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Fig. S1. Deconvolved daily temperature variation. Each panel of this figure depicts three series. The first is
the raw daily temperature observations, the second is the remaining temperature variation after deconvolving
the raw data around county-level fixed effects, the third is the remaining variation after deconvolving the
raw data around our full set of county, date, and state-by-calendar-month fixed effects. As can be seen, the
remaining variation after deconvloving the fixed effects is stationary across both seasons and years. Panel (a)
plots this relationship for Washoe County, NV. Panel (b) plots this relationship for St. Louis County, MN.
Panel (c) plots this relationship for Steele County, ND. Panel (d) plots this relationship for Maricopa County,
AZ.

Deconvolved temperature

Fig. S1 displays the effect of deconvolving the raw daily temperature series around unit as well as unit, date,
and state-by-calendar-month fixed effects (1, 2). As can be seen, seasonal and long-term trends are removed
and the remaining identifying variation is stationary (3) (not systematically trending over time) and centered
around zero for each individual unit.

Marginal effects

Fig. S2 displays the marginal effects associated with the quadratic estimates from the main text results (4).
Each estimated relationship has substantial portions of its marginal effects’ confidence intervals that do not
contain zero. Of note, the negative marginal effects for the colder portion of the number of violations per
inspection relationship are estimated with high uncertainty, while the higher temperature portion of the
distribution returns increasingly positive marginal effects estimated with higher statistical precision. Panel
(a) of Fig. S2 draws from the estimates presented in model (1) of Table S1. Panel (b) of Fig. S2 draws from
the estimates presented in model (1) of Table S2. Panel (c) of Fig. S2 draws from the estimates presented
Table S3. Panel (d) of Fig. S2 draws from the estimates presented in model (2) of Table S5.
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Fig. S2. Marginal effects and confidence intervals of quadratic estimates. This figure plots the marginal
effects of the quadratic estimates from the main text. Panel (a) plots the marginal effect of a one degree
increase in maximum temperature on the log number of police stops. Panel (b) plots the marginal effect of
temperature on the probability of a fatal crash. Panel (c) plots the marginal effect of temperature on the
probability of a food safety inspection. Panel (d) plots the marginal effect of temperature on the number of
food safety violations per inspection. Shaded regions plot the 95% confidence intervals of the marginal effects.

Flexible functional forms

Fig. S3 displays the marginal effects from estimating f() from the main text using flexible non-parametric
bins of maximum temperature rather than our quadratic parametric functional form in the main text (5–10).
The first bin contain the portion of the temperature distribution from −∞ to −10 and the last bin contains
40 to ∞. As can be seen, the functional forms recovered by our non-parametric approach recover functional
forms that approximate those recovered by our quadratic estimation of f() in the main text. Because of
the over one billion facility-days in our disaggregated facility-level analysis and due to the added columns
required to estimated the binned functional form, we are unable to estimate the binned regression on the
facility-level data. Thus, for this estimation we aggregate our facility-level data up to the county-level and
employ our county-level estimation strategy. This aggregation procedure returns similar functional forms as
uncovered in our county-aggregated inspections and violations regressions, presented in SI: County-aggregated
inspections and SI: County-aggregated violations sections below.

