

Supplementary Information for

Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8

Corentine Marie¹, Adrien Clavairoly¹, Magali Frah¹, Hatem Hmidan¹, Jun Yan³, Chuntao Zhao², Juliette Van Steenwinckel³, Romain Daveau¹, Bernard Zalc¹, Bassem Hassan¹, Jean-Léon Thomas^{1,4}, Pierre Gressens³, Philippe Ravassard¹, Ivan Moszer¹, Donna M. Martin⁵, Q. Richard Lu², and Carlos Parras¹

Correspondence should be addressed to C.P. (carlos.parras@upmc.fr)

This PDF file includes:

Supplementary Information Text Figs. S1 to S15 Tables S1 to S2 Dataset S1 to S2 Supplemental references

Supplementary Information Text SUPPLEMENTAL MATERIAL & METHODS

Materials

KEY RESOURCES TABLE		
REAGENT or RESOURCE	SOURCE	IDENTIFIER
Chemicals, Peptides, and Recombinant		IDENTITIEN
Pifithrin-α (PFT)	Sigma	P4359
Tamoxifen	Sigma	T5648
lysolecithin (LPC)	Sigma	L4129
5-Bromo-2'-deoxyuridine (BrdU)	Sigma	16880
Critical Commercial Assays	olgina	10000
Neural tissue dissociation kit (T)	Miltenyi biotech	130-093-231
Nextera DNA sample kit	Illumina	15028212
iDeal ChIP-seq kit for Transcription Factor	Diagenode	C01010055
Deposited Data		
RNA-seq data	This paper	GSE116600
Chd7 CHIP data MOUSE OPC	This paper	GSE116599
Chd8 ChIP data MOUSE OPC	This paper	GSE116599
ATAC-seq data	This paper	GSE116598
Experimental Models: Organisms/Strain		
Mice CD1 wt	Janvier	
Chd7 ^{Flox/Flox}	Donna M. Martin	(1, 2)
PDGFRa-CreERT	Dwight Bergles	(Kang et al., 2010)
ROSA26R ^{stop-floxed-YFP}	Jackson lab	(3)
Oligonucleotides		
RTqPCR primers see Table S2	Various papers (See Table S2)	N/A
Software and Algorithms		
Zen	N/A	https://www.zeiss.com/
ImageJ	N/A	https://imagej.nih.gov/ij/
Genomatix	N/A	https://www.genomatix.de
Pathway Studio	N/A	http://www.pathwaystudio.co
TopHat59	N/A	m/ https://ccb.jhu.edu/software/to phat/ index.shtml
Bowtie2	(Langmead and Salzberg, 2012)	http://bowtie- bio.sourceforge.net/bowtie2/ index.shtml
Samtools	(Li et al., 2009)	http://samtools.sourceforge.ne
MACS2	(Zhang et al., 2008)	https://github.com/taoliu/MAC S/
IGV	(James et al., 2011)	http://software.broadinstitute.o rg/software/igv/home

ANTIBODIES	SOURCE	DILUTION	IDENTIFIER
Mouse anti-Ascl1/Mash1	BD Biosciences	1/200	Clone 24B72D11.1
Mouse anti-APC (CC1)	Millipore	1/200	Cat#OP80 RRID:AB_213434
Rabbit anti-APC	Santa Cruz Biotechnology	1/200	Cat#sc-896 RRID:AB_2057493
Mouse anti-beta-III-tubulin	BABCO	1/1000	MMS-435P
Rat anti-BrdU	Oxford biotechnology	1/20	Cat#OBT0030S
Rabbit anti-Casp3	R&D systems	1/250	Cat#AF835, RRID:AB_2243952
Rabbit anti-Chd7	Cell signaling	1/1000	Cat#6505S RRID:AB_11220431
Sheep anti-Chd7	R and D Systems	1/100	Cat#AF350 RRID:AB_10994180
Rabbit anti-Chd8	Bethyl	1/1000	Cat#A301-224A RRID:AB_890578
Mouse anti-CNP	Millipore	1/100	Cat#MAB326R RRID:AB_2082608
Rabbit anti-Itpr2	Millipore	1/500	Cat#AB3000
Chicken anti-GFAP	Aves labs	1/1000	Cat#GFAP
Chicken anti-GFP	Aves labs	1/2000	Cat#GFP-1020, RRID:AB_10000240
Rabbit anti-Iba1	WAKO Chemicals GMBH	1/500	Cat#019-191741
Rat anti-Ki67	Leica	1/500	Cat#M-7249
Mouse anti-MCM2	BD biosciences	1/500	Cat#610701 RRID:AB_398024
Mouse anti-MOG	Developmental Studies Hybridoma Bank	1/5	Clone AA3
Mouse anti-Nkx2.2	Developmental Studies Hybridoma Bank	1/4	clone 74.5A5
Rat anti-PDGFRα	BD Bioscience	1/400	Cat#558774 RRID:AB_397117
Mouse anti-Olig1	NeuroMab	1/500	Cat#75-180
Mouse anti-Olig2	Millipore	1/500	Cat#MABN50, RRID:AB_10807410
Rabbit anti-p53	Leica	1/500	Cat#P53-CM5P-L

Methods

Mice

ROSA26R^{stop-floxed-YFP} mouse line were crossed with *PDGFR* α -*CreER*^T; *Chd7*^{Flox/Flox} to generated iKO mice with YFP reporter. The mouse strains used in this study were generated and housed (six or less animals per cage) in a vivarium with a 12-h light/dark cycle. Wild-type *Swiss* mice were obtained from Janvier Labs.

Tamoxifen administration

Alternatively, tamoxifen (Sigma, T5648) was dissolved in corn oil (Sigma, C-8267) and injected subcutaneously at 20mg/ml concentration at postnatal stages P7 (30µl) in *Ctrl* and *Chd7iKO* animals. Brains were then collected at P20.

BrdU administration

5-Bromo-2'-deoxyuridine (BrdU, Sigma, 16880) was dissolved in NaCl at 10 mg/ml and injected intraperitoneally at 10 μ l/g at postnatal stages P7 in tamoxifen-induced *Ctrl* and *Chd7iKO* animals, 1 hour before perfusion.

Demyelinating lesions

Before surgery, adult (2-3months) mice were weighted and anesthetized by intraperitoneal injection of mixture of ketamine (0.1 mg/g) and xylacine (0.01 mg/g). Focal demyelinating lesions were induced by stereotaxic injection of 1µl of lysolecithin solution (LPC, Sigma, L4129, 1% in 0.9%NaCl) into the corpus callosum (CC; at coordinates: 1 mm lateral, 1.3 mm rostral to bregma, 1.7 mm deep to brain surface) using a glass-capillary connected to a 10µl Hamilton syringe. Animals were left to recover in a warm chamber before being returned into their housing cages. Brains were collected 2 or 4 days after lesions (2-4 dpi).

Tissue processing

Postnatal mice were anesthetized and perfused with 15 ml (for P7) and 25ml (for older animals) 2% paraformaldehyde (EMS, 15714). Brains were dissected, dehydrated in 20% sucrose at 4°C, embedded in OCT for freezing and cryosectioned at 14 μ m.

Immunohistochemistry

Postnatal mouse brain cryosections (14-µm thick) were permeabilized and blocked in blocking buffer (0.05% Triton X-100 and 10% normal goat serum in PBS) for 1 hour and overlaid with primary antibodies overnight at 4°C. Antibody details are provided in supplemental material. After washing with 0.05% Triton X-100 in PBS, sections were incubated with secondary antibodies conjugated to Alexa488, Alexa594 or Alexa647 (Thermo, 1:1,000) and DAPI for 1 hour at room temperature, washed in PBS and mounted with Fluoromount-G (SouthernBiotech). For BrdU immunostaining, after normal staining for other required antibodies, sections were post-fixed with 4% PFA at

RT for 5 minutes before pretreatment with 2N HCl in PBS at 37°C for 30min, and normal immunostaining protocol with anti-BrdU antibody.

For cells, coverslips were fixed in 4% paraformaldehyde for 10 minutes at room temperature and washed in PBS. They were blocked for 1h at room temperature in blocking buffer (0.05% Triton X-100 and 10% normal goat serum in PBS) and overlaid with primary antibodies for 30min at room temperature. After washing with 0.05% Triton X-100 in PBS, cells were incubated with secondary antibodies conjugated to Alexa488, Alexa594 or Alexa647 (Thermo, 1:1,000) and DAPI for 30min at room temperature, washed in PBS and mounted with Fluoromount-G (SouthernBiotech).

Pictures of were taken with Zeiss microscope using Apotome system optical sectioning and deconvolution. Z-stack was used. Zen and ImageJ software packages were used to treat pictures and perform cell quantifications. For cells on coverslips, pictures were taken using CellInsight (Thermo Scientific).

