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Supporting	Materials	and	Methods	

Reagents	

Sodium	carbonate	(Fisher),	sodium	chloride	(Fisher),	sodium	iodide	(Sigma),	

sodium	chlorate	(J.T.	Baker	Chemical	Co),	Tween20	(Fisher),	bovine	serum	alumin	

(BSA)	(Sigma),	dithiothreitol	(DTT),	iodoacetamide	(Sigma).		

	

Antibodies	

The	following	antibodies	were	used:	anti-ATGL	(Cell	Signaling),	anti-AUP1	

(Proteintech	Group	Inc.),	anti-CGI-58/ABHD5	(Proteintech	Group	Inc.),	anti-GAPDH	

(Chemicon),	anti-GFP	(Clontech	Laboratories,	Inc.),	anti-Plin2/ADFP	(Novus	

Biologicals),	anti-P97	(Novus	Biologicals),	anti-UBXD8	(Proteintech	Group	Inc.).		

	

Plasmids	

The	GFP-tagged	Rab5	and	Rab7	constructs	were	kind	gifts	from	Suzanne	Pfeffer,	

Stanford	University,	Stanford,	CA.	Lipid-deficient	mutants	were	made	by	site-

directed	mutagenesis	with	the	following	primers:	Rab5(C212S,	C213S):	

GTGGATCCTTTAGTTACTAGAAGACTCATTCCTGGTTG	and	Rab7(C205S,	C207S):	

GTACCTATCAGGAACTGGAGCTTTCCGCTG.	The	C-terminally	GFP-tagged	DHRS3	

constructs	were	generated	by	PCR	amplification	of	the	indicated	residues	and	

ligated	into	the	HindIII/EcoRI	sites	of	the	pcDNA3.1-GFP-tag	construct	(1).	The	

cysteine	mutant	library	was	generated	by	site-directed	mutagenesis	of	the	

DHRS3(1-60)-GFP	construct	(General	Biosystems).		
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Cell	culture	and	transfection	

HEK293	cells	were	maintained	at	37°C	in	DMEM	(Mediatech)	supplemented	with	

10%	animal	serum	complex	(ASC)	(Gemini	Bio-Products)	using	standard	cell	culture	

techniques.	Cells	were	transfected	using	lipofectamine	LTX	(Roche)	according	to	

manufacturer’s	instructions.	In	brief,	DNA:PLUS	reagent:Lipofectamine	reagent	was	

mixed	in	a	1:1:3	ratio	in	DMEM.	After	a	5-min	incubation,	complexes	were	added	

directly	to	cells	in	complete	growth	medium.	LDs	were	inducted	with	200μM	oleic	

acid	in	complex	with	0.2%	bovine	serum	albumin	in	standard	medium	for	16	hours.		

	

Immunoblotting	

Proteins	were	separated	by	SDS-PAGE,	followed	by	wet-transfer	onto	PDF	

membranes.	Skimmed	milk	(5%)	in	PBS	with	0.1%	TritonX-100	was	used	to	block	

nonspecific	binding.	Antibodies	were	diluted	with	BSA	(4%)	with	sodium	azide	

[0.2%(w/v)].	IRDye	secondary	antibodies	(LiCor)	were	used	for	signal	detection	by	

Odyssey	imaging	(LiCor).	Band	intensities	were	quantified	by	densitometry	using	

Image	Studio	Lite	software	(LiCor).		

	

Negative	stain	transmission	electron	microscopy	

4uL	of	purified	LD	fractions	were	placed	on	a	300	mesh	Carbon/Formvar	coated	

copper	grid-grid.	Fixations	were	performed	with	glutaraldehyde	(1%	w/v),	

paraformaldehyde	(2%	w/v)	in	sodium	cacodylate	(NaCaC)	buffer	(0.1M,	pH	7.2).	

Contrasting	was	performed	with	a	9:1	mix	of	2%	methyl	cellulose	and	4%	uranyl	
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acetate	for	5min.	Specimens	were	examined	with	a	Gatan	Orius	10.7	megapixel	CCD	

camera	at	120kV.		

	

Cellular	fractionation		

As	described	in	ref	(2)	with	the	following	exceptions:	1)	each	fractionation	was	done	

with	2	sub-confluent	15cm	plates	of	HEK293	cells,	2)	LD	fractions	were	not	TCA	

precipitated,	and	3)	LD,	cytosolic,	and	membrane	fractions	were	loaded	by	the	

following	volume	ratios:	1:0.15:0.25.		