Examination of potential targeting

Fig. S4 depicts the results of stratifying our sample of facilities into quartiles by their total numbers of food
safety violations over the course of our sample. The first quartile represents facilities with lower numbers of
violations while the fourth quartile represents higher risk facilities. If higher temperatures drove substitution
of regulatory effort away from greater numbers of low-risk inspections towards smaller numbers of high-risk
facilities, then we would expect to see reductions in inspections due to high temperatures for the first and
second quartile of facilities and increases in inspections due to high temperatures for the third and fourth
quartiles. However, across all four quartiles we observe functional forms that mirror those estimated in the
main text. Across all types of facilities, hot temperatures reduce the probability of food safety inspection.
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Fig. S3. Binned maximum temperatures for estimating f(). This figure plots the marginal effects estimated
from binning maximum temperatures into 5◦C bins. Y-axes report the estimated change in each respective
outcome variable as compared to the omitted temperature bin in each relationship. For each estimation, we
omit the bin containing the extremum for that relationship. Panel (a) plots the marginal effect of maximum
temperature on the log number of police stops. Panel (b) plots the marginal effect of maximum temperature
on the probability of a fatal crash. Panel (c) plots the marginal effect of temperature on the county-aggregated,
log number of food safety inspections. Panel (d) plots the marginal effect of temperature on the county-day
average number of food safety violations per inspection. Shaded regions plot the 95% confidence intervals of
the estimated marginal effects.
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Fig. S4. Examination of possible substitution of inspection effort from low risk to high risk facilities. This
figure plots the effects of maximum temperatures on the probability of food safety inspection across quartiles
of total violations by facility. This estimation follows the same procedure as in the main text Fig. 3a, but
represents separately estimating the regression for each quartile of total food safety violations by facility.
The first quartile represents facilities with the lowest numbers of violations in our sample while the fourth
quartile represents the facilities with the highest number of violations. As can be seen, the effects of hot
temperatures on probability of inspection are negative across each quartile, suggesting that there is no
substantial redirection of regulatory effort from low-risk violators to high-risk violators as a function of
maximum temperatures. Each relationship is significant at the p < 0.001 level.
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Fig. S5. Alcohol involved versus no alcohol involved crashes as a function of maximum temperatures. This
figure plots the same police stops functional form as in the main text, with separate estimates of the fatal
crash and maximum temperature functional form. Panel (a) estimates the effect of maximum temperatures
on the probability of fatal crashes where alcohol was involved. Panel (b) estimates the effect of maximum
temperatures on the probability of fatal crashes where no alcohol was detected. The relationship for no
alcohol involved crashes is steeper than for no alcohol involved crashes, though each relationship is significant
at the p < 0.001 level.
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Alcohol involved crashes

Fig. S5 depicts the comparative effects of maximum temperatures on the probability of alcohol involved
versus no alcohol involved fatal crashes (11). Crashes where no alcohol was detected or suspected of being
involved see more steep increases in response to high temperatures than crashes where alcohol was suspected,
suggesting that fatigue (12) or cognitive impairment directly due to heat (13) may play a more substantial
role in mediating the relationship as compared to ancillary behavioral changes (more alcohol ingestion),
though these suggestive results require further investigation. Table S2, in models (3) and (4), displays the
regression results of this estimation.

Regression tables

We include the regression tables associated with each of our analyses below. Because of our substantial
number of fixed effects for each model, we estimate our models using the felm() function from the lfe package
in the R statistical programming language.

Police stops

Table S1. Police Stops Regression Table

Dependent Variable: Log Number of Stops
Restricted Restricted Full Full

(1) (2) (3) (4)
TMAX 0.021∗∗∗ 0.018∗∗∗

(0.004) (0.003)
TMAX2 −0.0004∗∗∗ −0.0003∗∗∗

(0.0001) (0.0001)
HEAT INDEX 0.014∗∗∗ 0.012∗∗∗

(0.002) (0.002)
HEAT INDEX2 −0.0002∗∗∗ −0.0001∗∗∗

(0.00002) (0.00002)
PRCP −0.012∗∗∗ −0.012∗∗∗ −0.011∗∗∗ −0.011∗∗∗

(0.001) (0.001) (0.001) (0.001)
TRANGE 0.001 0.002 0.002 0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)
CLOUD −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗

(0.0003) (0.0003) (0.0002) (0.0002)
HUMID −0.001∗∗∗ −0.001∗∗∗

(0.0003) (0.0002)
WIND −0.005∗∗ −0.005∗∗ −0.004∗∗∗ −0.005∗∗∗

(0.002) (0.002) (0.001) (0.001)
County FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
State:Month FE Yes Yes Yes Yes
Observations 938,273 938,273 2,382,876 2,382,876
R2 0.722 0.721 0.718 0.718
Adjusted R2 0.720 0.719 0.717 0.717
Residual Std. Error 0.551 0.552 0.727 0.727

Note: ∗p<0.01; ∗∗p<0.005; ∗∗∗p<0.001
Standard errors are in parentheses and are clustered on state.