MACSorted OPC culture

To control sorted cell population, cells were put on coverslips coated with poly-ornithine (Sigma, P4957) and cultured for a couple of hours in medium composed of DMEM high glucose GlutaMAX[™] Supplement (ThermoFisher, 61965-026), B27 supplement (ThermoFisher, 17502048), EGF (Peprotech, AF-100-15, 20ng/ml), FGF (Peprotech, 100-18B, 10ng/ml) and PDGF (Peprotech, 100-13A, 10ng/ml) at 37°c. They were then fixed in 4% paraformaldehyde (PFA, diluted from 32% PFA, EMS, 15714) for 10 minutes, before processing to immunostaining.

In vitro lentiviral transduction

NSCs from *WT*, *ROSA26R*^{stop-floxed-YFP} and *Chd7*^{Flox/+}; *ROSA26R*^{stop-floxed-YFP} brains were dissociated and put in neurosphere medium enriched in EGF (20ng/ml; Peprotech; AF-100-15) and FGF (10ng/ml; Peprotech; 100-18B). Two days prior to transduction, cells were put in proliferation medium containing EGF, FGF and PDGF-AA (10ng/ml; Peprotech, 100-13A). Cells were then plated on coverslips coated with Poly-L-ornithine

(Sigma, P4957) and transduced using lentiviral particles expressing the Cre recombinase and either a shRNA against Chd8 (GCAGTTACACTGACGTCTACA) or a scramble shRNA (TCGTCATAGCGTGCATAGGTTCAAGAGACCTATGCACGCTATGACGA). One day after transduction, cells were put in differentiation medium without growth factors and after 3 or 6 days of differentiation, fixed with 4% formaldehyde.

ChIP-Seq and data analysis

ChIP-seq assays were performed using iDeal ChIP-seq kit for Transcription Factors (Diagenode, C01010055). Briefly, 4 million fresh sorted OPCs were fixed in 1% formaldehyde (EMS, 15714) for 10 min at room temperature. Lysate were sonicated with a Bioruptor Pico sonicator (Diagenode, total time 8 min) and 4µg of antibodies were added to chromatin and incubated at 4°C overnight. Rabbit anti-Chd7 (Cell signaling, 6505) and anti-Chd8 (Bethyl, A301-224A) antibodies were used for immunoprecipitation experiments. Chromatin-protein complexes were immunoprecipitated with protein A/G magnetic beads and washed sequentially. Input and Mock (Rabbit IgG) ChIP were used as controls in each individual experiments.

The ChIP-seq libraries were prepared using TruSeq ChIP library preparation kit (Illumina ip-202-1012), sequenced with Illumina HiSeq 2500 platform and mapped using bowtie2 onto mm10. Low-quality reads were filtered-out with SAMtools and PCR-derived duplicates removed by using PICARD MarkDuplicates. Peak calling was performed using MACS (Model-based Analysis of ChIP-Seq) (http://liulab.dfci.harvard.edu/MACS) with options: keep-dup all, nolambda, broad, nomodel, extsize 75 -q 0.01 and filtered according to the following criteria: (i) length>=100bp and (ii) p-value<=5%. Two and one separate experiments were done for Chd7 and Chd8, respectively.

Representation of the data, overlapping, region annotation and correlations were done using Genomatix (<u>www.genomatix.de</u>) and IGV browser (<u>https://software.broadinstitute.org/software/igv/</u>). GO analysis were done using Pathway Studio (Elsevier, www.pathwaystudio.com/). "Promoters" correspond to

6

regions 1000bp upstream of transcription start site (TSS) and 10bp downstream of TSS (Genomatix). "Enhancers" correspond to the regions commonly bound by Sox10 and Olig2 (4, 5). Gene expression profiles have been analyzed from OL stage specific transcriptome and single-cell analysis (6, 7).

RNA extraction and RT-qPCR.

RNAs were extracted from at least 10⁵ MACsorted O4⁺-cells from P7 *Chd7iKO* mice and their control littermates, using Nucleospin RNA kit (Macherey-Nagel, 740955). cDNAs were generated with SuperScript cDNA Synthesis Kit (Invitrogen, 18080051). RT-qPCR were performed using LightCycler[®] 96 real-time PCR system (Roche) and LightCycler[®] 480 SYBR Green I Master mix (Roche, 4707516001). Primers details are given in SI Appendix, Table S2. *β-actin* was used for normalization.

RNA-seq and data analysis

RNA-seq libraries from *control* (*n=7*) and *Chd7iKO* (*n=5*) OPCs were prepared using TruSeq Stranded mRNA (Illumina 20020594) and sequenced with Illumina HiSeq 2500 platform. RNA-seq reads were aligned onto the mm10 reference transcriptome using bowtie and quantified using eXpress. The edgeR R-package was used to perform both data normalization and differential expression analyses. In all differential expression tests, genes were considered regulated when p-value < 0.05 and Fold change > 1.2. Heatmap of gene expression was generated using R language (<u>http://www.r-project.org</u>). GO analysis of genes repressed and increased in *Chd7iKO* mutants was performed using Pathway Studio (Elsevier, www.pathwaystudio.com/).

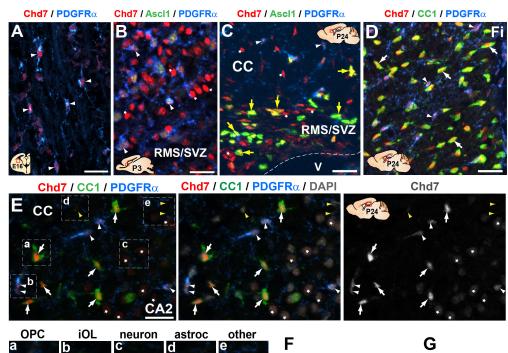
ATAC-seq and data analysis

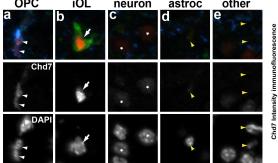
10⁵ OPCs from control and *Chd7iKO* P7 mice were purified and lysate before ATAC-seq reaction, which was done as described before (8). Libraries were done using Nextera DNA sample kit (Illumina, 15028212) and sequenced with Illumina HiSeq 2500 platform.

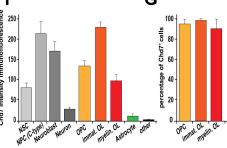
Reads from 5 controls and 5 *Chd7iKO* were uniquely mapped onto mm10 with bowtie2. Low-quality, mitochondria- and PCR-derived reads were all removed and peaks were called by using MACS. Regarding ChIP-seq data, only significant peaks>=100bp were considered for downstream analyses.

Statistical Analysis

Statistical parameters including the exact value of n, the definition of center, dispersion and precision measures (mean \pm SEM) and statistical significance are reported in the Figures, Figure Legends and SI Appendix, Dataset S2. 'n' represent the number of animals in histological studies and number of samples in RNA-seq, ChIP-seq and ATACseq studies. Data distribution was assumed to be normal, but this was not formally tested. Statistical significance was determined using two-tailed Student's t tests. Oneway ANOVA test was performed for multiple comparisons or pairwise comparisons following Turkey's ranking tests when comparing multiple groups. Data are judged to be statistically significant when p < 0.05. In figures, asterisks denote statistical significance as calculated by Student's t test (*, p < 0.05; **, p < 0.01; ***, p < 0.001). No statistical methods were used to predetermine sample sizes, but our sample sizes are similar to those generally employed in the field to balance experimental robustness with the 3R rule for animal experimentation. Quantifications were performed from at least three independent experiments. No randomization was used to collect all the data, but they were quantified blindly. Statistical analysis was performed in Prism software.

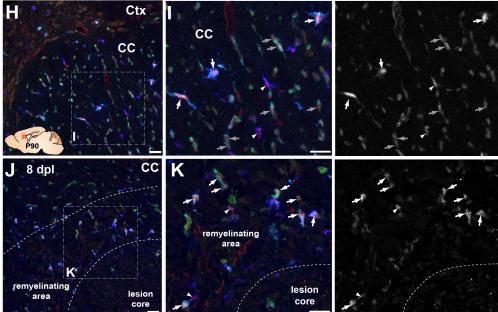

Data Resources


Raw data files have been deposited in the NCBI Gene Expression Omnibus under accession number GEO: GSE116601


Contact for Reagent and Resource Sharing

Further information and requests for reagents may be directed to, and will be fulfilled by the corresponding author Carlos Parras (<u>carlos.parras@upmc.fr</u>).

SUPPLEMENTAL FIGURES



Chd7 / CC1 / Olig1

Chd7

Fig. S1. (related to Figure 1)

A – Immunostaining of Chd7 and PDGFR α in the ventral telencephalon of E16.5 WT mouse. Arrow heads represent PDGFR α^+ OPCs expressing Chd7. Scale bar: 20 µm.

B – Immunostaining of Chd7, Ascl1 and PDGFR α in the SVZ of P3 WT mouse. Arrow heads represent PDGFR α^+ OPCs expressing Chd7 and Ascl1 and stars represent neuroblasts. Scale bar: 20 μ m.