	

Solvent	accessibility	assays	

LDs	and	ER	fractions	were	purified	by	the	cellular	fractionation	method	described	

above	for	each	DHRS3(1-60)-GFP	cysteine	mutant.	The	PEGylation	assay	was	

adapted	from	(3).	The	ER	pellet	was	washed	three	times	in	mPEG	reaction	buffer	

(50mM	HEPEs-KOH,	pH	7.2,	250mM	sorbitol,	70mM	potassium	acetate,	5mM	

sodium	EGTA,	and	1.5mM	magnesium	acetate)	and	resuspended	in	500μL	of	mPEG	

reaction	buffer.	25μL	of	the	ER	pellet	fraction	was	used	in	a	final	reaction	volume	of	

40μL	with	1.0mM	tris(20carboxyelthyl)phosphine	(TCEP)	(Sigma).	ER	pellet	

samples	were	treated	with	or	without	Triton	X-100	(1%	v/v)	as	indicated.	25ug	TAG	

[measured	by	Serum	Triglyceride	Determination	Kit	(Sigma)]	was	used	for	each	LD	

reaction	at	a	final	concentration	of	0.5μg/μl	with	1.5mM	TCEP.	LD	samples	were	

treated	with	or	without	Triton	X-100	(1%	v/v)	and	SDS	(0.5%	v/v)	as	indicated.	ER	

pellet	and	LD	samples	were	treated	with	maleimide-PEG	(mPEG)	(2mM)	(Quanta	

Biodesign,	catalog	number	10406).	All	reactions	were	allowed	to	proceed	for	30min	
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at	room	temperature	and	quenched	with	10mM	dithiothreitol	(DTT)	on	ice	for	

10min.	5X	laemli	buffer	was	added	to	all	reactions	and	15μL	of	each	reaction	were	

run	on	SDS-PAGE	gels.		

	

TMT-MS	sample	preparation	

Samples	were	sequentially	reduced	and	alkylated	with	5mM	DTT	and	14mM	

iodoacetamide,	respectively.	Samples	were	sequentially	digested	with	LysC	(Wako)	

and	Trypsin	(Promega)	at	4M	and	1M	urea,	respectively.	All	dilutions	were	with	

100mM	ammonium	bicarbonate	(pH=8).	RapiGest	was	denatured	by	manufacturer’s	

instructions.	Sample	stagetip,	TMT	label	ligation,	were	done	as	described	in	(4).	

Experiment	1	was	mixed	at	equal	volume	ratios	for	MS/MS	analysis.	Experiments	2	

and	3	were	ratio	checked	and	remixed	as	described	in	(4)	for	MS/MS	analysis.		

	

Structural	modeling	of	predicted	TMDs	

None	of	the	predicted	TMDs	in	our	dataset	has	a	structure	deposited	in	the	RCSB	

PDB	database.	We	submitted	the	sequence	of	each	of	our	predicted	TMDs	to	the	

CABS-fold	server	(5)	to	perform	template-free	structure	predictions.	We	used	the	de	

novo	modeling	setting,	which	defines	a	large	range	for	the	acceptance	ratio	

parameter	in	the	Replica	Exchange	Monte	Carlo	scheme	and	therefore	allows	

sampling	of	a	larger	fraction	of	the	conformational	landscape.	We	took	the	densest	

cluster	of	each	prediction	run	as	a	representative	model	for	our	simulations.		

	

Molecular	dynamics	simulations	of	predicted	TMDs	
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Simulations	were	performed	with	GROMACS	2016.1	(6),	using	the	MARTINI	coarse-

grained	model	for	proteins	(7)	and	lipids	(8).	For	each	predicted	TMD,	the	

representative	model	produced	by	CABS	was	coarse-grained	using	the	martinize.py	

script	with	default	settings,	except	for	uncharged	termini,	and	energy	minimized	in	

vacuum	using	the	steepest	descent	algorithm	for	5,000	steps.	The	peptide	was	then	

placed	in	a	hexagonal	periodic	box	and	inserted	horizontally	at	the	mid-point	of	a	