Table S1 displays our regressions for the relationship between meteorological variables and the log number of
police stops in a county-day. Model (1) plots the relationship depicted in the main text, while model (2)
substitutes the heat index (14, 15) for maximum temperature and relative humidity. The results are similar
between maximum temperatures and the heat index: at low and high portions of each distribution the log
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number of police stops declines. Models (1) and (2) employ counties with less than thirty days of zero stops
over the full sample from all states that report county and date of stop in the data. These counties contain 74
percent of all the stops in the full data. Models (3) and (4) of Table S1 expand the sample of counties to all
county-days with stops in the data, and include stops from counties with sparser reporting of stops, adding
the remaining 26 percent of stops to the analysis. As can be seen, even including these smaller counties’
observations in the sample, the estimated relationships are quite similar.

Fatal crashes

Table S2. Fatal Crashes Regression Table

Dependent Variable: Fatal Crash (0/1)
Full Full Alcohol No Alcohol
(1) (2) (3) (4)

TMAX 0.0003 0.003∗ −0.003
(0.002) (0.001) (0.002)

TMAX2 0.001∗∗∗ 0.0002∗∗∗ 0.001∗∗∗

(0.0001) (0.0001) (0.0001)
HEAT INDEX 0.007∗∗

(0.002)
HEAT INDEX2 0.0001

(0.00003)
PRCP 0.005∗∗∗ 0.005∗∗∗ −0.001∗∗∗ 0.007∗∗∗

(0.001) (0.001) (0.0003) (0.001)
TRANGE 0.001 0.011∗∗∗ 0.001 0.0001

(0.002) (0.002) (0.001) (0.002)
CLOUD −0.001 −0.001 −0.001∗∗∗ −0.0001

(0.0004) (0.0004) (0.0002) (0.0003)
HUMID −0.002∗∗∗ −0.001∗∗∗ −0.001∗∗

(0.0004) (0.0002) (0.0003)
WIND −0.009∗∗∗ −0.007∗∗ −0.006∗∗∗ −0.004

(0.002) (0.002) (0.001) (0.002)
County FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
State:Month FE Yes Yes Yes Yes
Observations 17,022,516 17,022,516 16,710,930 16,858,888
R2 0.086 0.086 0.056 0.058
Adjusted R2 0.085 0.085 0.055 0.057
Residual Std. Error 15.754 15.755 9.573 13.077

Note: ∗p<0.01; ∗∗p<0.005; ∗∗∗p<0.001
Standard errors are in parentheses and are clustered on state.

Probability is reported in percentage points.

Table S2 displays our regression results for linear probability model of the relationship between weather and
the incidence of fatal crashes. Model (1) plots the relationship depicted in the main text, while model (2)
substitutes the heat index for maximum temperature and relative humidity. The marginal effects from model
(2) indicate that the risk of fatal crash is also increased by high observations of the heat index. Models (3)
and (4) of Table S2 plot the relationship between maximum temperatures and fatal crashes for crashes with
and without alcohol involved, respectively. See SI: Alcohol involved crashes for more details.

Food safety inspections

Probability of food safety inspection

Table S3 displays our regressions for the relationship between meteorological variables and the probability of
food safety inspection a facility-day. Model (1) plots the relationship depicted in the main text, while model
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Table S3. Probability of Food Safety Inspection Regression Table

Dependent Variable: Inspection (0/1)
(1) (2)