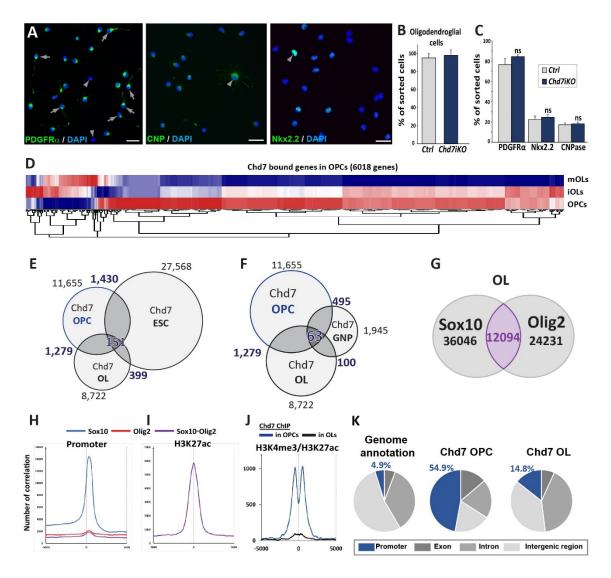
C – Immunostaining of Chd7, Ascl1 and PDGFR α in the corpus callosum and SVZ of P24 WT mouse. White arrow heads represent PDGFR α^+ OPCs expressing Chd7, yellow arrows represent Ascl1⁺ progenitors expressing Chd7 and stars represent neuroblasts. Scale bar: 20 μ m.

D – Immunostaining of Chd7, PDGFR α and CC1 in the fimbria of P24 WT mouse. Arrow heads represent PDGFR α^+ OPCs expressing Chd7, arrows represent CC1⁺ OLs expressing Chd7. Scale bar: 20 μ m.

E – Immunostaining of Chd7, PDGFR α and CC1 in the corpus callosum of P24 WT mouse. White arrow heads represent PDGFR α^+ OPCs expressing Chd7, white arrows represent CC1⁺ OLs expressing Chd7, stars represent neurons, and yellow arrow heads represent astrocytes and other cell-types. a, b, c, d and e are higher magnification of the inset in E. Scale bar: 20 µm.

F – Quantification of Chd7 intensity of immunofluorescence in different cell-types at P24. Data are presented as mean ± s.e.m.

G – Quantification of Chd7+ cells as a percentage of total OPCs, iOLs and mOLs in P24 mice.


H – Immunostaining of Chd7, Olig1 and CC1 in the corpus callosum of P90 adult WT mouse. Scale bar: 20 μ m.

I – Higher magnification of the inset in H. White arrow heads represent Olig1⁺ OPCs, white arrows represent Olig1^{High}-CC1^{High} iOLs and grey arrows represent Olig1^{Low}-CC1^{Low} mOLs. Scale bar: 20 μ m.

J – Immunostaining of Chd7, Olig1 and CC1 in the remyelination area at 8 days post-lesion (8dpl) in the corpus callosum of P90 adult WT mouse. Scale bar: 20 μm.

K – Higher magnification of the inset in J. White arrow heads represent Olig1⁺ OPCs and white arrows represent Olig1^{High}-CC1^{High} iOLs. Scale bar: 20 μ m.

10

Fig. S2. (related to Figure 1)

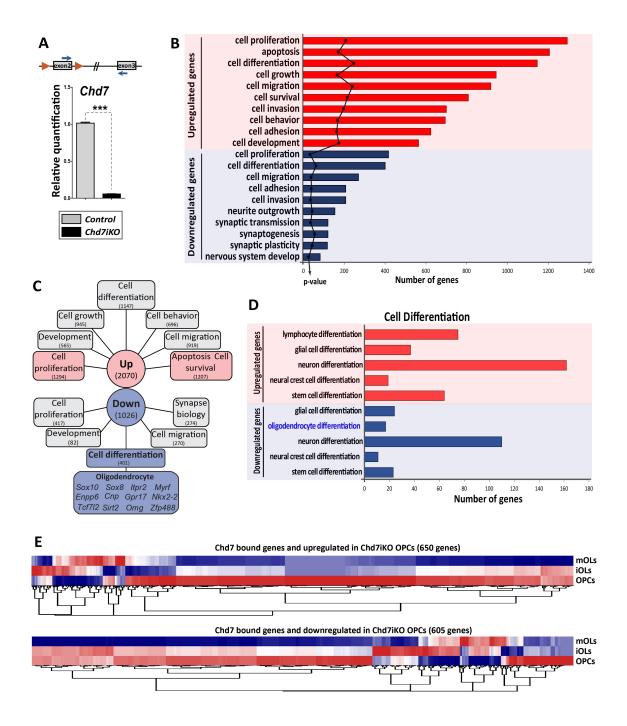
A – Immunostaining showing PDGFR α , CNP and Nkx2.2 expression in MACS-sorted O4⁺ cells of P7 mice. Scale bar: 10 μ m.

B – Quantification of PDGFR α^+ -CNP⁺ cells as a percentage of total sorted cells (DAPI) from P7 *Ctrl* and *iKO* brains. Data are presented as mean ± s.e.m. (n = 6 *Ctrl* and 7 *iKO*; P = 0.376, t = 0.92; two-tailed unpaired Student's t test).

C – Quantification of PDGFR α^+ , Nkx2.2⁺ and CNP⁺ cells as a percentage of total sorted cells (DAPI) from P7 *Ctrl* and *iKO* mice. Data are presented as mean ± s.e.m. (PDGFR α^+ , n = 5 *Ctrl* and 3 *iKO*; P = 0.17, t = 1.56; Nkx2.2⁺, n=5 *Ctrl* and 4 *iKO*; P = 0.46, t = 0.78; CNP⁺, n = 5 *Ctrl* and 5 *iKO*; P = 0.58, t = 0.57; two-tailed unpaired Student's t test).

D – Heat maps of Chd7 bound gene expression levels in oligodendroglia according to Zhang et al., RNA-seq dataset (GSE52564).

E – Venn diagrams depicting the overlap of Chd7 binding sites in OPCs, OLs and ESCs.


F – Venn diagrams depicting the overlap of Chd7 binding sites in OPCs, OLs and GNPs.

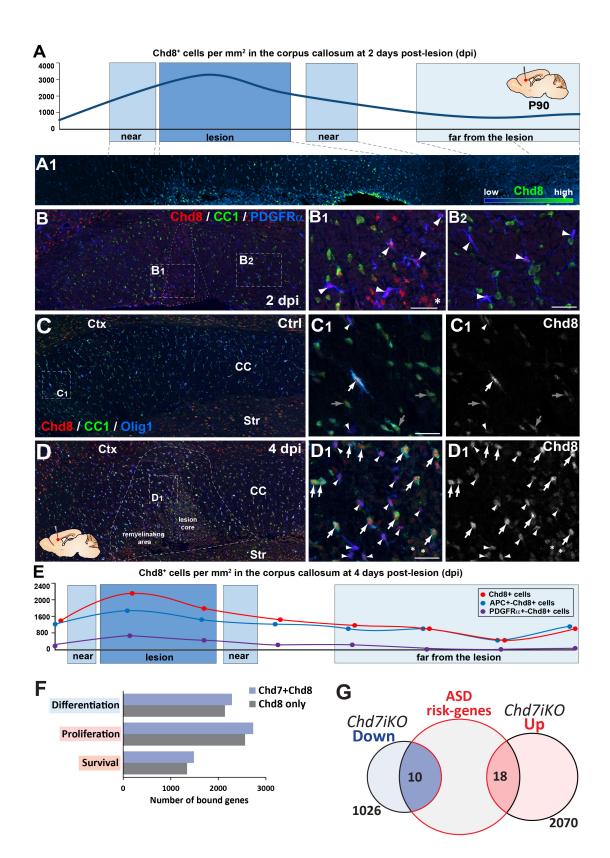
G – Venn diagrams depicting the overlap between Sox10 and Olig2 binding sites in OLs.

H,I – Graph showing the number of correlation of Sox10 (blue), Olig2 (red) and Sox10-Olig2 (purple) peaks in OLs compared to the central position of promoter (G) and H3K27ac mark regions (H).

J – Graph showing the number of correlations of Chd7 peaks in OPCs (blue) and OLs (black) compared to the position in active histone marks H3K4me3/H3K27ac regions.

K – Region annotation of Chd7 binding sites in OPCs (middle) and OLs (right) compared to region representation in the genome (left).

Fig. S3. (related to Figure 2)


A – Top, scheme of exons 2 and 3 of *Chd7* gene. Orange triangles represent *LoxP* sites, blue arrows represent primers used for RT-qPCR. Bottom, RT-qPCR analysis of *Chd7* deletion in P7 O4⁺ cells of *Chd7iKO* (*iKO*) compared to *Crt1* mice. Normalization with β -actin. Data are presented as mean ± s.e.m. (n = 7 Controls and 7 *iKO*; P < 0.001, t = 50.97; two-tailed unpaired Student's t test). *P < 0.05, **P < 0.01 and ***P < 0.001.

B – Barplot showing the gene ontology (GO) analysis of the significantly upregulated (red) and downregulated (blue) genes in *control* and *iKO* mice. Line represents the Log(p-value).

