PNAS www.pnas.org

Supplementary Information for

Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean

Authors: Eric J. Raes^{1,2,3*}, Levente Bodrossy³, Jodie van de Kamp³, Andrew Bissett³, Martin Ostrowski⁴, Mark Brown⁵, Swan L.S. Sow^{3,6}, Bernadette Sloyan³, and Anya M. Waite^{1,7}

1. Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany

- 2. The Oceans Institute M047, University of Western Australia, Crawley, 6009 WA, Australia
- 3. CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, Tasmania, 7001, Australia
- 4. Macquarie University, Faculty of Science and Engineering, NSW 2109, Australia
- School of Biotechnology and Biomolecular Sciences, University of NSW Kensington, Sydney, NSW 2052 Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Tasmania, Australia
- 7. Universität Bremen, Department Biology-Chemistry, Bibliothekstraße, 1 D-28334, Bremen, Germany
- * Corresponding author: <u>eric.raes@csiro.au</u> current address³
- 5 6

- 7
- 8
- 9

10	This PDF file includes:
11	
12	Supplementary text covering materials and methods:
13	 Biophysical parameters Nutrient analysis
14 15	2) Nutrient analysis3) DNA extraction protocol
16	4) Pigment analysis and Table S1
17	4.1. Nanoplankton
18	5) Carbon assimilation rates
19	6) Richness and statistical analyses Table S2 and S3
20	Figures S1 to S9
21 22	Table S2-S3 References for SI
22	References for St
24	Supplementary Information Text
25	
26	
27 28	1. <u>Biophysical parameters</u>
29 29	A 36-Niskin bottle rosette was fitted with a Seabird SBE32 conductivity-temperature-
30	depth (CTD) profiler, a SBE43 O2 sensor, a Chelsea Aqua tracker Fluorometer and a
31	Wetlabs C-Star TM transmissometer. Transmission was used as a proxy for particle
32	concentration; areas with high particle concentrations denoted by a low transmission
33	signal (1) (See figure S1b). Physical, biogeochemical data and metadata can be accessed
34	through the GO-SHIP data portal (<u>https://cchdo.ucsd.edu/search?q=GO-SHIP; voyage</u>
35	096U20160426) and through the CSIRO data portal
36	(https://www.cmar.csiro.au/data/trawler/index.cfm; voyage IN2016_V03). Mixed layer
37	depths (MLD) were calculated according to Talley, Pickard, Emery and Swift (2), as ΔT
38	= 0.2 °C compared to a surface reference depth of 7.3 \pm 4.5 m.).
39	
40	2. <u>Nutrient analysis</u>
41 42	Silicate analysis (detection limits to $0.2 \ \mu mol \ L^{-1}$) was based on Armstrong et al. (1967)
43	with minor changes to the coil sequence as recommended in Practical Guidelines for the
44	Analysis of Seawater see Aminot, Kérouel and Coverly (3). PO ₄ ³⁻ was analysed via the
45	AA3 method G-297-03 rev3 according to Murphy and Riley (4) with detection limits to
46	0.01 μ mol L ⁻¹ , using 10mm flow cell and a LED lamp. NO ₃ ^{-/} NO ₂ ⁻ were analysed per
47	AA3 method G-172-96 rev15 according to Armstrong, Stearns and Strickland (5) and