TMAX 0.003∗∗∗

(0.001)
TMAX2 −0.0001∗∗∗

(0.00001)
HEAT INDEX 0.002∗∗∗

(0.0005)
HEAT INDEX2 −0.00003∗∗∗

(0.00001)
PRCP −0.0003∗∗ −0.0004∗∗∗

(0.0001) (0.0001)
TRANGE −0.0005 −0.0003

(0.0005) (0.001)
CLOUD −0.00001 −0.00004

(0.00002) (0.00003)
HUMID −0.0002

(0.0001)
WIND −0.001 −0.001

(0.001) (0.001)
Facility FE Yes Yes
Date FE Yes Yes
State:Month FE Yes Yes
Observations 1,176,731,121 1,176,731,121
R2 0.004 0.004
Adjusted R2 0.003 0.003
Residual Std. Error 5.885 5.885

Note: ∗p<0.01; ∗∗p<0.005; ∗∗∗p<0.001
Standard errors are in parentheses and are clustered on state.

Probability is reported in percentage points.
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(2) substitutes the heat index (14, 15) for maximum temperature and relative humidity. The results are
similar between maximum temperatures and the heat index: at low and high portions of each distribution
the predicted probability of food safety inspection declines.

County-aggregated inspections

Table S4. Log Number of Food Safety Inspections in County

Dependent Variable: Log Number of Inspections
(1) (2)

TMAX 0.005∗∗∗

(0.001)
TMAX2 −0.0001∗∗∗

(0.00003)
HEAT INDEX 0.003∗∗∗

(0.001)
HEAT INDEX2 −0.00004∗∗∗

(0.00001)
PRCP −0.0004∗ −0.0004

(0.0002) (0.0002)
TRANGE −0.0001 −0.0005

(0.001) (0.001)
CLOUD −0.0001 −0.0002

(0.0001) (0.0001)
HUMID −0.0001

(0.0002)
WIND −0.001 −0.001

(0.001) (0.001)
County FE Yes Yes
Date FE Yes Yes
State:Month FE Yes Yes
Observations 600,160 600,160
R2 0.880 0.880
Adjusted R2 0.879 0.879
Residual Std. Error 1.347 1.347

Note: ∗p<0.01; ∗∗p<0.005; ∗∗∗p<0.001
Standard errors are in parentheses and are clustered on state.

Regressions are weighted by number of facilities per county.

As our facility-level model estimates a linear probability model with sparse occurrence of inspections (but
allowing for facility-level fixed effects), we examine whether our results are robust to aggregation up to the
county-level. Table S4 displays the results of examining the effect of meteorological conditions on log number
of food safety inspections. Model (1) examines the effect of maximum temperatures on food safety inspections,
finding that – ass in the facility-level model – cold and hot temperatures reduce the log number of food safety
inspections. Model (2) observes a similar relationship across the distribution of the heat index.

Food safety violations

Number of violations per inspection

Table S5 displays our regressions for the relationship between meteorological variables and the number of
food safety violations conditional upon inspection on a facility-day. Model (1) plots the relationship depicted
in the main text, while model (2) substitutes the heat index (14, 15) for maximum temperature and relative
humidity. At high portions of the maximum temperature distribution the number of food safety violations
per inspection is highest. Marginal effects at colder portions of the temperature distribution are estimated
with higher statistical uncertainty (see SI: Marginal effects for details). The heat index measure indicates a
positive and predominantly linear relationship between added heat index and number of violations.
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Table S5. Food Safety Number of Violations Regression Table

Dependent Variable: Number of Violations per Inspection
(1) (2)

TMAX 0.001
(0.001)

TMAX2 0.0001∗

(0.00003)
HEAT INDEX 0.003∗

(0.001)
HEAT INDEX2 −0.00001

(0.00002)
PRCP 0.0003 0.0004

(0.0004) (0.0003)
TRANGE −0.002 −0.002∗∗

(0.001) (0.001)
CLOUD 0.0001 0.0001

(0.0001) (0.0001)
HUMID 0.001∗∗

(0.0002)
WIND −0.003∗∗∗ −0.003∗∗∗

(0.001) (0.001)
Facility FE Yes Yes
Date FE Yes Yes
State:Month FE Yes Yes
Observations 4,101,987 4,101,987
R2 0.522 0.522
Adjusted R2 0.414 0.414
Residual Std. Error 2.689 2.689

Note: ∗p<0.01; ∗∗p<0.005; ∗∗∗p<0.001
Standard errors are in parentheses and are clustered on state.