C- Diagram representing the gene ontology (GO) analysis of the significantly upregulated and downregulated genes in *iKO* and *Ctrl* mice. The numbers indicate the number of genes of each category.

D – Barplot showing the gene ontology (GO) analysis of the significantly upregulated (red) and downregulated (blue) cell differentiation processes in *control* and *iKO* mice.

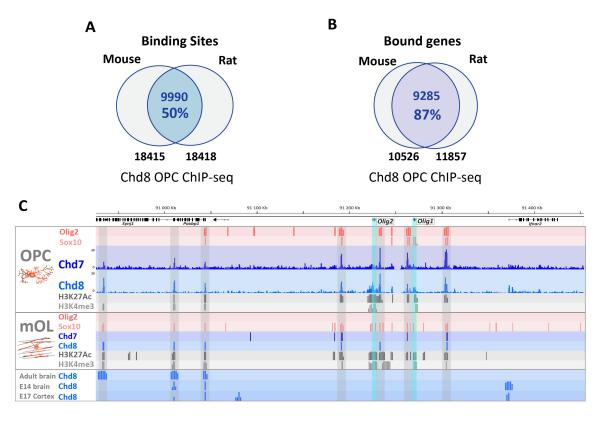
E – Heat maps of Chd7 bound gene expression levels in oligodendroglia according to Zhang et al., RNA-seq dataset (GSE52564).

Fig. S4. (related to Figure 3)

A – Graphic representing Chd8⁺ cells showing increased number of Chd8⁺ cells in/around lesion.
A1, Chd8 immunofluorescence levels presented in green-blue gradient color code showing high levels of Chd8 in cells in/around the lesion.

B – Immunofluorescence showing the lesion area at 2 dpi (dotted line) by the absence of CC1⁺ OLs where PDGFR α^+ -OPCs express strong levels of Chd8. Comparison of Chd8 expression found in OPCs present at a distance from the lesion (B2) and OPCs inside lesions (B1). Arrow heads represent PDGFR α^+ -OPCs. Asterisk indicate Chd8 cells not expressing oligodendroglial markers, most likely corresponding to microglial/macrophage cells.

C – Immunofluorescence showing Chd8 expression in corpus callosum of control adult mouse. C1 is a higher magnification of the inset in C showing Chd8 expression in adult Olig1⁺-OPCs (arrows) and low Chd8 expression in CC1⁺-OLs (grey arrows)


D – Immunofluorescence showing the lesion area and remyelinating area at 4 dpi (dotted line) by the presence of iOLs (CC1^{high}/Olig1⁻) where OPCs (Olig1⁺ cells) and iOLs express strong levels of Chd8. D1 is a higher magnification of the inset in D, in remyelinating area. Arrows represent iOLs, arrow heads represent OPCs. Asterisk indicate Chd8 cells not expressing oligodendroglial markers, most likely corresponding to microglial/macrophage cells.

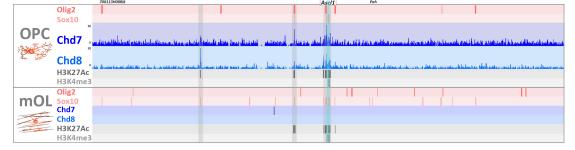
E – Graphic representing the density of Chd8^{high} expressing cells in the corpus callosum at 4 dpi.
Note that the lesion core devoid of OLs has been excluded from the representation. Ctx, cortex;

Stri, striatum; CC, corpus callosum. Scale bar, 20µm.

F – Barplot representing the gene ontology (GO) analysis of the Chd7/Chd8- or Chd8-only bound genes.

G – Venn diagram depicting the overlap between ASD risk-genes and regulated genes in *Chd7iKO* OPCs.

Fig. S5. (related to Figure 3)

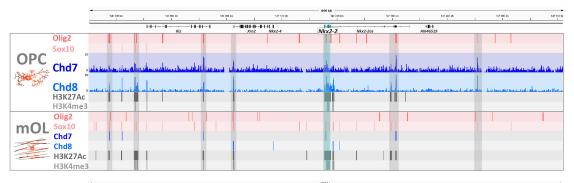

A – Venn diagrams depicting the overlap of Chd8 binding sites found in MACS-sorted OPCs from P7 mice and cultured OPCs from neonatal rats (Zhao et al. Dev Cell, on-line).

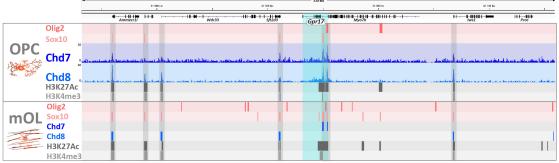
B – Venn diagrams depicting the overlap of Chd8 bound genes found in MACS-sorted OPCs from P7 mice and cultured OPCs from neonatal rats (Zhao et al. Dev Cell, on-line), showing a large number of common genes.

C – Schematic representation from IGV genome browser of *Olig1* and *Olig2* integrating ChIP-seq data for main oligodendroglial TFs (Olig2 and Sox10), chromatin remodeling factors (Chd7, Chd8) and active epigenetic marks (H3K27ac and H3K4me3) in OPCs and OLs, together with Chd8 ChIP-data from embryon (E14.5) or adult brain (Katayama et al., Nature 2016) or E17.5 frontal or occipital cortex (GSE57369, Cotney et al., Nat. Commun. 2015).

		•					245								
		19 860 KG	23 000 Hz	23 100 MD	23 120 MB	11 140 MD	78 160 MD	73 100 kb	79 200 K	· .	79 220 10	79 240 50	T9 200 HD		19 280 KD
		Ankrd54	+++++++++ Eif31	• • •••	l → II + III I → II Micall1	Polr2f	Sox10	• • • • •	Gm10863			Pick1	Slc16a8	Balap212	+ Pla2
	Olig2														
	Sox10														
OPC		10							1 1						
. * 6	Chd7	a sheet best market	and the states are	محالم أأناف ومعاقلة	ويرقد فرويتهم الرومة	المريد الالمايين	ALL MARKEN	يعليه فليطير وسي	AL AL BURNE	Lune but	البية يعاديه		مطرب بمر البلاطي	ويريع الأرابية	
	1	10									1				
they start	Chd8	. 4	. <u>.</u> .			1.1.1	h h		A						
	H3K27Ac	العام مصنعية «. ا	. Alexandra and a second second	ad and a district a second	have defined in the sec	A SALAR AND A S		A BLACK AND			1.11.28.84.1	فالساب مداخب	iste Badilaan Lik		
	H3K4me3		_			- 1 I									
	Olig2														
mOL	Sox10														
	Chd7														
	Chd8														
	H3K27Ac														
	H3K4me	3													

		*									- 92	7 Kb —										
			90 900 Hz		\$1 000 kb	1	91 100 kb		91 200 ND			91 300 kB		91-000 Hz		91 508 kb		91 890 M			91 703 65	
		+ HII Evalc		H 4I III 11 Synj1	III IIIII Paxbp1	•••			0	lig2	Olia	1		⊢ Ifnar2	H A93	HHHH 0006K02Rik	Ifngr2	₩₩↓ Dnajc28	48888	Son	Cryzl1	+
	Olig2										T	- 1										
	Sox10																					
19 Alexandre	Chd7 👷	مى ئەتىرىما مەتتىم				have a dated	فاربده فقالت	<u>ماريدانيا. رويد م</u>	<u>alun</u>	سابيه	.h.	<u>.</u> l	Bekalin Be, your		an a	Insee	يعايد أدلسته		unusta.i	in an and a	Labora	بلعد
	Chd8 . H3K27Ac H3K4me3	يە يەرىپىرىمە	n har dar a shaar			L	F.a., also I outh.				11		k	lleannet	يلم ديون				4. 4.4. 4.4.4			
mOL	Olig2 Sox10			1														1				
Æ	Chd7 Chd8			1		1			1		1											ł
	H3K27Ac H3K4me3								1													

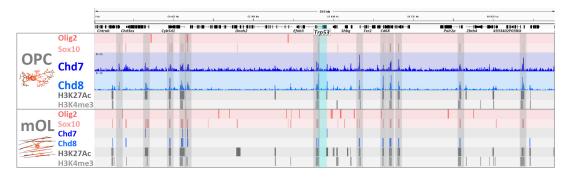



		-						- 7	16 kb							
			74 900 Ma		73 000 Har	79.1	10 Hz		70.20	0 Mar		1.00146	78 430 km		78 500 Ma	
				Gm6116	Chic2	H Gsx2	Gm19583	P	dgfra							
	Olig2							Ĩ								
	Sox10															
OPC	30															
	Chd7	ممانات والدرواقل	وسرم استقرق بالاستعباريك	and state and the state of	وألابتها والعالم ومعاولا	و و معد الله الله الله الله الله الله الله الل	and the second second	ц.,	يغر المعالري	hand	وغبة وهدر بعبة أذابر كالاختيام	أنار المطار والأربي مأها	ALL BRIDE LEWIS COMPANY	ويعتارون وبالاستاكر وال	hanne	14.
A Contraction	30							1				11				
£ 38	Chd8 ,	a la alcono des senta ha			an and the street star	ورجع والمتحافظ والمتحافظ والمتحا		1		- and	. Inc		- familiar at an at an at the	والمتحجم أرواره	antil attac	
	H3K27Ac															
	H3K4me3															
	Olig2															
mOL	Sox10		L			1.1			1 I I I							
	Chd7											1				
30-	Chd8															
1	H3K27Ac									1						
	H3K4me3				i i			11								