48	Grasshoff, Kremling and Ehrhardt (6) with detection limits to 0.015 μ mol L ⁻¹ using
49	10mm flow cells and a LED lamp. Unless elsewhere stated NO_3^- and NO_x are the sum of
50	$NO_3^- + NO_2^-$. NH_4^+ was analysed per AA3 method G-327-05 rev4 according to Kérouel
51	and Aminot (7) with detection limits to 0.015 μ mol L ⁻¹ , using a JASCO fluorometer FP-
52	2020. Certified reference materials (CRM) for SiO ₄ , PO ₄ ³⁻ , NO ₃ ⁻ , and NO ₂ ⁻ in seawater,
53	produced by KANSO Japan, were used in each nutrient analysis to ensure the accuracy of
54	results. The Reference CRMs were run 4 times after the calibration standards. Accuracy
55	was determined by comparing the new standard batch with the old and tracking to ensure
56	the concentration was within 1% accuracy between batches. The GO-SHIP criteria
57	(Hydes et al., 2010), reference section 5.3, specifies using 1-3 % of full scale (depending
58	on the nutrient) as acceptable limits of accuracy.
59 60 61 62	3. <u>Extraction Protocol for Sterivex Samples as modified in Appleyard, Abell</u> and <u>Watson (8)</u>
63	Materials
64	Lysis buffer
65	200mM NaH ₂ PO ₄ 2H ₂ O (monobasic)
66 67	200mM Na ₂ HPO ₄ (dibasic) MW 142 $142g/1L = 1M 5.68g/200mL = 200mM$
67 68	<u>To make up 200mL lysis buffer</u> 39mL 200mM NaH ₂ PO ₄
69	61 mL 200 mM Na ₂ HPO ₄
70	17.54g NaCl
71	2g CTAB
72	4g PVP K30 + ddH20 to make up to 200ml
73 74	Adjust to pH 7.0 (using NaOH – try couple of mL of 10M NaOH)
74 75	Lysozyme
76	Proteinase K – 20mg/ml
77	From FastDNA TM Spin Kit for Soil (MP Biomedicals)
78	MT buffer From PowerWater® Sterivex TM DNA Isolation Kit (Qiagen)
79	Columns and sample recovery tubes, 3ml and 20ml syringes, 5ml tubes
80	Buffer ST4 (warmed to 65 °C before use)
81	Buffer ST5 and ST6
82 83	Inlet and outlet caps for Sterivex filters
84	
84 85	Phenol:Chloroform:Isoamyl (25:24:1) (PCI)

86	Chloroform:Isoamyl (24:1) (CI)
87 88	<u>TE buffer</u>
89	Protocol
90	1. weigh 125 mg lysozyme into 50 mL falcon tube and add 25 mL Lysis Buffer to
91	dissolve (lysozyme final conc. 5 mg/ml).
92	2. remove filters from -80 °C, remove inlet cap and using a pipette add 1.875 ml
93	Lysis buffer (containing 5mg/ml final concentration of lysozyme) and 0.125 ml
94 05	MT buffer.
95 96	3. recap the Sterivex filter and attach filter (with inlet end facing out) to the horizontal vortexer, Speed 6 for 60 min (turning the filter a couple of times during
97	the hr)
98	4. using 3 ml syringe, draw back plunger and attach to inlet end of filter – release
99	plunger and buffer in filter should flow into syringe. Divide approx 2 ml of buffer
100	evenly into 2×2.0 ml tubes
101	5. in fume hood, add 900 μ l PCI to each tube, invert several times, spin down
102	13000/10 min/RT
103 104	6. combine the aqueous phases from both tubes into one 2.0 ml tube (~ $1.5 - 1.8$ ml), add 20 µl Prot K, and incubate on heat block for 2 hr at 60 °C
104	7. in fume hood, add 500 μ l CI, spin down 13000/10 min/RT – remove aqueous
106	phase to new tube
107	8. in fume hood, add 500 μ l CI, spin down 13000/5 min/RT – remove aqueous phase
108	to new tube
109	9. after 2^{nd} spin, remove 1 ml of aqueous phase, add to 5 ml tube
110	10. add 3 ml of warmed ST4 buffer (65 °C), mix by inversion
111 112	11. attach column to barrel of 20 ml syringe and attach to vacuum manifold 12. pour contents of 5 ml tube into barrel while still warm
112	13. using vacuum, pull contents through the column
114	14. while keeping column attached to the manifold, remove barrel and add 800 μ l
115	ST5 to column
116	15. using vacuum, pull contents through the column
117	16. add 800 µl ST6 to column
118	17. using vacuum, pull contents through the column, then keep on vacuum for 2 mins
119 120	18. turn vacuum off, put column into new 2.0 ml elution tube and let air dry on bench for 10 mins
120	19. add 80 µl 0.1 x TE to column, incubate at 37 °C for 45 min
122	20. spin down column and tube at 13000/2 min/RT to elute DNA
123	21. Quantify 2 μ l on the Nanodrop and record concentration and 260:280 ratio in
124	spreadsheet
125	Storage and Downstream Applications
126	1. Transfer DNA (total volume approx. 78 μl) to 96 well plate and record well
120	location of each sample in spreadsheet.
127	2. Using multi-channel pipette, transfer aliquots to further 96 well plates (1 x
129	amplicon sequencing, 1 x shotgun metagenomics, then 5 x 10 μ l, 2 x 5 μ l, and
130	remainder for long term storage at -80 °C).