Probability of violation per inspection

As number of violations per inspection is small on average, we investigate whether our results are robust
to bifurcating the variable and running a linear probability model to estimate the effect of meteorological
conditions on the probability of any violation conditional upon a food safety inspection. As can be seen
in Table S6, the effects of maximum temperatures on probability of food safety inspection mirror those
estimated in the number of violations per inspection model. The heat index functional form is similar to
that for maximum temperatures, with higher portions of the distribution estimated with lower statistical
uncertainty.

County-aggregated violations

As for inspections, we aggregate our violations per inspection up to the county-level from the facility-level.
Our outcome measure for these regressions is the mean number of violations per inspection at a county-day.
Table S7 displays the results of estimating the effects of meteorological conditions on county-level mean
number of violations per inspection. High maximum temperatures substantially increase violations (see model
(1)) and high heat index values also increase violations, though this relationship is estimated with lower
statistical precision (see model (2)).

Trimmed temperature

One might be concerned that outliers on the temperature distribution – very hot days in hot places and very
cold days in cold places – could put undue leverage on our estimated relationships presented in the main text
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Table S6. Food Safety Probability of Violation Regression Table

Dependent Variable: Any Violation (0/1)
(1) (2)

TMAX −0.020
(0.019)

TMAX2 0.001∗∗

(0.0005)
HEAT INDEX 0.004

(0.013)
HEAT INDEX2 0.0003

(0.0002)
PRCP 0.001 0.001

(0.004) (0.004)
TRANGE −0.020 −0.015

(0.013) (0.011)
CLOUD 0.001 0.001

(0.001) (0.001)
HUMID 0.002

(0.003)
WIND −0.027 −0.027

(0.015) (0.015)
Facility FE Yes Yes
Date FE Yes Yes
State:Month FE Yes Yes
Observations 4,101,987 4,101,987
R2 0.383 0.383
Adjusted R2 0.243 0.243
Residual Std. Error 36.486 36.486

Note: ∗p<0.01; ∗∗p<0.005; ∗∗∗p<0.001
Standard errors are in parentheses and are clustered on state.

Probability is reported in percentage points.
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Table S7. Food Safety Violations per Inspection, County Mean

Dependent Variable: Mean Violations per Inspection
(1) (2)

TMAX −0.003
(0.002)

TMAX2 0.0001∗∗∗

(0.00004)
HEAT INDEX 0.0001

(0.001)
HEAT INDEX2 0.00003

(0.00002)
PRCP 0.0003 0.0003

(0.0003) (0.0003)
TRANGE −0.001 −0.001

(0.001) (0.001)
CLOUD 0.0002 0.0003∗∗

(0.0001) (0.0001)
HUMID 0.001

(0.0003)
WIND −0.002∗∗ −0.002∗∗

(0.001) (0.001)
County FE Yes Yes
Date FE Yes Yes
State:Month FE Yes Yes
Observations 558,275 558,275
R2 0.666 0.666
Adjusted R2 0.663 0.663
Residual Std. Error 3.248 3.248

Note: ∗p<0.01; ∗∗p<0.005; ∗∗∗p<0.001
Standard errors are in parentheses and are clustered on state.

Regressions are weighted by number of inspections per county.
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Fig. S6. Marginal effects and confidence intervals of quadratic estimates of trimmed maximum temperature
regressions. This figure plots the marginal effects of the quadratic estimates from the trimmed maximum
temperature distribution regressions. Panel (a) plots the marginal effect of a one degree increase in maximum
temperature on the log number of police stops. Panel (b) plots the marginal effect of temperature on the
probability of a fatal crash. Panel (c) plots the marginal effect of temperature on the probability of a food
safety inspection. Panel (d) plots the marginal effect of temperature on the number of food safety violations
per inspection. The marginal effects are plotted across the full distribution of temperature for comparability
with the estimates from the main text regressions, even though these parameters are estimated on the
constrained 2.5-97.5 percentiles of maximum temperatures. Shaded regions plot the 95% confidence intervals
of the marginal effects.

