NA

18

DGM-6

0.523

0.647

442

¢ Immune System

* Metabolism of RNA

* Metabolism of mRNA

* Metabolism of proteins

¢ Influenza Life Cycle

¢ Adaptive Immune System

¢ Influenza Viral RNA Transcription and Replication
¢ Interleukin-2 signaling

* Hemostasis

* HIV Infection

19

DGM-18

0.534

0.647

184

NA

20

DGM-2

0.579

0.666

207

¢ Signalling by NGF

¢ SLC-mediated transmembrane transport

¢ PKB-mediated events

* Interactions of Vpr with host cellular proteins
* p75 NTR receptor-mediated signalling

21

DGM-1

0.639

0.700

470

¢ Adaptive Immune System

¢ Immune System

* Cell Cycle, Mitotic

* MHC class II antigen presentation

* Cytokine Signaling in Immune system

* Cell Cycle

* Developmental Biology

* DNA Replication

¢ Interferon Signaling

¢ Class I MHC mediated antigen processing &
presentation

22

DGM-15

0.705

0.737

86

NA

23

DGM-10

0.948

0.948

124

NA




Supplement 10. Table S2. Main effect enrichment of genes in each module. The module dimensionality
reduction or feature selection approach is effective at identifying modules that are enriched for
individual genes that are statistically significant. The last column gives the probability of observing at
least x; genes from module i in the 100 most significant genes (based on p-values of the logistic
regression on clinical phenotype as described in main text) assuming a hypergeometric distribution,
taking into account the number of genes in module i. These probability values correlate with the
MADRS-significant p-value of each module shown in Supplement 8 (r = 0.9).

DGM- (/) X (# sig. genes) P(X = x)
5 26 8.62e-13
16 17 2.25e-06
17 8 4.70e-04
13 8 1.82e-03
20 6 7.69e-02
4 8 1.03e-01
23 3 2.85e-01
14 3 5.28e-01
9 2 7.50e-01
12 9 8.57e-01
3 7 9.76e-01
1 2 9.98e-01
6 1 1.00e+00
2 0 1.00e+00
7 0 1.00e+00
8 0 1.00e+00
10 0 1.00e+00
11 0 1.00e+00
15 0 1.00e+00
18 0 1.00e+00
19 0 1.00e+00
21 0 1.00e+00
22 0 1.00e+00




FAM13A
MCM3AP-AS1
PP7080
NR2C2

OXR1

PSMD5

CHKA

XRCC3

PEX1

DGCR9

NEIL1

DND1

EIF2D

ATPSJ
TMEM140
MBNL1-AS1
usP34
LOC101928243
ANAPC10
NSA2

LOC100506314
FGD1
AP1G2
MRPS25
SDCBP2-AS1
KIAA1656
HBP1

FAN1

CCNI2
MIPEPP3
PHOSPHO1
STARDS
FAM184B
FDPS

CEBPZ
MASP2
FOXH1
TFPT
PAXBP1-AS1
EFCAB10

EFCAB14-AS1
PSMB7
RNF167

RGL4
C1RL-AS1
MYCBP2-AS1
AGAP2

ACO2

C19orf71
KIAA0100
PDCD2

OXA1L
LOC101928371
TCF7L1
LOC100379224
TRMT1
ATP1A1-AS1
LINCO0854
JUN

MMP19

WDR90
CCDC65
LOC101926895
TYW1
FAM168A
SLCOA7

GZF1

MIR3661
MIR324

UCHLS
RNF219-AS1
EZR-AS1
MAP3K13
SLC13A4
PGM3

TAC4

CTSB

TSSK3
LOC100129931
KRTCAP3

Supplement 11. Gene list 3. Top 100 individual genes with statistically significant association with the
diagnostic phenotype (MDD/HC).

PAXBP1

CcpP

LRRN2

MAK

GJD3
SPTY2D1-AS1
COAS

NOP16
ZFP36L1
LOC101926943
SARNP
SLC34A3
PKD2L2

PPIB

TXLNA

TAP1
STXBP5-AS1
SENCR
BMP8A
MXRAS8



Supplement 12. Figure S4. (Extension of main paper’s Fig. 3) Relationship between the individual
gene’s importance score and centrality in each module. The modules are ranked from most important
(top left) to least important (bottom right). The exact correlation values are given in Supplement 8.
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Supplement 13. Table S3. Summary statistics of linear regression models for each module in which the
importance scores of genes in the module are regressed on the centrality scores of genes in the module.

DGM- P coefficients R’ p-value
17 0.925 0.137 2.17E-04
5 0.675 0.190 2.44E-14
16 0.944 0.307 2.76E-22
20 0.682 0.093 4.81E-05
4 0.572 0.111 2.58E-08
23 0.364 0.033 0.066
13 0.515 0.085 0.001
11 0.513 0.047 0.015
14 0.315 0.045 0.008
3 0.350 0.064 6.81E-12
12 0.321 0.068 5.75E-12
7 -0.164 0.013 0.123
8 0.069 0.000 0.645
9 0.327 0.058 0.003
21 -0.053 0.001 0.822
6 -0.024 0.000 0.701
22 0.176 0.012 0.170
19 -0.164 0.016 0.126
18 -0.081 0.006 0.321
2 -0.021 0.000 0.757
1 0.298 0.047 2.44E-06
15 0.253 0.015 0.288

10 0.140 0.008 0.338



Supplement 14. Table S4. Interactions between these 14 differential genes and other MDD-related
genes.