POPC	bilayer	using	the	insane.py	script	(9).	The	system	was	then	solvated	and	

neutralized	(0.15M	of	sodium	and	chlorine	ions).	Anti-freeze	particles	replaced	10%	

of	the	water	molecules.	The	entire	system	was	energy	minimized	using	the	steepest	

descent	algorithm	for	10,000	steps	and	equilibrated	for	23	ns	applying	position	

restraints	on	the	peptide	backbone	beads.	All	simulations	were	run	in	the	

isothermal-isobaric	(NpT)	ensemble,	performed	at	310	K	to	maintain	the	POPC	

membrane	in	the	fluid	phase.	Temperature	was	controlled	using	the	V-rescale	

thermostat	with	a	coupling	constant	of	τt=1	ps,	while	pressure	was	semi-

isotropically	coupled	to	an	external	bath	of	ρ=1	bar	with	a	coupling	constant	of	

τp=12	ps	and	a	compressibility	of	3.0-4.bar-1	using	the	Parrinello-Rahman	barostat.	

We	used	a	timestep	of	10	fs	for	equilibration	and	20	fs	for	all	other	simulations.	The	

neighbor	list	was	updated	using	the	Verlet	neighbor	search	algorithm,	with	the	

neighbor	list	length	being	automatically	determined.	Lennard-Jones	(LJ)	and	

Coulomb	potentials	and	forces	were	cut	off	at	1.1	nm.	The	LJ	potential	was	shifted	to	

zero	at	the	cutoff	and	electrostatic	interactions	were	calculated	using	a	reaction-

field	potential	with	a	εRF=∞	and	a	relative	dielectric	constant	of	ε=15	nm.	
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Umbrella	sampling	simulations	

Starting	structures	for	the	umbrella	sampling	simulations	were	generated	by	pulling	

the	center	of	mass	(COM)	of	each	peptide	along	the	Z	direction	(v=0,0,1)	from	the	

bilayer	center	into	water	at	a	pulling	rate	of	0.06	nm/ns	with	a	force	constant	of	

1000	kJ.mol-1.nm-2	for	100	ns.	Additionally,	we	enforced	rotational	constraints	to	

keep	the	peptide	parallel	to	the	bilayer	plane	and	ensure	reliable	COM	

measurements.	Umbrella	sampling	was	performed	in	the	range	of	0	to	5	nm	of	

separation	along	the	membrane	normal	(z)	between	the	peptide	COM	and	the	

bilayer	COM.	Starting	configurations	were	selected	from	the	pulling	simulations	at	a	

spacing	of	0.1	nm,	resulting	in	51	windows	for	each	peptide.	Each	window	was	then	

equilibrated	for	10	ns,	removing	the	rotational	constraints	and	enforcing	position	

restraints	on	the	backbone	beads.	Umbrella	sampling	production	runs	were	then	

performed	on	each	window	for	250	ns,	with	a	harmonic	restraint	on	the	distance	

between	COM	of	the	peptide	and	the	bilayer	COM	in	the	z	dimension	with	a	force	of	

1000	kJ.mol-1.nm-2.	Energy	profiles	were	calculated	using	weighted	histogram	

analysis	method	(WHAM)	(10).	

Unrestrained	simulations	and	solvent	accessible	surface	area	calculations	

To	calculate	solvent	accessible	surface	areas	for	each	residue,	we	simulated	each	

peptide	without	any	restraints	for	1	μs.	The	starting	structure	was	taken	from	the	

last	frame	of	the	umbrella	sampling	production	runs.	Solvent	accessible	surface	

areas	(SASA)	were	calculated	for	each	coarse-grained	bead	using	the	Shrake-Rupley	

algorithm	implemented	in	the	MDTraj	(11)	and	a	probe	radius	of	0.23	nm	(diameter	

of	a	standard	MARTINI	water	molecule).	Accessibility	values	per	bead	were	
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averaged	after	discarding	the	first	200	ns	of	simulation	and	then	summed	and	

averaged	over	all	side-chain	beads	for	each	individual	residue	(except	alanine	and	

glycine	that	are	represented	only	by	one	backbone	bead).	
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Fitting Mixtures of Compositional Data

1 Overview

From our exploratory analysis, the protein-level data seem to fall into three categories, each
presenting a different pattern in the composition. Mixture model is often used to capture
data of this kind, where the marginal density of each observation is assumed to be a mixture
of the densities for each class. Due to the special structure of compositional data, including
nonnegative coordinate values and unit sum, there are some common classes of distributions
for choice. We decide to use Dirichlet distribution for each class and will discuss other options
later.