		-								588 kb								
			9	799 F2		50 000 HL			56 900	•			57 000 ND			57 100 kb		57 200 s
		Lingo1					Odf3l1	Cspg	4	Snx33	+	Snupn		Ptpn9	Gm10658	Sin3a	H HHE H Man2c1	1700041C23Rik
	Olig2																	
	Sox10																	
OPC	Chd7	un ditate un	abile terretinentin d	الروبية والمعرفة والمعرفة	فالمأمر أنمارها	والمتعاوية والمتعاد	مادا هر استا الاروم	lalle		الدائقسيا	ահո	وريق واللاد و	وحادرانا		La suel.	بالمرداد وأربيه الطرر		II
	Chd8。		ter and the second second	-					4									le se
	H3K27Ac											1					TI	
	H3K4me3																1 1	
	Olig2																	
mOL	Sox10													1.1.1			1 1	
	Chd7																	
	Chd8									11			1		- II		1 1	
	H3K27Ac										1		Î	1	Ü		11	1
	H3K4me3						-				1		1	-	1		1 1	i i

Fig. S6. (related to Figure 3)

Schematic representation from IGV genome browser of selected oligodendroglial regulators and OPC-marker genes (i.e. *Sox10, Olig2, Ascl1, Pdgfra, Cspg4*) integrating ChIP-seq data for main oligodendroglial TFs (Olig2 and Sox10), chromatin remodeling factors (Chd7, Chd8) and active epigenetic marks (H3K27ac and H3K4me3) in OPCs and OLs.


		4						- 440 kb -							•
		30 000 kb		39 900 kb			37.0	00 kb			27 -	00 ND		37 200 HL	
		H2-M10.6	Trim26 Trim	10 Trim31		HHH H∎ Rnf39	← H # 2410137M14Rik	Mog		Gabbr1	Olfr90	Olfr92	Olfr93	HM Ubd	Olfr96
	Olig2														
	Sox10														
	Chd7	a.duala	al constant of the		المسر الأخط عا	الملعم			بالحسير	ألمانك إرباط	disation.	and description	ante de la companya d	A state of a state of the	
	Chd8	lenten est annet an An Mann		nan in Arabatisti asta	a sada bi a kilan a		Real Artistan and States	here and	المسمد			a a alla a la a la a a a		an and a star solution of the second seco	مر د الباسي هيد.
	H3K4me3					-11									
	Olig2					11									
mOL	Sox10														
	Chd7														
	Chd8					_11									
	H3K27Ac					-11									
	H3K4me3														

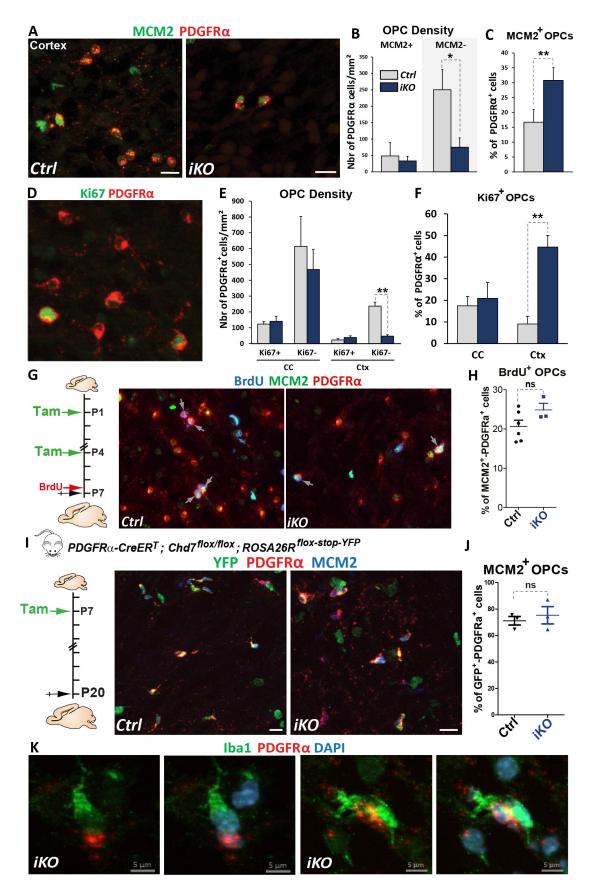
		-				1 152 kb						•
		23 000	HD I	79 200 Ho 1	73 400 kb	1	79 500 kb		79 800 ko		50 800 Mb	
		Nos2	(1)100 Ksr1	Wsb1	<u> ₩</u>	Nf1 Omg	₩₩₩₩ ₩ ••• Rab11fij	04 Mir1	 93a	Utp5	Suz12 Crit	f3
	Olig2											
	Sox10											
OPC	Chd7	Internal and the state of the	and tour table out it	يتليا واصل وتصبيه ويستعد	n an	annahlalada (nan	-	السيبي	مريم بيان بعاليا <u>مرة التحمر المرتم</u>	en j _a ndersen <mark>heist in sek</mark> t	La Manand	
	H3K27Ac	le.	e					have of	katan kanang kanang k		en haran arang	-
	H3K4me3											
	Olig2											
mOL	Sox10											
	Chd7											
	Chd8											
	H3K27Ac											
	H3K4me3											

		•								— 686 kb —						
			0 900 MD		30 700 Hb	1	00 000 K2	, ,	1	30 900 Hb	1	91.000 Hb	· · · · ·	21 100 kb	31 200 Hz	
		HI H III)	₩ ++ () Upk1a	Rbm42	1 I IIII 2200002J24Rik	Sbsn	Krtdap	∎H Ffar2	€ €1110 Ffar3	Mag	Hamp	Fam187b	Fxyd5 Lgi4	↓↓ ↓ ↓ ↓ Hpn Gramd1		_
	Olig2															
	Sox10															
OPC	Chd7	°	بالتحصيات		بالألم عداون والقائد	الم الم		Landing	un an	and at the sector of the	. James de Maria	a anti di Li cant a	والمتعادية والمتعادية	kons dantik karatèn ku		فمينابل بالبيعة
	H3K27Ac		ماريسه ال		ande de child	an biti tube.	هي المانية. يتم أحم	a de militar e ma	الىلەر فى ئالەرتىيىلىرىيىل	4			and a second second second	فالت فأتحم بالمعاقد متع	ha sead a de actor cata	b
	H3K4me3			_		<u> </u>										
	Olig2															
mOL	Sox10															
	Chd7															
	Chd8															
	H3K27Ac			- 1 1												
	H3K4me3	3														

Fig. S7. (related to Figure 3)

Schematic representation from IGV genome browser of oligodendroglial regulators and myelin protein genes (i.e. *Nkx2-2, Gpr17, Mog, Omg, Mag*) integrating ChIP-seq data for main oligodendroglial TFs (Olig2 and Sox10), chromatin remodeling factors (Chd7, Chd8) and active epigenetic marks (H3K27ac and H3K4me3) in OPCs and OLs.

		-	SAN TOP NO				— 686 Kb —	1/28 COE Mp	145 100 Mb	
		41500140			800 MJ	144 800 ND			1.15 106.56	
			Ano1		₩ Fgf3	Fgf15	Ccnd1			Tpcn2
	Olig2									
	Sox10									
OPC		8-19								1
OPC	Chd7	يعبأه فيعلقه فيستقريه	And and and a state of the stat	والمتلك التقارير فالمعاد	بمناصب المتحد فمالقاه	ad a second barren	hund	And and a state of the state of		and the second state in the second state in the second state state
1300 57		P-04	1							1
the sport	Chd8		A CONTRACTOR OF CONTRACTOR			and the second second		la martine de la companya de la comp	had a second second	is the same labely service where a star and
	H3K27Ac									
	H3K4me3									
	Olig2									
mOL	Sox10									
	Chd7									
	Chd8									
	H3K27Ac								11	1
	H3K4me3									


		•			617 kb -			
		60 100 ko	69 209 Hb	10 100 k	e I	68 480 kb	60 500 Hb	63 630 MB
			H+	Rhobtb1	Cdk1		(Ank3
	Olig2				CUAL			
	Sox10							
OPC	Chd7	e og nært konstruktion after skrivelige for a konstruktion og som skrivelige som som skrivelige som skrivelige som s		n	nana, shadh kausa kala	na natio di su di su su su di di su su su di su	land and a cost of the	an water correction with the state of the state of the state of the
	Chd8 H3K27Ac H3K4me3	arlan	sameter she	n - Barathinana araanad saka daa	ana ani di ana ani d	and discussion determined all constant	analistic contraction in all the	ut va nashti kana akatir it ta maraka tinatar.
	Olig2		_					
mOL	Sox10					1		
	Chd7							
5	Chd8							
T	H3K27Ac							
	H3K4me3							