Our secondary analyses with the conventional logistic regressions of the diagnosis phenotype on
individual genes revealed 14 significant effects with FDR threshold of 0.05: MBNL1-ASI,
LOC101928243, ANAPC10, LOC101928371, LOC101926895, JADEI, STXBP5-AS1, ADD3-AS1,
ACO2, CEBPZ, PRNCR1, FAMI13A, MCM3AP-AS1, PP7080, NR2C2, USP34, MMP19, TFPT and
TCF7L1. Although no previous MDD associations have been reported for these genes, there is evidence
for functional interactions between these genes and known MDD-related genes (www.genecards.org).
For example, the XRCC3 gene interacts with the CREB1 gene (discussed above) and FKBP5 gene
whose association with MDD has been strongly suggested '®*'. A comprehensive list of interactions
between these 14 differential genes and other MDD-related genes is provided in the Supplementary file
InteractingGenes.pdf. We note that an important paralog of FKBP5, FKBP4, participates in module
DGM-5. Moreover, several genes in the two modules are associated with schizophrenia, such as the
critical mediator of growth factor-induced neuronal survival AKT1 **** (in DGM-5), VRK2 (in DGM-
17) which codes for a serine/threonine kinase of the casein kinase I group *>*’, and TCF7L2 (in DGM-
17), a component of the Wnt signaling pathway **. Our finding of several schizophrenia-related genes in
our MDD analysis is not surprising due to the pleiotropy observed across psychiatric disorders, as
symptom complexes such as anhedonia and psychosis can be shared across these disorders. Also,
markers near AKT1 have been connected to depression in different populations *, and TCF7L2 contains
genetic variants that putatively influence MDD susceptibility *°. AKT is also a critical mediator of
growth factor-induced neuronal survival of which pathways significantly associated with different

psychiatric disorders *'.
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Mat Global Score Score
ched Rank (Implica (Implicati
Phe (Total ted) ng)
noty Genes

Matched
Phenotypes

Implicate Implicating Description
d Symbol Symbol

Category

XRCC3 NR3C1 Nuclear Receptor Subfamily 3 Group C Member 1  Protein Coding 76 "major depressive" 1 11 3.25 2.48
XRCC3 FKBP5 FK506 Binding Protein 5 Protein Coding 64 "major depressive" 1 4 3.25 1
XRCC3 EP300 E1A Binding Protein P300 Protein Coding 74 "major depressive" 1 24  3.25 0.69
XRCC3 MTHFR Methylenetetrahydrofolate Reductase Protein Coding 66 "major depressive" 1 31 3.25 0.64
XRCC3 CREB1 CAMP Responsive Element Binding Protein 1 Protein Coding 72 "major depressive" 1 28 3.25 0.31
ACO2 NR3C1 Nuclear Receptor Subfamily 3 Group C Member 1  Protein Coding 76 "major depressive" 1 11 3.20 2.39
ACO2 TPH2 Tryptophan Hydroxylase 2 Protein Coding 69 "major depressive" 1 1 3.20 1.07
ACO2 POMC Proopiomelanocortin Protein Coding 72 "major depressive" 1 14 3.20 0.65
ACO2 BDNF Brain Derived Neurotrophic Factor Protein Coding 73 "major depressive" 1 6 3.20 0.62
ACO2 EP300 E1A Binding Protein P300 Protein Coding 74 "major depressive" 1 24 3.20 0.6
NR2C2 NR3C1 Nuclear Receptor Subfamily 3 Group C Member 1  Protein Coding 76 "major depressive" 1 11 2.98 1.74
NR2C2 NR1D1 Nuclear Receptor Subfamily 1 Group D Member 1  Protein Coding 69 "major depressive" 1 21 2.98 1.5
NR2C2 FKBP5 FK506 Binding Protein 5 Protein Coding 64 "major depressive" 1 4 298 1.23
NR2C2 EP300 E1A Binding Protein P300 Protein Coding 74 "major depressive" 1 24  2.98 1.23
NR2C2 ESR1 Estrogen Receptor 1 Protein Coding 82 "major depressive" 1 52 2.98 0.42
TCF7L1 EP300 E1A Binding Protein P300 Protein Coding 74 "major depressive" 1 24  2.75 1.81
TCF7L1 GSK3B Glycogen Synthase Kinase 3 Beta Protein Coding 74 "major depressive" 1 30 2.75 1.06
TCF7L1 HTR2A 5-Hydroxytryptamine Receptor 2A Protein Coding 69 "major depressive" 1 2 275 1.03
TCF7L1 BDNF Brain Derived Neurotrophic Factor Protein Coding 73 "major depressive" 1 6 2.75 0.89
TCF7L1 FKBP5 FK506 Binding Protein 5 Protein Coding 64 "major depressive" 1 4 275 0.78
ANAPC10 EP300 E1A Binding Protein P300 Protein Coding 74 "major depressive" 1 24 2.12 1.41
ANAPC10 BDNF Brain Derived Neurotrophic Factor Protein Coding 73 "major depressive" 1 6 2.12 0.88
ANAPC10 GSK3B Glycogen Synthase Kinase 3 Beta Protein Coding 74 "major depressive" 1 30 212 0.66
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5-Hydroxytryptamine Receptor 2A
5-Hydroxytryptamine Receptor 1A

Nuclear Receptor Subfamily 3 Group C Member 1
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