Once we determine the parametric model, we will fit the model and estimate the param-
eters based on our data. A constrained Expectation-Maximization (EM) algorithm is used,
given some specific structure assumed for the mixture model.

After estimation, we want to make proper statistical inference for the discoveries to be
made. We focus on the criterion of false discovery rate (FDR) control. The empirical bayes
framework provides a foundation for valid inference based on estimated parameters. Details
will be presented in the following sections.

2 Modeling

Dirichlet Distribution Parameterized by positive parameters α = (α1, . . . , αJ), the den-
sity of Dirichlet distribution at x = (x1, . . . , xJ)

f(x;α) =
1

B(α)

J∏
j=1

x
αj−1
j ,

where the beta function B(α) =
∏J

j=1 Γ(αj)/Γ
(∑J

j=1 αj

)
. Notice that the density intro-

duces strong independence among the coordinates by taking the product form. This implies
some special properties of the family.

Proposition 1 (Almost Independence) Dirichlet distribution can be derived from in-
dependent Gamma distributions. Given J independent Gamma random variables Yj ∼
Gamma(αj, θ), j = 1, . . . , J , we have

X = (X1, . . . , XJ) =

(
Y1
S
, . . . ,

YJ
S

)
1



follows Dirichlet distribution with parameter α = (α1, . . . , αJ), where S =
∑J

j=1 Yj.

Proposition 2 (Convex Contours [Ait86]) If αj > 1, j = 1, . . . , J , then the isoprobabil-
ity contours of Dirichlet distribution must be convex.

Other Choices of Distribution Logistic normal distribution is also a common choice of
model for compositional data. It assumes the log-ratio of the data follows a multivariate
normal distribution. The number of free parameters - J for Dirichlet and (J − 1)(J +
2)/2 for logistic normal - seems to suggest that logistic normal is a more flexible class.
Indeed, it has been suggested [Ait86] that logistic normal is generally a preferred class for
compositional data due to its flexibility and ability to model non-convex pattern. For more
details about those distributions and their comparison, refer to [Ait86]. Nevertheless, the
choice is still problem-dependent. Here, for example, Dirichlet distribution is a reasonable
choice considering the following reasons.

• Mixture modeling provides another layer of flexibility on top of single Dirichlet. It is
thus able to express more complex data patterns.

• From the scatterplot, each component does seem to satisfy the convexity constraint.

• The inherent independence structure is indeed aligned with the data normalization
process. We normalized the data in a similar way as in Proposition 1 to get to the
compositional data we start with.

We also looked at the scatterplot of the log-ratio transformed data. The clouds of data
tend to collapse together and it loses clear cluster separation. For the reasons above, we did
not pursue logistic normal further and use Dirichlet as our base class instead.

Mixture Model When we model the population using mixture model with K components
(K = 3 in our analysis), the density is then assumed to be a weighted average of the densities
of the base classes. The generative model assumes a latent variable z ∈ {1, . . . , K}, and the
weights π = (π1, . . . , πK) are the prior distribution of z. In our case, given z = k, the
conditional probability

p(x|z = k) = f(x;α(k))

being the Dirichlet density for class k. When we use superscript to denote each mixture
component, the marginal (overall) density has the form

g(x;α(1), . . . ,α(K)) =
K∑
k=1

πkf(x;α(k)).

For more coverage of mixture models, see [MP04].

Special Considerations There are some other information available that enables us to
improve statistical efficiency of the inference.
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Center Component Recall that the normalization process implies the existence of
a center component, of which the observed data in that component have roughly same
coordinates. In fact, such structure can be characterized by equivalent parameters in the
Dirichlet density. In other words, the distribution of the center component has only one free
parameter. Without loss of generality, we assume the first component is the center one, i.e.
α
(1)
1 = · · · = α

(1)
J .

Known Proteins Several proteins such as AUP1, FAF2 have been well studied and
already identified as MIPs. For such proteins, the marginal density is assume to only take
the density from the center component f(x;α(1)).

Therefore, we are able to write out the (log-)likelihood function of the observed data in
terms of Dirichlet parameters

`(α(1), . . . ,α(K),π) =
∑
i∈REF

log f
(
xi;α

(1)
)

+
∑
i/∈REF

log

(
K∑
k=1

πkf(xi;α
(k))

)
, (1)

where REF is the collection of proteins already identified as MIPs.