		-	0 #00 Ho		2 955 kb 0 000 kb		10 900 kg
			Car8	(Rab2a	Chd7	+ + + + + + + + + + + + + + + + + + +	
	Olig2	8430436N08Rik	Car8	RabZa	Chd7	Clvs1 Asph 49.	30412C18Rik
	Sox10						1
		p iil		L .			
OPC	Chd7	Instant on a lambas, Judica I.J. and and	يحرج وربين أفالت والمؤر المتحصية ومحتقص ور	In Allen and the	بالمباذلة وماتحة ومناوياتهم والمحيا ومراجله وأور	and the state of the local design of the state of the sta	Although an advantage and a place that the second second
	Chd8	2.04					
	H3K27Ac				- <u>+</u> +++		
	H3K4me3						
	Olig2						
mOL	Sox10						
IIIOL	Chd7						
F	Chd8						
4	H3K27Ac						
	H3K4me3						

		•			294 kb				
		52 100 M		10 200 ko			52 200 ND		
		Hnrnpc	1	Supt16	Chd8	H-++++B		Sall2	Olfr1513
	Olig2				cnus				
OPC	Sox10	(F- 10)							
	Chd7	Lande, In the suite stars	da waa adaa ah ka	والاستنادة وفلون فعاسيه و	Land areas to surveillar sites.	يتألفك بتسادر بسرة المتلك	amand were utions		a dala kaominina dia 1
	Chd8	(F. E)	<u>k</u>		1				
	H3K27Ac H3K4me3								
	Olig2								
mOL	Sox10 Chd7								
	Chd8				1				
	H3K27Ac								
	H3K4me3								

Fig. S8. (related to Figure 3)

Schematic representation from IGV genome browser of selected genes (i.e. *Trp53, Ccnd1, Cdk1, Chd7, Chd8*) integrating ChIP-seq data for main oligodendroglial TFs (Olig2 and Sox10), chromatin remodeling factors (Chd7, Chd8) and active epigenetic marks (H3K27ac and H3K4me3) in OPCs and OLs.

Fig. S9. (related to Figure 4 & 5)

A – Immunostaining of MCM2 and PDGFR α in the cortex of P7 *Ctrl* and *iKO* mice. Scale bar: 10 μ m.

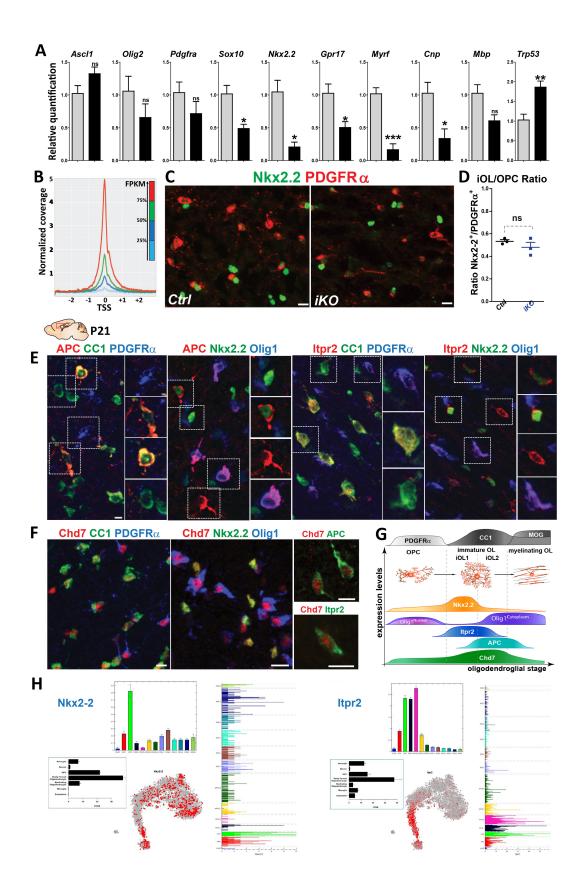
B – Quantification of MCM2⁺ and MCM2⁻ OPCs (PDGFR α^+) (nb/mm²) in the cortex of P7 *Ctrl* and *iKO* mice. Data are presented as mean ± s.e.m. (MCM2⁺, n = 3 *Ctrl* and 3 *iKO*, P = 0.21, t = 1.51; MCM2⁻, n = 3 *Ctrl* and 3 *iKO*, P = 0.017, t = 3.96; two-tailed unpaired Student's t test).

C – Quantification of MCM2⁺ OPCs as a percentage of total PDGFR α^+ cells in the cortex of P7 *Ctrl* and *iKO* mice. Data are presented as mean ± s.e.m. (n= 3 *Ctrl* and 3 *iKO*, P = 0.003, t = 6.37; two-tailed unpaired Student's t test).

D – Immunostaining of Ki67 and PDGFR α in the corpus callosum of P7 mice. Scale bar: 10 μ m.

E – Quantification of Ki67⁺ and Ki67⁻ OPCs (PDGFR α^+) (nb/mm²) in the corpus callosum (CC) and cortex (Ctx) of P7 *Ctrl* and *iKO* mice. Data are presented as mean ± s.e.m. (CC, Ki67⁺, n = 3 *Ctrl* and 3 *iKO*, P = 0.445, t = 0.86; Ki67⁻, n = 3 *Ctrl* and 4 *iKO*, P = 0.271, t = 1.24; Ctx, Ki67⁺, n = 3 *Ctrl* and 3 *iKO*, P = 0.113, t = 2.02; Ki67⁻, n = 3 *Ctrl* and 3 *iKO*, P < 0.001, t = 12.60; two-tailed unpaired Student's t test).

 $F - Quantification of Ki67^+ OPCs as a percentage of total PDGFRa^+ cells in the corpus callosum (CC) and cortex (Ctx) of P7$ *Ctrl*and*iKO*mice. Data are presented as mean ± s.e.m. (CC, n= 3*Ctrl*and 4*iKO*, P = 0.50, t = 0.72; Ctx, n = 3*Ctrl*and 3*iKO*, P < 0.001, t = 9.48; two-tailed unpaired Student's t test).


G – Left, Diagram representing tamoxifen (Tam) administration to P1 and P4 *Ctrl* and *iKO* mice followed by BrdU injection 1 hour before perfusion at P7. Right, Immunostaining of MCM2, BrdU and PDGFR α in the corpus callosum of P7 *Ctrl* and *iKO* mice. Arrows show BrdU⁺-MCM2⁺- PDGFR α ⁺ cells. Scale bar: 10 µm.

H – Quantification of BrdU⁺ cells as a percentage of total MCM2⁺/PDGFR α^+ cells in the CC of P7 *Ctrl* and *iKO* mice. Data are presented as mean ± s.e.m. (n = 6 *Ctrl* and 3 *iKO*, P = 0.14, t = 1.65; two-tailed unpaired Student's t test).

I – Left, Diagram representing tamoxifen (Tam) administration to P7 *Ctrl* and *iKO* YFP-reporter mice followed by analysis at P20. Right, Immunostaining of MCM2, GFP and PDGFR α in the corpus callosum of P20 *Ctrl* and *iKO* mice. Scale bar: 10 μ m.

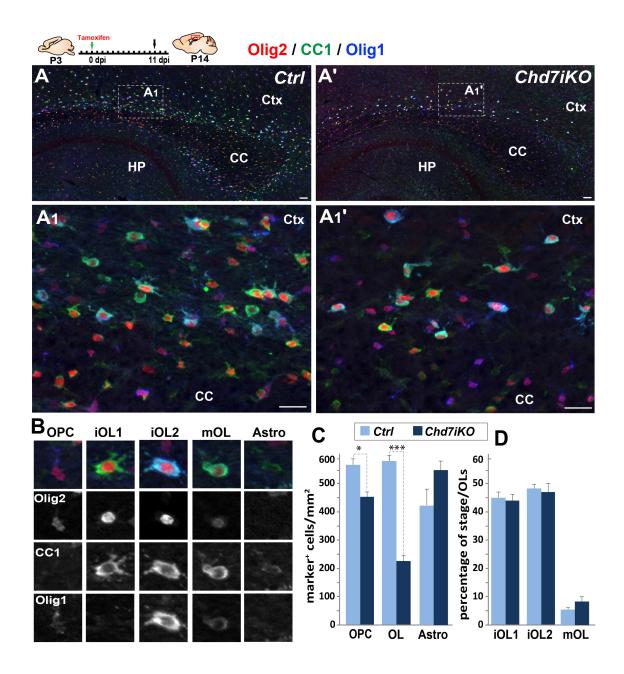
J – Quantification of MCM2⁺ cells as a percentage of total GFP⁺/PDGFR α^+ cells in the CC of P20 *Ctrl* and *iKO* mice. Data are presented as mean ± s.e.m. (n = 3 *Ctrl* and 3 *iKO*, P = 0.6, t = 0.57; two-tailed unpaired Student's t test). *P < 0.05, **P < 0.01 and ***P < 0.001.