131 132 133 134 135	 Plates for long term storage are dried down in vacuum centrifuge at 30 °C. Seal with AlumaSeal CSTM foil film. Place plates in for storage at -80 °C (Environmental Genomics ultra freezer, CSIRO Hobart). Plates for amplicon sequencing and shotgun metagenomics are sent to Ramaciotti Centre for Genomics (on dry ice).
136 137 138 139	4. <u>Pigment analysis</u>
140	Chlorophyll a extractions were carried out according to Parsons, Takahashi and Hargrave
141	(9) on 0.525 L of sample water, using 25-mm GF/F filters through gentle vacuum
142	filtration (pressure drop <10 kPa) at 5 sampling depths within the mixed layer. Samples
143	were measured on a Turner Trilogy laboratory fluorometer (See figure S1a).
144	
145	Four liters of sample water from the surface at each station were filtered in dim-lit light
146	on 25 mm Whatman GF/F filters for analysis of taxonomically significant chlorophylls
147	and carotenoids. Samples were snap frozen and stored in liquid N. Photosynthetic
148	pigments were analyzed using high-performance liquid chromatography (HPLC)
149	according to Hooker, et al. (10). HPLC data were analysed using diagnostic pigments of
150	dominant phytoplankton functional guilds as well as size classes according to Hirata, et
151	al. (11). Phytoplankton size classes (microplankton, nanoplankton and picoplankton)
152	were calculated according to Hirata, et al. (11); See table S1. Processed HPLC data were
153	analysed using diagnostic pigments of dominant phytoplankton functional guilds as well
154	as size classes according to Hirata, et al. (11). Our data showed that: (1) the total chl a
155	(TChl a) made up at least 70% of the total pigment concentration and (2) we had a
156	regression between TChl a and the accessory pigments with a slope of 1.1 and $r^2 > 0.9$.
157	\sum DP is the sum of all diagnostic pigments and is equal to 1.41 Fuco (Fucoxanthin) + 1.41
158	Perid (Perdidin) + 1.27 Hex-fuco (19'-hexanoyloxyfucoxanthin) + 0.6 Allo (Alloxanthin)
159	+ 0.35 But-fuco (19'-but-fucoxanthin) + 1.01 Chl-b (Chlorophyll b) + 0.86 Zea
160	(Zeaxanthin) = Chl-a (Chlorophyll a) (12). The calculated size classes were
161	microplankton (20 – 200 μ m), nanoplankton (2 – 20 μ m) and picoplankton (0.2 – 2 μ m)
162	(13). We note that diagnostic pigment analysis has its ambiguities (e.g. fucoxanthin is a
163	precursor for 19'-butanoyloxyfucoxanthin and 19'-hexanoyloxyfucoxanthin); for more

164 detail, see Aiken, et al. (14) and Uitz, Claustre, Morel and Hooker (12). Also the size of

- 165 diatoms can range between the micro and nanoplankton size fraction. We note that some
- 166 diagnostic pigments are shared by several phytoplankton groups and some groups may
- 167 cover a broad size (see also Kheireddine, *et al.* (15)). Nevertheless, this approach has
- 168 shown to give valuable insights in the dominant trends of the phytoplankton community
- 169 and size structure at the regional and seasonal scales (16).
- 170
- Table S1: Formulas used for calculation of phytoplankton functional guild and size classfractions based on diagnostic pigments after Hirata et al. 2011.

Reference	Phytoplankton Size Class / Functional Type	Diagnostic Pigments	Estimation Formula
Hirata et al. 2011	Diatoms	Fucoxanthin (Fuco)	1.41*Fuco / ∑DP
2011	Dinoflagellates	Peridinin (Perid)	$1.41*$ Perid / \sum DP
	Microplankton	Fuco, Perid	$1.41*(Fuco + Perid) / \sum DP$
	Nanoplankton	Hex, Chl- <i>b</i> , But- fuco, Alloxanthin (Allo)	(1.27*Hex + 1.01*Chl- <i>b</i> + 0.35*But-fuco + 0.6*Allo) / ∑DP
	Picoplankton	Zea, Hex, Chl-b	(0.86*Zea + 1.27*Hex) / ∑DP

173

174 The HPLC data set are available at <u>https://doi.pangaea.de/10.1594/PANGAEA.884052</u>
175 (17).

- 176
- 177 178

4.1 <u>Nanoplankton</u>

179 We found that nanoplanktonic guilds (prymnesiophytes in particular) were present in all

180 oceanic provinces. The proportion of nanoplankton within the community varied between

181 15-20 % at 60 °S and in the equatorial region, but up to 65 % at 55 °S (near the STF).