3 Parameter Estimation

Expectation-Maximization (EM) [DLR77] algorithm is a standard method for estimating
parameters in mixture models. If we suppress all the parameters into θ, including the
Dirichlet parameters α and prior parameters π, the EM in our case iterates through the
following steps until convergence:

1. E-step: for i /∈ REF, compute posterior probabilities

Q
(t)
i (k) = p(k|xi; θ̂(t)), k = 1, . . . , K.

For i ∈ REF, set Q
(t)
i (1) = 1 and Q

(t)
i (k) = 0, k = 2, . . . , K.

2. M-step:

θ̂(t+1) = argmax
θ∈Θ

n∑
i=1

K∑
k=1

Q
(t)
i (k) log f(xi;θk),

π̂
(t+1)
k =

∑n
i=1Q

(t)
i (k)∑n

i=1

∑K
j=1Q

(t)
i (j)

, k = 1, . . . , K,

where Θ is a parameter space that also takes into account the range of Dirichlet
parameters and the special constraint on the center component.
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3. Exit if the change of value of the likelihood function (1) from last step is below some
threshold ε > 0.

It can be shown that the likelihood function (1) increases with iteration t. The argument is
similar to that in [FHT01] and we don’t expand it here. That being said, if the likelihood
function is bounded, the algorithm will terminate in finite steps. Also, since EM algorithm
subjects to local suboptimal, we run multiple times with random initialization, and use the
one with the maximum log-likelihood value.

4 Multiple Experiments

We have collected data for M = 3 experiments, and would like to aggregate the results to
improve the quality of inference. According to the setup of experiments, we do not assume
uniform parameters across experiments but assume independence of the observations given
the class label. Let x1, . . . ,xM be observed values of the same protein in the M experiments.
The assumption means

p(x1, . . . ,xM |z = k) =
M∏
m=1

p(xm|z = k).

Using Bayes’ formula, we compute posterior distribution of the class variable

p(z = k|x1, . . . ,xM) =
p(z = k,x1, . . . ,xM)

p(x1, . . . ,xM)
∝ πk ·

M∏
m=1

f(xm;α(k)
m ),

where α
(k)
m is the Dirichlet parameter for the kth component of experiment m, and πk the

mixing proportions for the kth class. With multiple experiments, the above aggregation
enables us to have higher confidence about assigning one protein to a particular class than
with single experiment.

The estimates obtained from last section are then plugged into the formula, i.e. p̂(z =

k|x1, . . . ,xM) ∝ π̂k ·
∏M

m=1 f(xm; α̂
(k)
m ). Here π̂k can be obtained via a pooled estimator

π̂k = (1/M)
∑M

m=1 π̂k,m, where each π̂k,m is experiment-specific estimate of prior of class k.

5 False Discovery Rate and Empirical Bayes

With the soft assignment rules above, we are also able to obtain an estimate of the false
discovery rate (FDR) when the class of interest is in the center. Formally, if we have N null
hypotheses H0 = {H01, . . . , H0N} to test and a decision rule D, FDR is defined as

FDR = E
[

number of false positives

max(total number of discoveries, 1)

]
= E

[
|R ∩ H0|

max(|R|, 1)

]
,

where R is the set of rejected hypotheses or discoveries.
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Local FDR Under the framework of mixture model, it is convenient to talk about local
FDR [ETST01] [ET02], a localized version of the traditional ”tail area” FDR. When we have
specified a set of classes C0 as null - in our application, C0 = {2, 3}, the non-central classes -
local FDR is defined as

fdr(x) = P (z ∈ C0|x) =

∑
k∈C0 πkfk(x)

f(x)
,

where fk is the density function of class k and f =
∑K

k=1 πkfk is the marginal density
function. When we consider multiple independent experiments, fk is the joint probability
density of the observations from the experiments.

Bayes FDR For a rejection region X , Bayes FDR can be defined in terms of local FDR
as

FDR(X ) = P (z ∈ C0|x ∈ X ) = E[fdr(x)|x ∈ X ]

Optimal FDR Control We can also define a sequence of regions that each contains all
possible values of x at which the local FDR is below a specific threshold. Given threshold
t ≥ 0, let Xt = {x : fdr(x) ≤ t}. Then the optimal rejection region that controls Bayes FDR
at level q is

X ∗(q) = {x : fdr(x) ≤ γ(q)},

where γ(q) = max{t : FDR(Xt) ≤ q}.