(1, 16–19). While the binned functional forms we uncover in Fig. S3 assuage these concerns somewhat, another
way to rule out undue influence is to omit the extreme values of the maximum temperature distribution and
re-estimate our relationships on the trimmed maximum temperature distribution. As can be seen in Fig. S6
and Table S8, our results do not appear to be unduly leveraged by outliers on the temperature distribution.

Trimmed temperature marginal effects

Fig. S6 displays the marginal effects associated with the quadratic estimates from the trimmed maximum
temperature distribution regressions. Each estimated relationship has substantial portions of its marginal
effects’ confidence intervals that do not contain zero. Of note, the negative marginal effects for the colder
portion of the number of violations per inspection relationship are estimated with high uncertainty, while
the higher temperature portion of the distribution returns positive marginal effects estimated with higher
statistical precision. Of further note, we plot the marginal effects across the full distribution of temperature for
comparison with the non-trimmed marginal effects plots in Fig. S2; the parameters, however, are estimated
across the 2.5th to 97.5th percentile of maximum temperature for each relationship. For example, this
maximum temperature range for the crash data is -5℃ to 35℃. Panel (a) of Fig. S6 draws from the estimates
presented in model (1) of Table S8. Panel (b) of Fig. S6 draws from the estimates presented in model (2) of
Table S8. Panel (c) of Fig. S6 draws from the estimates presented in model (3) of Table S8. Panel (d) of Fig.
S6 draws from the estimates presented in model (4) of Table S8. As can be seen, the estimated relationships
are robust to the exclusion of extreme portions of the maximum temperature distribution.
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Table S8. Trimmed Maximum Temperature Regression Table

Police Stops Fatal Crashes Food Safety Inspections Food Safety Violations
(1) (2) (3) (4)

TMAX 0.019∗∗∗ −0.008∗ 0.003∗∗∗ 0.002
(0.004) (0.003) (0.001) (0.002)

TMAX2 −0.0003∗∗∗ 0.001∗∗∗ −0.0001∗∗∗ 0.0001
(0.0001) (0.0001) (0.00001) (0.00004)

PRCP −0.012∗∗∗ 0.006∗∗∗ −0.0003∗∗ 0.0003
(0.001) (0.001) (0.0001) (0.0004)

TRANGE 0.002 0.002 −0.0005 −0.002∗∗∗

(0.001) (0.002) (0.0005) (0.001)
CLOUD −0.002∗∗∗ −0.001 −0.00001 0.0001

(0.0003) (0.0004) (0.00003) (0.0001)
HUMID −0.001∗∗∗ −0.002∗∗∗ −0.0002 0.001∗

(0.0003) (0.0004) (0.0001) (0.0002)
WIND −0.004∗∗ −0.010∗∗∗ −0.001 −0.002∗∗

(0.001) (0.002) (0.001) (0.001)
County FE Yes Yes No No
Facility FE No No Yes Yes
Date FE Yes Yes Yes Yes
State:Month FE Yes Yes Yes Yes
Observations 896,822 16,171,390 1,117,924,790 3,919,195
R2 0.721 0.084 0.004 0.525
Adjusted R2 0.719 0.083 0.003 0.412
Residual Std. Error 0.547 15.831 5.901 2.700

Note: ∗p<0.01; ∗∗p<0.005; ∗∗∗p<0.001
Standard errors are in parentheses and are clustered on state.

Trimmed temperature regression table

Table S8 displays the results from estimating the main text models on the subset of the 2.5th to 97.5th
percentile range of the maximum temperature distribution for each relationship. Fig. S6 displays the marginal
effects and confidence bounds associated with these estimates.