182 The sharp increase in prymnesiophytes coincided with the abrupt disappearance of

183 diatoms, while the minima corresponded to maximal microplankton and picoplankton

- abundances, in the Southern Ocean and equatorial regions respectively. Both the
- 185 prymnesiophytes and the pico-eukaryotes contributed up to 83% to the phytoplankton
- 186 guild fraction within the STF. The overall prevalence of prymnesiophytes reaffirms that

187	this group could be an important player in CO ₂ fixation, as mentioned by Jardillier,
188	Zubkov, Pearman and Scanlan (18) in subtropical and tropical ecosystem. Our data
189	highlights that the prymnesiophytes are even present south of the STF.

- 190
- 191 192

5. <u>Carbon assimilation rates</u>

193 At each CTD station, water samples to measure C-assimilation rates were taken from the 194 clean underway flow through system (intake at 6m). Triplicate C-assimilation experiments were initiated by adding 20 μ mol L⁻¹ of NaH¹³CO₃ to polycarbonate one-195 196 liter incubation bottles. All incubation bottles were acid rinsed three times, rinsed two 197 times with deionized water, and rinsed three times with seawater directly from the sample 198 point prior to incubation. Polycarbonate bottles were placed in on-deck incubators where 199 temperature regulation was maintained by a continuous surface seawater flow. After 24 h 200 incubation the experiments were terminated by filtering each bottle (pressure drop <10201 kPa) through a 25 mm precombusted GF/F filter. The natural abundance of the particulate 202 organic carbon (POC), used as t-zero values to calculate assimilation rates, were obtained 203 by filtering four liters of water onto pre-combusted GF/F filters for each station. All 204 filters, enriched and natural abundance, were snap frozen in liquid N and stored at -80°C. 205 Filters were later acidified and dried overnight at 60 °C. Determination of total C and 206 δ^{13} C was carried out using a continuous flow system consisting of a SERCON 20-22 207 mass spectrometer connected with an Automated C analyser at the Stable Isotope Facility 208 of the University of California Davis. The external error of analyses (1 std dev) was 0.15 permille (‰) for δ^{13} C. C assimilation rates (nmol C L⁻¹ h⁻¹) were calculated following the 209 210 equations described in Knap, Michaels, Close, Ducklow and Dickson (19). Primary 211 productivity are available at https://doi.pangaea.de/10.1594/PANGAEA.884052 (17). 212 213 214 6. Richness and statistical analyses 215

All analyses utilised sub-sampled OTU tables as described above. Pro- and eukaryotic
richness were calculated as the number of 97% OTUs observed per sample (20). Absolute
latitudinal ranges of OTUs were calculated as the difference between the maximum and

- 219 minimum latitudes where an OTU was present (eg., an OTU occurring at 50° S, 40° S
- and 30° S would have an absolute latitudinal range of 20° (21). Correlations were
- 221 calculated using the Spearman coefficient rs as a measure of rank correlation using the
- 222 Corrplot and Vegan packages in R studio (22), see Figs. S2 and Fig. S3. In contrast to the
- 223 Pearson coefficient, it assesses monotonic relationships, not purely linear relationships.
- 224 Multiple error rates were corrected using Holm' method (23). Productivity and richness
- 225 relationships were assessed with linear, cubic and quadratic regressions.
- 226

227 Boosted regression trees

Boosted regression trees Predictor variable influence on pro and eukaryotic richness was
assessed using boosted regression trees (see Elith, Leathwick and Hastie (24)).

230 Through computerised boosting, BRT optimises model predictive performance through

forward step-wise fitting of many simple models, combining their predictive capability to

give more weight to residual variation that remains unexplained (Elith et al., 2008). Like

- regression trees, BRT is robust to missing and unbalanced data, outliers and non-linear
- relationships (24). Cross-validation (cv correlation in the manuscript Tables 1 and 2) is a

technique to evaluate how predictive the model is by partitioning the original data into a

training set to train the model, and a test set to evaluate it. In k-fold cross-validation, the

237 original sample is randomly partitioned into k equal size subsamples. The tenfold cross

validation correlation value is comparable to an r^2 value. See also 'A working guide to

boosted regression trees' (24). We did not consider day lengths as a predictor in our BRT

240 models as these increased linerarly with latitude (see Fig. S9). BRT was implemented in

the R software environment using the gbm.step function, a guassian error structure, 10

fold cross-validation and the following settings which resulted in models with > 2000

trees in all cases; learning.rate = 0.001, tree.complexity = 10, bag.fraction = 0.5 (24).