Empirical Bayes Estimator The inference above goes through if we know the true pa-
rameters of the model. When we don’t as in our current analysis, one way is to use estimated
ones from empirical observations. This approach is also called empirical bayes. For more
details, one can refer to [Efr12]. In particular,

f̂dr(x) =

∑
k∈C0 π̂k · p̂(x1, . . . ,xM |zi = k)

f̂(x)
=

∑
k∈C0 π̂k ·

∏M
m=1 f(xm; α̂

(k)
m )∑K

k=1 π̂k ·
∏M

m=1 f(xm; α̂
(k)
m )

,

and for any region X ,

F̂DR(X ) =
1

|{i : xi ∈ X}|
∑
xi∈X

f̂dr(xi).

Define X̂t similarly as above that X̂t = {x : f̂dr(x) ≤ t}. Given a desired level q, we find

γ̂(q) = max{t : F̂DR(X̂t) ≤ q} and identify the set of proteins Î = {i : f̂dr(xi) ≤ γ̂(q)}.

5
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Supplementary Figure 1. (related to Fig 1B). Quanti�cation of recovery of MIPs and their binding partners from chaotrope-treated 
repuri�ed LDs. A) Relative amounts of indicated proteins in repuri�ed LDs were quanti�ed by densitometry from immunoblots and 
normalized to the bu�er-treated values. Each bar represents mean + SD from n=5 independent experiments. B) Relative triacylglyc-
erol levels were quanti�ed and normalized to bu�er-treated values. Each bar represents mean+SD from n=5 independent experi-
ments. C) left, Representative transmission electron micrographs of chaotrope-treated repuri�ed LDs. Scale bars, 5µm unless indicat-
ed. RIght,  Histograms show the size distribution of repuri�ed chaotrope-treated LDs. n= 142, 99, 112, and 142 LDs were measured 
from input, bu�er, alkaline carbonate, and high salt images, respectively
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Supplementary Figure  2. (related to Fig 1C-F).  E�ect of normalization on all six relative abundance values and ternary plots for 
TMT-MS replicates 2 and 3. 
A) Average of non-normalized (left panel) and normalized (right panel) relative abundances of all peptides for the indicated groups 
of proteins. Reference MIPs are UBXD8, ATGL, AUP1, and PLIN2. Each bar represents mean+SD. B-C) Ternary plots for biological 
replicate 2 (B) and 3 (C). 