K – Immunostaining of Iba1 and PDGFR α in the cortex of P7 *Chd7cKO* mouse showing Iba1⁺ microglia in close contact with PDGFR α^+ OPCs.

Fig. S10. (related to Figure 6)

A – RT-qPCR analysis of OL differentiation- and maturation-related genes in O4⁺ cells isolated from P7 *Ctrl* and *Chd7iKO (iKO)* mice. Normalization with β -actin. Data are presented as mean \pm s.e.m. (n = 4 Controls and 4 *iKO*; *Ascl1*, P = 0.126, t = 1.83; *Olig2*, P = 0.266, t = 1.25; *PDGFRa*, P = 0.251, t = 1.30; *Sox10*, P = 0.022, t = 3.61; *Nkx2.2*, P = 0.012, t = 3.825; *Gpr17*, P = 0.013, t = 3.29; *Myrf*, P < 0.001, t = 6.47; *Cnp*, P = 0.035, t = 3.13; *Mbp*, P = 0.059, t = 2.42; two-tailed unpaired Student's t test).

B – Graph showing the ATAC signal normalized coverage in the transcription start site (TSS) of genes differentially expressed in OPCs from the 25% of less expressed genes (blue) to the 25% most expressed genes (red).

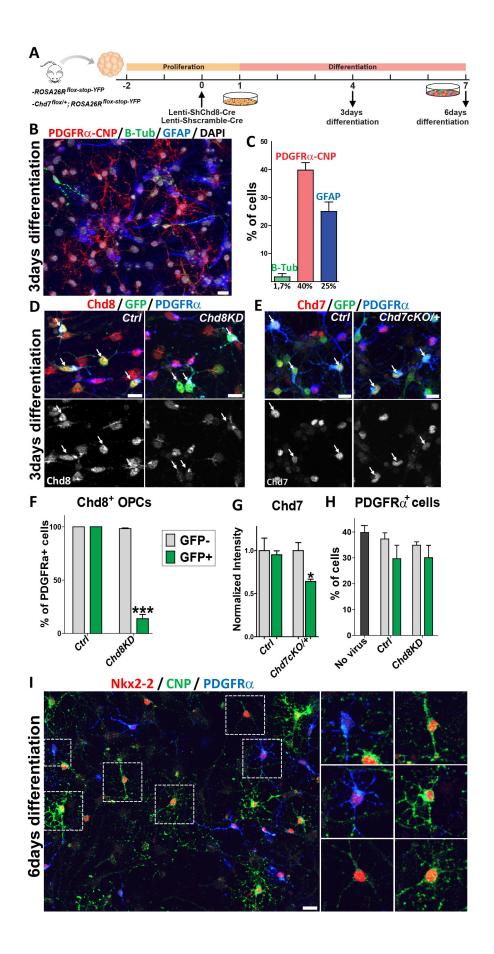

C – Immunostaining of PDGFR α and Nkx2.2 in the corpus callosum of P7 *Ctrl* and *iKO* mice. Scale bar: 10 μ m.

D – Ratio between Nkx2.2⁺ iOLs and PDGFR α^+ OPCs in the corpus callosum of P7 *Ctrl* and *iKO* mice. Data are presented as mean ± s.e.m. (n = 3 *Ctrl* and 3 *iKO*, P = 0.31, t = 1.16; two-tailed unpaired Student's t test).

E - APC and Itpr2 expression during OL differentiation: APC and Itpr2 immunolabeling is compared with PDGFR α , Olig1, Nkx2.2 and CC1 expression in the corpus callosum of wild-type P21 mice. Scale bars: 10 μ m.

F – Immunostaining showing Chd7 expression and co-labeling of PDGFR α , Olig1, Nkx2.2, CC1, APC and Itpr2. Scale bar: 10 μ m.

G – Scheme representing expression levels of different stage specific-OL differentiation markers. H – RNA-seq expression data of Nkx2-2 and Itpr2 transcripts from Zang & Barres 2014 (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) and Marques & Castelo-Branco 2016 (http://linnarssonlab.org/oligodendrocytes/) databases.


Fig. S11. (related to Figure 6)

A – Top, diagram of the Tamoxifen (Tam) administration at P3 followed by tissue collecting at P14. Bottom, immunostaining of Olig2, APC/CC1 and Olig1 in the corpus callosum of P14 *Ctrl* (A) and Chd7*iKO* (*cKO*^{*OPC*}, A') mice. A2 and A2': High magnification of insets in A and A', respectively. Scale bar: 20 μ m.

B – Immunostaining of Olig2, APC/CC1 and Olig1 used to distinguish OL stages: OPCs (Olig1^{nuclear}) iOL1 (CC1^{high}-Olig1⁻), iOL2: (CC1^{high}-Olig1^{cyto}), mOLs(CC1⁺-Olig1^{cyto}) and astrocytes (CC1^{low}).

C - Quantification of OPCs (Olig1^{nuclear}), OL (CC1^{high}) and astrocytes (CC1^{low}) cells (nb/mm²) in P14 *Ctrl* and *cKO* mice. Data are presented as mean ± s.e.m.

D - Quantification of iOL1 (CC1^{high}-Olig1⁻), iOL2 (CC1^{high}-Olig1^{cyto}) and mOLs (CC1⁺-Olig1^{cyto}) as a percentage of total CC1⁺ OL lineage cells in P14 *Ctrl* and Chd7 cKO mice. Data are presented as mean \pm s.e.m.

Fig. S12. (related to Figure 7)

A – Diagram representing NSCs proliferation and differentiation following infection by a lentivirus expressing Cre and a scramble shRNA or a shRNA against Chd8 and followed by fixation after 3 or 6 days of differentiation.

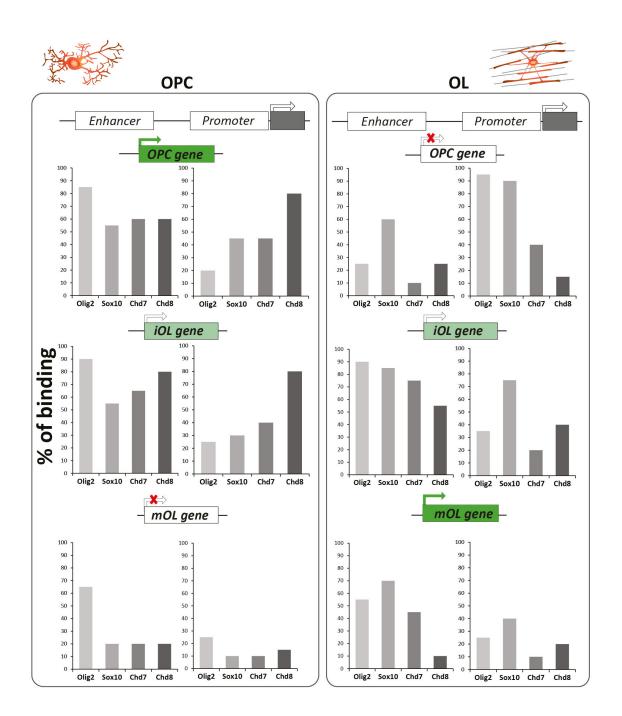
B – Immunostaining of PDGFR α -CNP, β -Tubulin and GFAP in WT cells after 3 days in differentiation medium. Scale bar: 10 μ m.

C – Quantification of β -Tubulin⁺, PDGFR α -CNP⁺ and GFAP⁺ cells as a percentage of total WT cells after 3 days in differentiation medium. Data are presented as mean ± s.e.m.

D – Immunostaining of Chd8 and PDGFR α together with GFP in *Ctrl* (*ROSA26R*^{stop-floxed-YFP} transduced with lentivirus expressing Cre and scramble shRNA) and *Chd8KD* (*ROSA26R*^{stop-floxed-YFP} transduced with lentivirus expressing Cre and shRNA against Chd8) cells after 3 days in differentiation medium. Arrows represent PDGFR α^+ -GFP $^+$ OPCs. Scale bar: 10 µm.

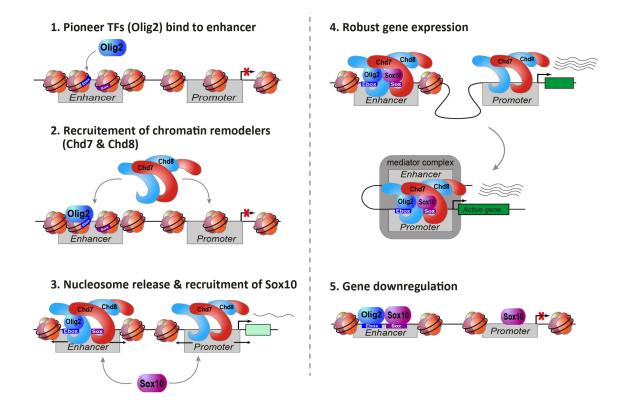
E – Immunostaining of Chd7 and PDGFR α together with GFP in *Ctrl* and *Chd7cKO/+* (*Chd7^{Flox/+}; ROSA26R^{stop-floxed-YFP}* transduced with lentivirus expressing Cre and scramble shRNA) cells after 3 days in differentiation medium. Arrows represent PDGFR α^+ -GFP⁺ OPCs. Scale bar: 10 µm.