- 244
- 245
- 246
- 247
- 248
- 249

250 Supplementary Table S2.

Archaeal rid	chness - MLD	Bacterial rich	ness - MLD	Eukaryote richness - MLD				
Predictor variable	Relative influence (%)	Predictor variable (%)		Predictor variable	Relative influence (%)			
Temperature	21.4	Temperature	24.3	Si	34.7			
РР	14.1	РР	13.4	NO ₃ ⁻	12.1			
NO₂ ⁻	13.6	NO₂ ⁻	12.5	Temperature	11.1			
Salinity	9.9	MLD	10.1	TChl_a	7.4			
Si	8.5	Salinity	8.2	PO4 ³⁻	7.3			
NO₃⁻	7.8	NO ₃ ⁻	7.6	NH_4^+	5.9			
MLD	7.2	Si	6.9	MLD	5.5			
TChl_a	6.7	NH_4^+	6.5	NO ₂ ⁻	5.1			
NH_4^+	6.1	TChl_a	6.0	РР	4.6			
Oxygen	3.0	Oxygen	2.7	Salinity	4.4			
PO4 ³⁻	1.8	PO4 ³⁻	1.8	Oxygen	1.9			
training data correlation	0.959	training data correlation	0.934	training data correlation	0.896			
cv correlation ± se	0.844±0.022	cv correlation ± se	0.826±0.038	cv correlation ± se	0.793±0.04			

Table S2. Percentage relative influence of 11 predictor variables in explaining variation

in pro- and eukaryotic richness from samples just below the mixed layer depth (n=89)

along the p15S GO-SHIP transect determined by BRT (see also Elith, Leathwick and

Hastie (24)). Predictor variables: Primary productivity of the surface layer (PP); Mixed

257 Layer Depth (MLD); NOx ($NO_3^- + NO_2^-$); Note: phytoplankton size classes and

taxonomic groups derived from HPLC analysis are not included as these were obtainfrom surface samples only.

- Non multi-dimensional scaling (nMDS) and Analysis of Similarities (ANOSIM) 269
- 270

271 Table S3: Tests for differences between unordered Oceanographic Biomses.

ANOSIM – OCEANOGRAPHIC BIOMES 16S - BACTERIA									
PAIRWISE TESTS									
	R	Significance							
GROUPS	Statistic	Level %							
SO, STF	0.844	0.1							
SO, TROP. OLIGO	0.997	0.1							
SO, EQ. UPWELLING	1	0.1							
STF, TROP. OLIGO	0.827	0.1							
STF, EQ. UPWELLING	0.981	0.1							
TROP. OLIGO, EQ. UPWELLING	0.344	0.1							
TROP. OLIGO, EQ. UPWELLING ANOSIM – OCEANOGRAPHIC BIOMES 16S - AF PAIRWISE TESTS		0.1							
ANOSIM – OCEANOGRAPHIC BIOMES 16S - AF		0.1 Significance							
ANOSIM – OCEANOGRAPHIC BIOMES 16S - AF	RCHAEA								
ANOSIM – OCEANOGRAPHIC BIOMES 16S - AF PAIRWISE TESTS	RCHAEA	Significance							
ANOSIM – OCEANOGRAPHIC BIOMES 16S - AF PAIRWISE TESTS GROUPS	RCHAEA R Statistic	Significance Level %							
ANOSIM – OCEANOGRAPHIC BIOMES 16S - AF PAIRWISE TESTS GROUPS SO, STF	RCHAEA R Statistic 0.828	Significance Level % 0.1							
ANOSIM – OCEANOGRAPHIC BIOMES 16S - AF PAIRWISE TESTS GROUPS SO, STF SO, TROP. OLIGO	RCHAEA R Statistic 0.828 0.993	Significance Level % 0.1 0.1							

272

2	7	2	
L	1	3	

ANOSIM - OCEANOGRAPHIC BIOMES 185 - EUKARYOTES

TROP. OLIGO, EQ. UPWELLING

PAIRWISE TESTS		
	R	Significance
GROUPS	Statistic	Level %
SO, STF	0.824	0.1
SO, TROP. OLIGO	0.984	0.1
SO, EQ. UPWELLING	0.991	0.1
STF, TROP. OLIGO	0.731	0.1
STF, EQ. UPWELLING	0.882	0.1
TROP. OLIGO, EQ. UPWELLING	0.598	0.1