Climate impact projections

Annualized projections, RCP4.5 emissions scenario

Here we replicate Figure 4 from the main text substituting the RCP4.5 emissions scenario (20) for the RCP8.5
emissions scenario employed in the main text. Fig. S7 depicts the results of these projections. As compared
to the RCP8.5 scenario, the magnitude of our projected changes are smaller across the four outcome measures
we investigate, though the general direction and spatial variation in the impacts remains similar to the
projections presented in Figure 4 of the main text.

By-month grid-cell projections

RCP4.5 emissions scenario

Warming future temperatures – and thus any impact of climate change on regulatory behaviors and public
safety risks – are likely to vary both spatially and temporally across the United States. How might the future
impacts of warming on our regulatory and pubic safety outcome measures vary both geographically and
temporally? To investigate this question, we take perform the projection from the main text Equations 2 and
3 for each month in the future years of 2050 and 2099 (9, 12). For the 2050 projection, we assign to each
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Fig. S7. Projected change in regulatory behaviors and outcomes in the US due to future warming. This
figure presents the 25km x 25km grid cell projections of the effects of warming in the United States over this
century on the regulatory outcomes examined in this study. Projections are calculated using downscaled
climatic model data from NASA’s NEX under the RCP4.5 emissions scenario (RCP8.5 projections presented
in main text) across the mean of the 21 CMIP5 models in the ensemble. We couple these climate model data
with the estimates from our historical statistical models to project the mean effects of climate change on each
outcome. Panel (a) depicts projected changes to police stops, panel (b) depicts projected changes to fatal
crash risk, panel (c) depicts projected changes to food safety inspections, and panel (d) depicts projected
changes to food safety violations.
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grid cell the projected net monthly difference in our outcome measure between 2010 and 2050. For the 2099
projection we assign to each grid cell the projected net monthly difference in our respective outcome measure
between 2010 and 2099.

Employing the RCP4.5 emissions scenario, Fig. S8 shows the projected geographical differences in the effects
of warming on police regulatory stops in the future. Fig. S9 shows the projected geographical differences in
the effects of warming on fatal vehicular crashes. Fig. S10 shows the projected geographical differences in
the effects of warming on food safety inspections. And Fig. S8 shows the projected geographical differences
in the effects of warming on food safety violations. Across our projections, we observe that future climate
change, particularly during summer months in the US south, may amplify the currently existing regulatory
gaps between police stops and fatal crashes and food safety inspections and food safety violations.