F – Quantification of Chd8⁺ OPCs as a percentage of total PDGFR α^+ cells in *Ctrl* and *Chd8KD* cells after 3 days in differentiation medium. Data are presented as mean ± s.e.m. (n = 3; P < 0.001, t = 21.51; two-tailed unpaired Student's t test).

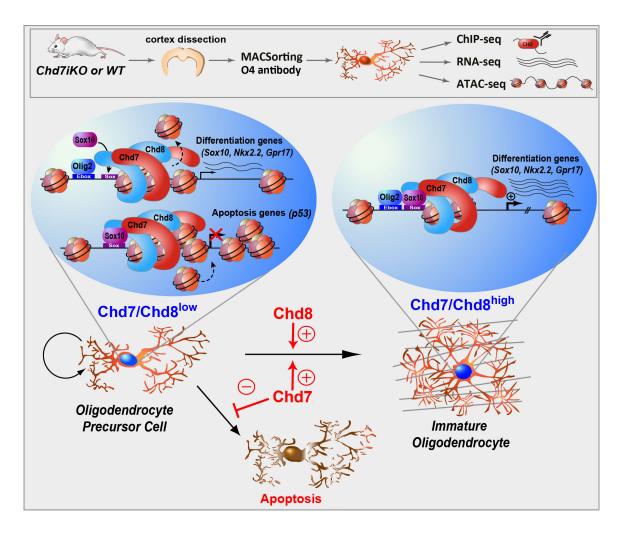

G – Quantification of normalized intensity of Chd7 staining in PDGFR α^+ cells in GFP+ or GFP- cells in Ctrl and Chd7cKO/+ conditions after 3 days in differentiation medium. Data are presented as mean ± s.e.m.

(n = 3; P = 0.0215, t = 3,662; two-tailed unpaired Student's t test).

H – Quantification of PDGFR α^+ -GFP⁺ cells as a percentage of total GFP⁺ and GFP⁻ cells after 3 days in differentiation medium in *WT*, *Ctrl*, *Chd8KD*, *Chd7cKO/+* and *Chd7cKO/+* ; *Chd8KD* conditions. Data are presented as mean ± s.e.m.


I – Immunostaining of Nkx2.2, CNP and PDGFR α in WT cells after 6 days in differentiation medium, showing Nkx2.2 *in vitro* expression during OPC differentiation. Scale bar: 10 μ m.

J – Immunostaining of Nkx2.2, β -Tubulin and PDGFR α in WT cells after 6 days in differentiation medium. Scale bar: 10 µm. *P < 0.05, **P < 0.01 and ***P < 0.001.


Fig. S13. (related to Figure 8)

Quantification of the percentage of binding of key transcription factors (Sox10, Olig2, Ascl1) and chromatin remodelers (Chd7, Chd8 and Brg1) in promoter and enhancer regions of each gene group (OPC, iOL and mOL) in OPCs and OLs. n=20 genes (list in Table S1).

Fig. S14. (related to Figure 8)

Model of transcriptional regulation of oligodendroglia stage-specific gene. (1) Olig2 binds first to enhancers of 'not yet expressed' genes, in agreement with the pioneer factor function of Olig2. (2) Chd7 and Chd8 are then recruited by Olig2 in promoter and/or enhancer regions of these genes. (3) They slide nucleosomes to open chromatin, resulting in Sox10 binding. (4) Binding of Chd7, Chd8, Olig2 and Sox10 together with the recruitment of mediator complex stabilize the promoter-enhancer loop and enhance a strong gene expression. (5) Remarkably, downregulated genes are still bound by Olig2 and Sox10 in OLs.

Fig. S15. Graphical abstract

- Genome-wide chromatin binding profile of Chd7 and Chd8 from in vivo OPCs
- Chd7 and Chd8 bind to the same promoter and enhancer regions of OPC differentiation-, proliferation- and survival-genes
- Chd7 induces OPC differentiation by chromatin-opening and gene activation of Sox10, Nkx2.2, Gpr17
- Chd7 promotes OPC survival by chromatin-closing and transcription repression of *p53*

OPC genes	iOL genes	mOL genes	
Pdgfra	Gpr17	Omg	
Cspg4	ltpr2	Арс	
Ascl1	Zfp488	Mobp	
ld2	Nkx2-2	Mag	
Ptprz1	Sirt2	Nkx6-2	
Serpine2	Myrf	Mog	
Fabp7	Cnp	Ermn	
Ednrb	Enpp6	Opalin	
Sdc3	Plp1	Trf	
Lhfpl3	Mbp	Car2	
Ccnd1	Neu4	Mal	
Ntm	Sox6	Gsn	
Sox11	Traf4	Aspa	
Zfp36l1	Slc1a1	Ndrg1	
Pcdh15	Frmd4a	Pdlim2	
Kcnip3	Mpzl1	Sepp1	
Matn4	Tns3	Cntn2	
Slc1a2	Kank1	Glul	
Tmem100	Col9a3	Grb14	
Gria3	Tril	Phgdh	

Table S1.

List of oligodendroglia stage-specific genes used for quantificating the binding of key transcription factors (Sox10, Olig2, Ascl1) and chromatin remodelers (Chd7, Chd8 and Brg1) to promoter and enhancer regions of each gene group (OPC, iOL and mOL) in OPCs and OLs.

Gene	Forward	Reverse	Reference
β-actin	TCCTAGCACCATGAAGATCAAGATC	CTGCTTGCTGATCCACATCTG	This paper
Chd7	CAGCAGCATCTGCATCATCT	GACCCAGGTGTCCAGAAGAG	This paper
p53	GGGGAGGAGCCAGGCCATCA	CCGCGCCATGGCCATCTACA	This paper
Cnp1	TCCACGAGTGCAAGACGCTATTCA	TGTAAGCATCAGCGGACACCATCT	This paper
МВР	CCAAGTTCACCCCTACTCCA	TAAGTCCCCGTTTCCTGTTG	Finzsch et al., J Cell Biol., 2010
Sox10	CAGGTGTGGCTCTGCCCACG	GTGTAGAGGGGCCGCTGGGA	Finzsch et al., J Cell Biol., 2010
Nkx2.2	TGGCCATGTACACGTTCTGA	CCGATGCTCAGGAGACGAAA	Shiimura et al., Int J Endocrinol., 2015
Gpr17	ACACAGTTGTCTGCCTGCAA	GCCGTAGTGGGTAGTTCTTG	Chen et al., Nat Neurosci., 2009
Myrf	CCTGTGTCCGTGGTACTGTG	TCACACAGGCGGTAGAAGTG	Hornig et al., PLoS Genet., 2013
Olig2	GAAGCAGATGACTGAGCCCGAG	CCCGTAGATCTCGCTCACCAG	Hornig et al., PLoS Genet., 2013
Pdgfra	ACAGAGACTGAGCGCTGACA	CTCGATGGTCTCGTCCTCTC	Hornig et al., PLoS Genet., 2013
Ascl1	ACTTGAACTCTATGGCGGGTT	CCAGTTGGTAAAGTCCAGCAG	Voronova et al., PLoS One., 2011

Table S2.

List of mouse primers used for RTqPCR.

Dataset S1 (separate Excel file)

A- Lists of genes bound by Chd7 in both OPCs and OLs, OPC-unique and OL-unique.

- B- Lists of upregulated and downregulated genes bound by Chd7.
- C- Lists of genes commonly or specifically bound by Chd7 and Chd8.
- D-list of ASD-risk genes bound by Chd7 or Chd8.

E-Gene ontology

Dataset S2 (separate Excel file)

Statistical analysis for each experiment with exact p-values, etc.

Supplemental references

- 1. Kang SH, Fukaya M, Yang JK, Rothstein JD, & Bergles DE (2010) NG2+ CNS Glial Progenitors Remain Committed to the Oligodendrocyte Lineage in Postnatal Life and following Neurodegeneration. *Neuron* 68(4):668-681.
- 2. Hurd EA, Poucher HK, Cheng K, Raphael Y, & Martin DM (2010) The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear. *Development* 137(18):3139-3150.
- 3. Srinivas S, et al. (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. *BMC Dev Biol* 1:4.
- 4. Yu Y, et al. (2013) Olig2 Targets Chromatin Remodelers to Enhancers to Initiate Oligodendrocyte Differentiation. *Cell* 152(1–2):248-261.
- 5. He D, et al. (2017) IncRNA Functional Networks in Oligodendrocytes Reveal Stage-Specific Myelination Control by an IncOL1/Suz12 Complex in the CNS. *Neuron* 93(2):362-378.
- 6. Zhang Y, *et al.* (2014) An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. *The Journal of Neuroscience* 34(36):11929-11947.
- 7. Marques S, et al. (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. *Science* 352(6291):1326-1329.
- 8. Ernst J, *et al.* (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. *Nature* 473(7345):43-49.