0.216

0.2

- 274
- 275
- 276

Groups: SO = Southern Ocean; STF = Subtropical Front; Trop. Oligo = Tropical 277

- Oligotrophic; Eq. upwelling = Equatorial upwelling. 278
- 279

280	ANOSIM provides a way to test statistically whether there is a significant difference
281	between two or more groups of sampling units. If two groups of sampling units are really
282	different in their species composition, then compositional dissimilarities between the
283	groups ought to be greater than those within the groups. The ANOSIM statistic R is based
284	on the difference of mean ranks between groups (r_B) and within groups (r_W).
285	
286	$R = (r_B - r_W)/(N (N-1) / 4)$
287	
288	The divisor is chosen so that R will be in the interval -1 +1, value 0 indicating
289	completely random grouping. Note the significance level is express as %, to obtain the
290	actual P value you need to dive by 100. For more information see Clarke and Warwick
291	(25).
292	
293	
294	

- 298
- 299
- 300

- 301 302
- 302 303
- 303

Fig. S1: a) Chlorophyll *a* concentrations (in μ g L⁻¹) along the P15S GO-SHIP transect, **b**) Transmission (in %), used as a proxy for particle concentration (1) along the P15S GO-SHIP transect. Black dots on **a**) denote sampling depths for chlorophyll *a* measurements. The polar front, subtropical front and the equatorial upwelling provinces are highlighted by grey rectangles. The red arrow highlights upwelling of colder, relatively nutrient richer waters. Thin grey lines on **b**) denote sampling stations, and black circles highlight low transmission signals (= areas with high particle concentrations).

- 315
- 316

Fig. S2: Spearman correlation coefficients (rs) plots for pro-and eukaryotic richness and biogeochemical parameters. Top figure **a**) shows the samples from the surface waters and bottom figure **b**) shows the samples just below the mixed layer depth. Phytoplankton size classes derived from HPLC analysis are denoted: Microphytoplankton ($20 - 200 \mu m$), Nanophytoplankton ($2 - 20 \mu m$) and Picophytoplankton ($0.2 - 2 \mu m$). Positive correlations are displayed in blue and negative correlations in red. Colour intensity and the size of the squares are proportional to the correlation coefficients. P values > 0.05 are

indicated by black crosses. Note primary productivity values used in the correlation plotare averages from three replicates.

- 326
- 327
- 328

	A	inde	iperatur	ø																
Temperature	1	ret	,Q ⁶ ,																	
Salinity	0.56	0.55	ક્રશી	rites																
MLD	-0.73	-0.72	-0.52	M	Ş	2														
Oxygen	-0.99	-1	-0.55	0.73	0 ^f	per														
Nitrate	-0.93	-0.94	-0.67	0.72	0.95	Nit	de.													
Nitrite	-0.75	-0.76	-0.68	0.56	0.76	0.79	NI	10	Cilum											
Ammonium	-0.58	-0.59	-0.87	0.58	0.6	0.68	0.75	PLU	nonium	nate										
Phosphate	-0.66	-0.66	-0.91	0.56	0.67	0.76	0.79	0.9	Phic	5										
Silicate	-0.55	-0.56	-0.85	0.54	0.56	0.67	0.67	0.89	0.89	Sili	300									
TChl.a	-0.8	-0.82	-0.5	0.67	0.83	0.82	0.74	0.58	0.64	0.52	~ ⁰	N.º	tivite	\$						
Productivity	-0.64	-0.66	-)×1	≫	0.66	≫	0.6	×	×	≫	0.77	810	ductivity	oplank	ç.					
Microplankton	-0.88	-0.9	-0.53	0.71	0.91	0.89	0.77	0.66	0.67	0.62	0.87	≫	Mic	⁶⁰⁰ .	ant	or.				
Nanoplankton	-0.49	-0.51	-)×6	*	0.53	⋈	0.44	≫	≫	*	≫	0.86	≫	42	oplank	planktc	r	2055		
Picoplankton	0.91	0.93	0.56	-0.71	-0.94	-0.93	-0.76	-0.61	-0.7	-0.58	-0.91	-0.71	-0.92	-0.62	Q'(0	plic	alP	ICLIN.	0055	,
Archaeal.Richness	≫¢	≫	0.59	-0.18	Х	-0.08	-)×(8	-0.49	-0.42	-0.53	≫	0.46	-0.02	0.55	-)•••4	PIC	n ³⁶	Johness	Şî.	
Bacterial.Richness	-)••7	-)•(7	0.58	-0.07	×	-0.06	-)4 9	-0.47	-0.44	-0.53	≫	0.58	0.05	0.59	-)••7	0.78	83	Jernal, Riv		
Eukaryotic.Richness	0.43	0.43	0.83	-0.39	-0.43	-0.54	-0.58	-0.78	-0.79	-0.81	-0.38	-)⁄⁄(1	-0.45	*	0.46	0.6	0.66			