Supplementary Figure 3

Supplementary Figure 3. (related to Fig 2A). Ternary plots of all proteins from three experiments, plotted as as in Fig 1F.  Solid red 
symbols denote the  relative abundance values of the 87 high con�dence candidate MIPS.
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Supplementary Figure 4.  (related to Figure 2) Association of Rab5 (A) and Rab7 (B) with LDs requires lipid anchors. 
Oleate-treated HEK cells expressing the indicated constructs were separated into lipid droplet (LD), cytosol (C), and membrane (M) 
fractions and analyzed by immunoblot for the indicated proteins. Representative immunoblots are shown from a single experiment 
out of n=2.  C) MIPs with predicted N-terminal TMDs. SPOCTPUS predicts N-terminal TMDs in nine protein sequences from the 87 
candidate MIPs. Predicted TMDs are indicated by grey shading and regions for which there is experimental evidence for LD target-
ing are textured with hatched shading (Dataset S1). The secondary structure was predicted using Phyre2 and displayed below 
each cartoon of the full-length protein.
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Supplementary Figure 5 (related to Fig 4).  mPEG reactivity of DHRS3(1-60)GFP single Cys mutants in LDs.  A) Wild-type 
DHRS3(1-60) does not react with mPEG. LD and ER fractions were puri�ed from oleate-treated HEK cells expressing 
DHRS3(1-60)-GFP and treated with or without mPEG.  B) mPEG reactivity of DHRS3(1-60)GFP single Cys mutants in LDs. Puri�ed 
LDs were reacted with mPEG with and without TritonX-100 or SDS for 30min at room temperature and quenched with DTT for 
10min at room temperature. Non-reduced samples(“N”) were included for every construct to ensure that intermolecular disul-
�de bonds were not formed. Proteins were separated by 15% SDS-PAGE and immunoblotted with anti-GFP antibody. The
denaturing e�ect of SDS exposed the two cysteines of GFP, which provided additional sites for mPEG reactivity and were detect-
ed by higher molecular weight bands.  Representative membranes are shown for one of three replicates for each residue.
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Supplementary Figure 6  (related to Figure 4). mPEG reactivity of DHRS3(1-60)-GFP single Cys mutants in ER. Puri�ed ER 
fractions were reacted with mPEG as described in Figure S4.
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Supplementary Figure 7 (related to Figure 4). DHRS3(40-60) are maximally reactive with mPEG. 
Puri�ed ER and LD fractions were reacted with mPEG as described in Figure S4.
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Supplementary Figure 8:  Molecular dynamics predict N-terminal amphipathic helices in nine candidate MIPs. 
Cross-sectional views of models of the indicated protein segments from the unrestrained simulations and resulting 
side-chain accessibilities for each indicated protein segment rendered in heatmaps as in Figure 5C. Each unre-
strained simulation was started at the location indicated by their respective PMF minimum for each indicated pep-
tide (Figure S8). A) Simulation results of six candidate MIPs with N-terminal predicted TMDs that resulted in a similar 
interfacial amphipathic topology as DHRS3. B) Simulation of two candidate MIPs with N-terminal predicted TMDs 
that resulted in a more buried topology that interacts with the bottom of the phospholipid headgroups. C) Simula-
tion of the RDH14 N-terminus predicted a TMD topology, consistent with its PMF minima being at the center of the 
membrane (Figure S8)
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Supplementary Figure 9. Potential mean force (PMF) measurements of nine candidate MIPs with N-ter-
minal predicted TMDs.  Plots of PMF measurements for the indicated proteins as they are pulled from the 
middle of the membrane to bulk solvent. Each colored line corresponds to a di�erent candidate MIP. The 
black vertical lines denote the minimum PMF force for each protein, and thus, the most stable location of 
the peptide in the membrane. The grey vertical line denotes top of the membrane.
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Supplementary Figure 10:  Molecular dynamics predict other N-terminal amphipathic helices in nine candi-
date MIPs. 
Cross-sectional views of models of the indicated protein segments from the unrestrained simulations and resulting 
side-chain accessibilities for each indicated protein segment rendered in heatmaps as in Figure 6d. Each unre-
strained simulation was started at the location indicated by their respective PMF minimum for each indicated pep-
tide (Supplementary �gure 10). a) Simulation results of six candidate MIPs with N-terminal predicted TMDs that 
resulted in a similar interfacial amphipathic topology as DHRS3. b) Simulation of two candidate MIPs with N-terminal 
predicted TMDs that resulted in a more buried topology that interacts with the bottom of the phospholipid head-
groups. c) Simulation of the RDH14 N-terminus predicted a TMD topology, consistent with its PMF minima being at 
the center of the membrane (Figure S10)
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Supplementary Figure 11. Potential mean force (PMF) measurements of all nine candidate MIPs with 
N-terminal predicted TMDs.  Plots of PMF measurements for the indicated proteins as they are pulled from 
the middle of the membrane to bulk solvent. Each colored line corresponds to a di�erent candidate MIP. 
The black vertical lines denote the minimum PMF force for each protein, and thus, the most stable loca-
tion of the peptide in the membrane. The grey vertical line denotes top of the membrane.



Supplementary Figure 12

A.

Supplementary Figure 12. Simulation of RDH14 in membrane of DXPC lipids. (A) Potential mean force 
(PMF) of membrane insertion calculated for the RDH14 N-terminal. Plot indicates the PMF as a function of 
the distance to the membrane center (0.0 nm), up to bulk solvent (5.0 nm). The vertical line denotes the 
minimum of the PMF and thus, the most stable location of the peptide. The grey vertical line denotes the 
average distance of phospholipid heads to the membrane center. (B) Side-chain solvent accessibility 
calculations from unrestrained simulations of RDH14 in POPC and DXPC lipids started from the con�gura-
tion corresponding to the minimum of the respective PMF pro�les. In POPC lipid, the peptide adopts a 
transmembrane topology (termini accessible, otherwise buried), while in thicker DXPC membrane it 
adopts an interfacial topology with alternating side-chains breaching the phospholipid heads and being 
solvent exposed.
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