RCP8.5 emissions scenario

Employing the RCP8.5 high emissions scenario, Fig. S12 shows the projected geographical differences in
the effects of warming on police regulatory stops in the future. Fig. S13 shows the projected geographical
differences in the effects of warming on fatal vehicular crashes. Fig. S14 shows the projected geographical
differences in the effects of warming on food safety inspections. And Fig. S12 shows the projected geographical
differences in the effects of warming on food safety violations. The projections that employ the RCP8.5
scenario find similar direction of impacts as those observed under the RCP4.5 scenario based projections,
however the magnitude of the projected effects are larger due to the amplified temperature changes associated
with the RCP8.5 scenario.
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Fig. S8. Grid cell projections of change in number of police stops for RCP4.5. This figure presents the 25km x
25km grid cell projections of the potential impact of warming maximum temperatures on the percentage point
change in police stops in future months. In this figure, downscaled climatic model maximum temperature
projections are averaged across the 21 models in the ensemble and then coupled with our historical model
parameters to produce an estimated percentage point change in police stops in each geographic location for
the months of 2050 and 2099. Areas of the northern United States – where non-summer temperatures are
currently coldest – may experience increases in net police regulatory activity due to future warming. However,
southern portions of the U.S. may experience net reductions in police regulatory stops due to future warming.
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Fig. S9. Grid cell projections of change in number of fatal vehicular crashes for RCP4.5. This figure
presents the 25km x 25km grid cell projections of the potential impact of warming maximum temperatures
on the percentage point change in fatal crashes in future months. In this figure, downscaled climatic model
maximum temperature projections are averaged across the 21 models in the ensemble and then coupled
with our historical model parameters to produce an estimated percentage point change in fatal crashes in
each geographic location for the months of 2050 and 2099. Areas of the northern United States – where
non-summer temperatures are currently coldest – may experience decreases in net fatal crashes in the winter
due to future warming. However, southern portions of the U.S. – especially in summer months – may
experience net increases in fatal vehicular crashes due to future warming.
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Fig. S10. Grid cell projections of change in food safety inspections for RCP4.5. This figure presents the 25km
x 25km grid cell projections of the potential impact of warming maximum temperatures on the change in
food safety regulatory inspections in future months. In this figure, downscaled climatic model maximum
temperature projections are averaged across the 21 models in the ensemble and then coupled with our
historical model parameters to produce an estimated change in food safety inspections per 1,000 facilities
in each geographic location for the months of 2050 and 2099. Areas of the northern United States may
experience increases in net food safety inspection activity during the winter months due to future warming.
Southern portions of the U.S. may experience net reductions in inspection activity – particularly during
summer months when food safety risks are highest – due to future warming.
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Fig. S11. Grid cell projections of change in number of food safety violations for RCP4.5. This figure presents
the 25km x 25km grid cell projections of the potential impact of warming maximum temperatures on the
change in food safety violations in future months. In this figure, downscaled climatic model maximum
temperature projections are averaged across the 21 models in the ensemble and then coupled with our
historical model parameters to produce an estimated change in food safety violations per 1,000 inspections
for each geographic location for the months of 2050 and 2099. Our projection suggests that warming may
increase food safety violation rates across the entire US by 2099.
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Fig. S12. Grid cell projections of change in number of police stops for RCP8.5. This figure presents the 25km x
25km grid cell projections of the potential impact of warming maximum temperatures on the percentage point
change in police stops in future months. In this figure, downscaled climatic model maximum temperature
projections are averaged across the 21 models in the ensemble and then coupled with our historical model
parameters to produce an estimated percentage point change in police stops in each geographic location for
the months of 2050 and 2099. Areas of the northern United States – where non-summer temperatures are
currently coldest – may experience increases in net police regulatory activity due to future warming. However,
southern portions of the U.S. may experience net reductions in police regulatory stops due to future warming.
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Fig. S13. Grid cell projections of change in number of fatal vehicular crashes for RCP8.5. This figure
presents the 25km x 25km grid cell projections of the potential impact of warming maximum temperatures
on the percentage point change in fatal crashes in future months. In this figure, downscaled climatic model
maximum temperature projections are averaged across the 21 models in the ensemble and then coupled
with our historical model parameters to produce an estimated percentage point change in fatal crashes in
each geographic location for the months of 2050 and 2099. Areas of the northern United States – where
non-summer temperatures are currently coldest – may experience decreases in net fatal crashes in the winter
due to future warming. However, southern portions of the U.S. – especially in summer months – may
experience net increases in fatal vehicular crashes due to future warming.
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Fig. S14. Grid cell projections of change in food safety inspections for RCP8.5. This figure presents the 25km
x 25km grid cell projections of the potential impact of warming maximum temperatures on the change in
food safety regulatory inspections in future months. In this figure, downscaled climatic model maximum
temperature projections are averaged across the 21 models in the ensemble and then coupled with our
historical model parameters to produce an estimated change in food safety inspections per 1,000 facilities
in each geographic location for the months of 2050 and 2099. Areas of the northern United States may
experience increases in net food safety inspection activity during the winter months due to future warming.
Southern portions of the U.S. may experience net reductions in inspection activity – particularly during
summer months when food safety risks are highest – due to future warming.
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Fig. S15. Grid cell projections of change in number of food safety violations for RCP8.5. This figure presents
the 25km x 25km grid cell projections of the potential impact of warming maximum temperatures on the
change in food safety violations in future months. In this figure, downscaled climatic model maximum
temperature projections are averaged across the 21 models in the ensemble and then coupled with our
historical model parameters to produce an estimated change in food safety violations per 1,000 inspections
for each geographic location for the months of 2050 and 2099. Our projection suggests that warming may
increase food safety violation rates across the entire US by 2099.
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