330

331 Fig. S2c: Spearman correlation coefficients (rs) plot for pro-and eukaryotic richness and

biogeochemical parameters from the surface waters P values > 0.05 are indicated by

333 black crosses. Note primary productivity values used in the correlation plot are averages

- 334 from three replicates.
- 335

337	Fig. S3 Spearman correlation coefficients (r _s) plots for pro-and eukaryotic richness and
338	biogeochemical parameters for four different oceanic provinces in the surface waters of
339	the South Pacific Ocean. a) Southern Ocean, b) Subtropical front, c) Tropical
340	oligotrophic and d) Equatorial upwelling. Phytoplankton size classes derived from HPLC
341	analysis: Microplankton ($20 - 200 \mu$ m), Nanoplankton ($2 - 20 \mu$ m) and Picoplankton (0.2
342	-2μ m). Positive correlations are displayed in blue and negative correlations in red.
343	Colour intensity and the size of the squares are proportional to the correlation
344	coefficients. P values > 0.05 are indicated by black crosses. Note primary productivity
345	values used to make the correlation plots are averages from three replicates.
346	
347	
348	
349	
350	
351	
352	
353	
354	
355	
356	
357	
358	
359	
360	
361	
362	

Fig. S4 a) Heat map of the archaeal Domain. Most abundant sequences of the OTU matrix are displayed and sequence reads for both archaea and bacteria are square root transformed. Colour bar denotes sequence abundance. Dendogram is not a phylogentic tree, but illustrates the clustering of strongly correlated OTUs. Blue, organge, green and red symbols above the heatmaps denote CTD stations in their respecitive oceanogrpahic provinces.

Fig. S4 b) Heat map of the bacterial Domain. Most abundant sequences of the OTU matrix are displayed and sequence reads for both archaea and bacteria are square root transformed. Colour bar denotes sequence abundance. Dendogram is not a phylogentic tree, but illustrates the clustering of strongly correlated OTUs. Blue, organge, green and red symbols above the heatmaps denote CTD stations in their respecitive oceanogrpahic provinces.

Fig. S4 c) Heat map of the eukaryotic Domain. Most abundant sequences of the OTU matrix are displayed and sequence reads for both archaea and bacteria are square root transformed. Colour bar denotes sequence abundance. Dendogram is not a phylogentic

tree, but illustrates the clustering of strongly correlated OTUs. Blue, organge, green and red symbols above the heatmaps denote CTD stations in their respecitive oceanogrpahic provinces.

415 416 Fig. S5. Mixed layer depths were calculated according to Talley, Pickard, Emery and

417 Swift (2), as a $\Delta T = 0.2$ °C compared to a surface reference depth. Mixed layer depths are

denoted in black circles on the graph. DNA sampling depths are highlighted in red 418

419 circles.

422 423 Fig. S6: Rarefaction curves for Archaea, subsampled to a depth of 13400 sequences.

425 426 427 Fig. S7: Rarefaction curves for bacteria, subsampled to a depth of 13400 sequences.

428
429
429 Fig. S8: Rarefaction curves for eukaryotes, subsampled to a depth of 24500 sequences.
430

431
432 Fig. S9: Hours of day light along the latitudinal P15S GO-SHIP transect in early Austral
433 winter in the South Pacific Ocean.

