Supporting Information

Proteomic Analysis of Hippocampus in Depression Mouse Model Reveals Neuroprotective Function of Ubiquitin C-terminal Hydrolase L1 via Stress-induced Cysteine Oxidative Modifications

Jung-Eun Choi¹, Jae-Jin Lee¹, Wonmo Kang¹, Hyun Jung Kim¹, Jin-Hwan Cho¹, Pyung-Lim Han², Kong-Joo Lee^{1*}

¹College of Pharmacy and Graduate School of Pharmaceutical Sciences, and ²Department of Brain and Cognitive

Sciences, Ewha Womans University, Seoul, Korea 03760

*Correspondence: kjl@ewha.ac.kr

Table of contents

Supplementary Experimental Procedures

Supplementary Figure 1 Supplementary Figure 2 Supplementary Table 1 Supplementary Figure 3 Supplementary Figure 4 Supplementary Figure 5 Supplementary Figure 6 Supplementary Figure 7

Supplementary Experimental Procedures

Western analysis

Protein concentration of hippocampal protein samples from control and stressed mice were determined by BCA assay kit (Pierce, USA) and 3 μg of protein per each lane was separated using SDS-PAGE. Proteins were transferred to hydrophobic PDVF membrane (Millipore, USA) and expression level of TPIS, PGAM1, PDXK and GAPDH as a loading control was examined using each primary antibody. Specific antibodies for TPIS, PGAM1 and PDXK were purchased from Abcam (UK), anti-GAPDH was from AbFrontier (Korea). LAS-3000 imaging system (Fujifilm, Japan) and Multi Gauge V3.0 (Fujifilm, Japan) were used to gain chemiluminescent signals and densitometry image analysis. For other 1D-Western analysis in Supplementary Figures, experiments were performed as described in Experimental Procedures. β-actin was used as loading control for soluble/ insoluble fractionation of UCH-L1 in HT-22 cells. β-actin antibody was from Santa Cruz Biotechnology (USA). All Western analysis were conducted under reducing condition.

Identification of overexpressed UCH-L1 spots in HT-22 cells

HT-22 cells were plated at a density of 1 × 10⁶ cells/100 mm plate (n=4) and grown for 24 h. 6 μ g of DNA plasmids (control plasmid; pcDNA3.1/myc-His(-) A vector, Myc-UCH-L1; control plasmid carrying wild-type (WT) UCH-L1) per each plate were transfected into cells using Lipofectamine 2000 reagent (Invitrogen, USA). Gel strips for 2D-PAGE were rehydrated for overnight. 24 h after transfection, cells were washed twice with 2 mL Hanks' Balanced Salt Solution (HBSS) to remove serum and treated with 0 or 1 mM of H₂O₂ in HBSS for 1 h (37°C, 5% CO₂). Cells were washed twice with 2 mL cold HBSS to completely remove residual H₂O₂. Cells were harvested by scrapping cells with 500 μ L of PBS per plate and the cell suspension was centrifuged at 2,500 × g for 3 min at 4°C. Supernatant was removed and the remaining cell pellets were frozen in a -80°C deep freezer for a while. Pellets were then solubilized using the same lysis buffer for the hippocampus sample preparation by incubating samples at room temperature for 2 h with vortexing at 30 min intervals. The ratio of lysis buffer volume to cell pellet was 100: 12. Samples were centrifuged at 10,000 × g for 20 min at 4°C to remove cell debris and the supernatant was used for 2D-PAGE. 2D- PAGE was performed as described in Experimental Procedures. Overexpressed UCH-L1 spots were found by comparing silver-stained gels, and 2D-western in large-gel scale was also carried out to verify the exact distribution of overexpressed myc-UCH-L1. For transfer of proteins to PDVF membrane and further Western analysis, gels were cut into 8×10 cm size by comparing with 1: 1 ratio printed image of silver-stained gels, covering the region containing overexpressed UCH-L1 spots. Five major spots were found and the spots were allowed for PTM analysis as described in Experimental Procedures.