439	References		
440	1.	Karageorgis AP, <i>et al.</i> (2008) Particle dynamics in the Eastern Mediterranean	
441	1.	Sea: A synthesis based on light transmission, PMC, and POC archives (1991–	
442		2001). Deep Sea Research Part I: Oceanographic Research Papers 55(2):177-	
443		2001). Deep sea Research 1 an 1. Oceanographic Research 1 apers 55(2).177- 202.	
444	2.	Talley L, Pickard G, Emery W, & Swift J (2011) Descriptive Physical	
444	۷.	Oceanography - An Introduction.	
	2		
446	3.	Aminot A, Kérouel R, & Coverly SC (2009) Nutrients in seawater using	
447		segmented flow analysis. <i>Practical guidelines for the analysis of seawater</i> :143-	
448	4	178. Manuska L & Dilas L (1062) A madified single schwing mached for the	
449	4.	Murphy J & Riley J (1962) A modified single solution method for the	
450	_	determination of phosphate in natural waters. Anal. Chim. Acta 27:31 - 36.	
451	5.	Armstrong FAJ, Stearns CR, & Strickland JDH (1967) The measurement of	
452		upwelling and subsequent biological process by means of the Technicon	
453		Autoanalyzer® and associated equipment. Deep Sea Res. Oceanogr. Abstr.	
454		14:381 - 389.	
455	6.	Grasshoff K, Kremling K, & Ehrhardt M eds (2009) Methods of seawater analysis	
456	_	(Wiley-VCH, Weinheim, Germany), 3 rd edition Ed.	
457	7.	Kérouel R & Aminot A (1997) Fluorometric determination of ammonia in sea and	
458		estuarine waters by direct segmented flow analysis. Mar. Chem. 57:265 - 275.	
459	8.	Appleyard S, Abell G, & Watson R (2013) Tackling microbial related issues in	
460		cultured shellfish via integrated molecular and water chemistry approaches. in	
461		Seafood CRC Final Report (2011/729) April 2013. ISBN ISBN 9781922173980	
462		(ebook), 89pp.	
463	9.	Parsons TR, Takahashi M, & Hargrave B (2013) Biological oceanographic	
464		processes (Elsevier).	
465	10.	Hooker SB, et al. (2005) The second SeaWiFS HPLC analysis round-robin	
466		experiment (SeaHARRE-2). NASA Tech. Memo 212785:124.	
467	11.	Hirata T, et al. (2011) Synoptic relationships between surface Chlorophyll-a and	
468		diagnostic pigments specific to phytoplankton functional types. Biogeosciences	
469		8(2):311.	
470	12.	Uitz J, Claustre H, Morel A, & Hooker SB (2006) Vertical distribution of	
471		phytoplankton communities in open ocean: An assessment based on surface	
472		chlorophyll. Journal of Geophysical Research: Oceans 111(C8).	
473	13.	Sieburth JM, Smetacek V, & Lenz J (1978) Pelagic ecosystem structure:	
474		heterotrophic compartments of the plankton and their relationship to plankton size	
475		fractions. Limnology and oceanography 23(6):1256-1263.	
476	14.	Aiken J, et al. (2009) Phytoplankton pigments and functional types in the Atlantic	
477		Ocean: a decadal assessment, 1995–2005. Deep Sea Research Part II: Topical	
478		Studies in Oceanography 56(15):899-917.	
479	15.	Kheireddine M, et al. (2017) Assessing pigment-based phytoplankton community	
480		distributions in the Red Sea. Frontiers in Marine Science 4:132.	
481	16.	Ras J, Claustre H, & Uitz J (2008) Spatial variability of phytoplankton pigment	
482		distributions in the Subtropical South Pacific Ocean: comparison between in situ	
483		and predicted data. <i>Biogeosciences</i> 5(2):353-369.	

484	17.	Raes EJ, Clementson L, Bodrossy L, Strutton P, & Waite AM (2017) Pigment and
485		primary productivity on the P15S GO-SHIP transect: From the ice edge to the
486		equator along 170°W. (PANGAEA).
487	18.	Jardillier L, Zubkov MV, Pearman J, & Scanlan DJ (2010) Significant CO2
488		fixation by small prymnesiophytes in the subtropical and tropical northeast
489		Atlantic Ocean. The ISME journal 4(9):1180-1192.
490	19.	Knap A, Michaels A, Close A, Ducklow H, & Dickson A (1996) Protocols for the
491		joint global ocean flux study (JGOFS) core measurements.
492	20.	Fuhrman JA, et al. (2008) A latitudinal diversity gradient in planktonic marine
493		bacteria. Proceedings of the National Academy of Sciences 105(22):7774-7778.
494	21.	Amend AS, et al. (2013) Macroecological patterns of marine bacteria on a global
495		scale. Journal of Biogeography 40(4):800-811.
496	22.	Team R (2015) RStudio: integrated development for R. RStudio, Inc., Boston, MA
497		URL <u>http://www</u> . rstudio. com.
498	23.	Holm S (1979) A simple sequentially rejective multiple test procedure.
499		Scandinavian journal of statistics:65-70.
500	24.	Elith J, Leathwick JR, & Hastie T (2008) A working guide to boosted regression
501		trees. Journal of Animal Ecology 77(4):802-813.
502	25.	Clarke KR & Warwick R (2001) Change in marine communities. An approach to
503		statistical analysis and interpretation.
504		