Fractionation of soluble and insoluble UCH-L1 in HT-22 cells

To obtain soluble and insoluble fractions of UCH-L1, we followed the method reported by Kabuta *et al.* (Reference 17) with small changes. In brief, HT-22 cells were plated at the density of 5×10^5 cells/60 mm plate, grown for 24 h, transfected with 3 µg of DNA per plate (DNA plasmids used in this experiment are same as the plasmids used in xCELLigence RTCA experiments) using Lipofectamine 2000. Cells treated with 0 or 0.3 mM of H₂O₂ in HBSS for 2 h (37°C, 5% CO₂) as previously described, were lysed by scrapping cells with 1% Triton X-100 lysis buffer (250 µL per plate), passed through blue tips for six times, incubated on ice for 15 min. After centrifugation at 20,000 × g for 10 min at 4°C, supernatants were mixed with the same amount of SDS gel sample buffer, boiled for 5 min at 95°C and this was the nonionic detergent-soluble fraction. Remaining pellets were washed once with lysis buffer centrifuged at the same condition, and remaining supernatants are clearly removed. 100 µL of SDS gel sample buffer was directly added to the pellet, boiled for 5 min at 95°C and this was the nonionic detergent-insoluble fraction. As a result, the insoluble fraction is 5 times more concentrated (5x) than the soluble fraction. Soluble and insoluble fractions of UCH-L1 (wild-type and cysteine mutants) were assessed by Western analysis.

Supplementary Figure Legends

Supplementary Figure 1. Representative 2D-PAGE images of hippocampal proteins of control, CRS-9D and CRS-14D mouse.

Supplementary Figure 2. Changes in expression level of TPIS, PGAM1 and PDXK as shown in Figure 3 were verified by Western analysis. (A) Western analysis of hippocampal protein samples from control and stressed mouse (CRS-9D, CRS-14D) showed expression levels of TPIS, PGAM and PDXK. GAPDH was loading control. (B) Densitometry analysis shows quantification results for the blots. Band intensities of each protein was normalized to the intensity of GAPDH. Data were presented as the means ± S.E. of three independent blots (***P*<0.01, ****P*<0.001).

Supplementary Figure 3. Protein expression levels of endogenous and overexpressed UCH-L1 were detected by Western analysis using anti-UCH-L1 antibody. Samples from Figure 7 were subjected to Western analysis. Tubulin was used as loading control.

Supplementary Figure 4. Identification of overexpressed UCH-L1 spots in HT-22 cells. HT-22 cells were transfected with pcDNA3.1/myc-His(-) A vector and the same vector carrying human UCH-L1 wild-type clone respectively, treated with 0 or 1 mM H₂O₂ and separated by 2D-PAGE. (A) Partial 2D gel images showing UCH-L1 spots overexpressed in HT-22 cells. Five UCH-L1 spots were designated with arrows. (B) Verification of overexpressed UCH-L1 spots using 2D-western analysis. Experiment was performed in large-gel scale.

Supplementary Figure 5. Full 2D-gel images of HT-22 cells overexpressing control myc vector or myc-UCH-L1. Full images of 2D-gels presented in Supplementary Figure 4A shows protein expression profiles of HT-22 cells treated with 0 or 1 mM of H_2O_2 . Box indicates the region cropped for Supplementary Figure 4A.

Supplementary Figure 6. Soluble and insoluble fraction of wild-type and Cys mutants of UCH-L1 in response to oxidative stress. HT-22 cells overexpressing WT and Cys to Ser mutants (A) or WT and Cys to Asp mutants (B) of UCH-L1 were exposed to 0 or 0.3 mM H_2O_2 and then soluble and insoluble fractions were separated by cellular fractionation. Control (designated as Cont) means cells transfected with empty pcDNA3.1/myc-His(-) A vector. Proteins from each fraction were analyzed by Western blotting and band intensities of each blot were quantified by densitometry analysis. β-actin was used as loading control. Signal intensity of UCH-L1 was normalized to that of β-

actin. Bar graphs show relative signal intensities of various UCH-L1 constructs compared to the signal intensity of wild-type UCH-L1 treated with 0 mM H_2O_2 . Data were shown as the means ± S.E. of triplicates (ns: not significant, **P*<0.05, ***P*<0.01, ****P*<0.001).

Supplementary Figure 7. Representative MS/MS spectra of post-translationally modified peptides of UCH-L1 listed in Table 2 and 3 (in the order of appearance in the table).

Representative 2D-PAGE images of hippocampal proteins of control, CRS-9D and CRS-14D mouse.

В

Supplementary Figure 2

Changes in expression level of TPIS, PGAM1 and PDXK as shown in Figure 3 were verified by Western analysis. (A) Western analysis of hippocampal protein samples from control and stressed mouse (CRS-9D, CRS-14D) showed expression levels of TPIS, PGAM and PDXK. GAPDH was loading control. (B) Densitometry analysis shows quantification results for the blots. Band intensities of each protein was normalized to the intensity of GAPDH. Data were presented as the means ± S.E. of three independent blots (**P<0.01, ***P<0.001).

Supplementary Table 1. Ambiguous modifications found in UCH-L1 spots. Ambiguous post-translational modifications of UCH-L1 spots 1 to 4 in figure 5A were shown in table below. Modifications found in acidic spots were colored in red, those found in basic spots were in blue and modification found in all spots was colored in green.

Spots found	Control: 3	Control: 2, 3 Stress: 2, 3, 4	Stress: 4	Control: 3	Control: 3 Stress: 3, 4	Control: 1, 2, 3	Stress: 1, 2, 3, 4	Stress: 1	Stress: 1	Stress: 4	Stress: 2	Control: 3 Stress: 2	Control: 2	Control: 1	Control: 1	Control: 2	Control: 2	Control: 1, 2, 3 Stress: 1, 2, 3	Control: 1, 2, 3 Stress: 2, 3	Control: 3 Stress: 3, 4	Control: 2 Stress: 1	Control: 2	Control: 2	Control: 2 Stracc: 3_4	Control: 3	Stress: 3, 4	Stress: 1, 3, 4	Stress: 1	Stress: 1	spot 2 (pooled)	spot 3 (pooled)
Sequence / Modification	MQLKPMEINPEMLNK / 2 Acetyl (K); 3 Dea mida ted (NQ)	MQLKPMEINPEMLNK / Acetyl (K); 3 Oxidation (M)	MQLKPMEINPEMLNKVLAK / Acetyl (K); 2 Deamidated (NQ); 2 Oxidation (M)	FADVLGLEEETLGSVPSPACALLLLFPLTAQHENFRK / Carbamidomethyl (C); 2 Deamidated (NQ); Phospho (ST)	KQJEELK / Acetyl (K); Deamidated (NQ)	DIEFLKGOFVSPK / Phosoho (ST)		QIEELKGQEVSPK / Acetyl (K); 2 Deamidated (NQ); Phospho (5T)	GQEVSPKVYFMK / Acetyl (K); Deamidated (NQ); Phospho (ST)	VYFMKQTIGNSCGTIGLIHAVANNQDK / Oxidation (M); Phospho (ST); Phospho (Y)	VYFMKQTIGNSCGTIGLIHAVANNQDK / Acetyl (K); 3 Deamidated (NQ); Oxidation (M); Phospho (ST); Farnesyl (C)	QTIGNSCGTIGLIHAVANNQDK / 4 Deamidated (NQ); 2 Phospho (5T)	QTIGNSCGTIGLIHAVANNQDKLEFEDGSVLK / Acetyl (K); 5 Deamidated (NQ)	QTI GNSCGTI GLIHAVANNQD KLEFED GSVLK / Acety (K); Oxidation (C)	QTIGNSCGTIGLIHAVANNQDKLEFEDGSVLK / Acetyl (K); Phospho (ST); Oxidation (C)	AKCFEK / Acetyl (K); Carbamidomethyl (C)	CFEKNEAIQAAHDSVAQEGQCR / Acetyl (K); 2 Carbamidomethyl (C); Deamidated (NQ)	NEAIQAAHDSVAQEGQCR / Phospho (ST)	NEAIQAAHDSVAQEGQCR / Carbamidomethyl (C); Phospho (ST)	NEAIQAAHDSVAQEGQCR / Phospho (ST); Trioxidation (C)	NEAIQAAHDSVAQEGQCR / Carbamidomethyl (C); Methyl (R)	NEAIQAAHDSVAQEGQCR / Carbamidomethyl (C); 2 Deamidated (NQ); Phospho (5T); Methyl (R)	NEAIQAAHDSVAQEGQCR / Nitrosyl (C)	NEAIQAAHDSVAQEGQCR / -16 (C)		NEAIQAAHDSVAQEGQCR / Dioxidation (C)	MPFPVNHGASSEDSLLQDAAK / Phospho (ST)	EQGEVRFSAVALCK / Carbamidomethyl (C); Deamidated (NQ); Methyl (R)	FSAVALCK / Carbamidomethyl (C); Phospho (ST)	FSAVALCK / Phospho (ST); Oxidation (C)	FSAVALCKAA / Acetyl (K); Phospho (ST); Dioxidation (C)
Delta Ma ss (Da)	0.4763	-0.0332	-0.0104	-0.0645	0.0025	-0.0129	C710.0	-0.1210	-0.0364	0.0630	0.1273	0.2246	-0.0144	-0.0453	0.0301	0.0850	0.0021	-0.0423	-0.0269	-0.0128	-0.0153	0.0108	0.0194	0.0248		-0.0075	-0.0485	-0.1775	0.0760	-0.4728	0.0949
Ma s s Theore tica l	1901.8824	1904.9045	2302.1622	4164.0530	929.5069	1563.7545		1607.7331	1534.6779	3097.3803	3266.5644	2416.9859	3417.6133	3428.6882	3508.6545	823.3898	2590.1176	2005.8313	2062.8528	2053.8160	1996.9021	2078.8364	1954.8551	1909.8878		1957.8548	2293.0086	1607.7977	974.4296	933.4031	1133.4828
Mass Observed	1902.3586	1904.8714	2302.1518	4163.9885	929.5094	1563.7416	071	1607.6120	1534.6414	3097.4433	3266.6917	2417.2105	3417.5989	3428.6429	3508.6846	823.4748	2590.1197	2005.7890	2062.8259	2053.8032	1996.8868	2078.8472	1954.8745	1909.9126		1957.8472	2292.9600	1607.6203	974.5056	932.9303	1133.5776
Mass (m/z) Experimental	952.1866	635.9644	768.3912	1042.0044	465.7620	787.8781	1010.201	804.8133	768.3280	775.3681	1089.9045	806.7441	1140.2069	858.1680	1170.5688	412.7447	864.3805	669.6036	688.6159	1027.9089	666.6362	1040.4309	652.6321	637.6448		979.9309	1147.4873	536.8807	488.2601	933.9376	567.7961
Start - End E	1 - 15	1 - 15	1 - 19	28 - 64	65 - 71	66 - 78	2	66 - 78	72 - 83	79 - 105	79 - 105	84 - 105	84 - 115	84 - 115	84 - 115	130 - 135	132 - 153	136 - 153	136 - 153	136 - 153	136 - 153	136 - 153	136 - 153	136 - 153		136 - 153	179 - 199	208 - 221	214 - 221	214 - 221	214 - 223

Protein expression levels of endogenous and overexpressed UCH-L1 were detected by Western analysis using anti-UCH-L1 antibody. Samples from Figure 7 were subjected to Western analysis. Tubulin was used as loading control.

Identification of overexpressed UCH-L1 spots in HT-22 cells. HT-22 cells were transfected with pcDNA3.1/ myc-His(-) A vector and the same vector carrying human UCH-L1 wild-type clone respectively, treated with 0 or 1 mM H_2O_2 and separated by 2D-PAGE. (A) Partial 2D gel images showing UCH-L1 spots overexpressed in HT-22 cells. Five UCH-L1 spots were designated with arrows. (B) Verification of overexpressed UCH-L1 spots using 2D-western analysis. Experiment was performed in large-gel scale.

Full 2D-gel images of HT-22 cells overexpressing control myc vector or myc-UCH-L1. Full images of 2D-gels presented in Supplementary Figure 4A shows protein expression profiles of HT-22 cells treated with 0 or 1 mM of H_2O_2 . Box indicates the region cropped for Supplementary Figure 4A.

Soluble and insoluble fraction of wild-type and Cys mutants of UCH-L1 in response to oxidative stress. HT-22 cells overexpressing WT and Cys to Ser mutants (A) or WT and Cys to Asp mutants (B) of UCH-L1 were exposed to 0 or 0.3 mM H_2O_2 and then soluble and insoluble fractions were separated by cellular fractionation. Control (designated as Cont) means cells transfected with empty pcDNA3.1/myc-His(-) A vector. Proteins from each fraction were analyzed by Western blotting and band intensities of each blot were quantified by densitometry analysis. β -actin was used as loading control. Signal intensity of UCH-L1 was normalized to that of β -actin. Bar graphs show relative signal intensities of various UCH-L1 constructs compared to the signal intensity of wild-type UCH-L1 treated with 0 mM H_2O_2 . Data were shown as the means ± S.E. of triplicates (ns: not significant, *P<0.05, **P<0.01, ***P<0.001).

⁸⁴QTIGNSCGTIGLIHAVANNQDKLEFEDGSVLK¹¹⁵ + Dioxidation (C90)

⁸⁴QTIGNSCGTIGLIHAVANNQDKLEFEDGSVLK¹¹⁵ + Trioxidation (C90)

Supplementary Figure 7

Representative MS/MS spectra of post-translationally modified peptides of UCH-L1 listed in Table 2 and 3 (in the order of appearance in the table).

⁸⁴QTIGNSCGTIGLIHAVANNQDKLEFEDGSVLK¹¹⁵ + SO₂-SH (C90)

¹³⁶NEAIQAAHDSVAQEGQCR¹⁵³ + Trioxidation (C152)

Supplementary Figure 7 (Continued)

Supplementary Figure 7 (Continued)

Supplementary Figure 7 (Continued)

¹¹⁶QFLSETEKLSPEDR¹²⁹ + Acetylation (K123)

Supplementary Figure 7 (Continued)