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SI MATERIALS AND METHODS 
 
Zebrafish.  Wild-type or transgenic zebrafish of the EK/AB strain were used for all 

experiments. βactin2:loxp-mCherry-STOP-loxp-DTA, βactin2:loxp-mTagBFP-STOP-

loxp-nrg1; cmlc2:CreER, gata4:eGFP, LENP2:EGFP, tcf21:DsRed, fli1a:eGFP, 

kdrl:DsRed; and cmlc2:H2A-EGP, transgenic fish have been described (1-8).  Resection 

of ~20% of the cardiac ventricular apex was performed as described previously (9). To 

induce expression of nrg1 in CMs, adult cmlc2:CreER; bact2:BS-nrg1 were treated for 

24 hours with 5 µM tamoxifen. To induce ablation of CMs, adult ZCAT were treated for 

24 hours with 1 µM tamoxifen. For larval experiments, cmlc2:CreER; bact2:BS-vegfaa; 

cmlc2:H2A-EGFP fish were treated with 10 µM 4-hydroxytamoxifen for 6 hours at 2 dpf. 

Embryos were then placed in egg water containing 0.1% DMSO, or 10µm DAPT 

(Selleckchem) until 7 dpf as previously described (10, 11).  Procedures involving animals 

were approved by the Institutional Animal Care and Use Committee at Duke University. 

  

Generation of Transgenic Zebrafish. To generate βact2:BS-vegfaa, vegfaa cDNA was 

ligated into the AgeI/NotI site of the βact2:loxP-TagBFP-STOP-lox-P vector (12). To 

generate vegfaa:EGFP fish, the translational start codon of vegfaa in the BAC clone 

CH211-169N14 (BACPAC Resources Center) was replaced with the EGFP sequence by 

Red/ET recombineering technology (GeneBridges) as described in reference (6).  The 

full names for these transgenic strains are TgBAC(vegfaa:EGFP)pd260 and 

Tg(βactin2:loxP-mTagBFP-STOP-loxP-vegfaa)pd262.  To induce recombination in adult 

fish, cmlc2:CreER; βact2:BS-vegfaa fish were bathed in 5 µM tamoxifen (Sigma) for 24 

hours. 
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Histologic Analysis and Imaging.  Probes for vegfaa, raldh2, snai2, twist1, pdgfrb, 

notch1b, and deltaC were generated from 6 dpf zebrafish cDNA by using the primer 

sequences twist1b forward: GTTTGAGCTACGCGTTCTCG; twist1b reverse: 

TGCACAGGATTCGAACTAGAGG; snai2 forward: TTAGAGCAGATCAGCGCTGG; 

snai2 reverse: CTTCCCAATCGGAGGCACTT; pdgfrb forward: 

GTCCAGTGGAGGAAAGACGG;  pdgfrb reverse: ACATCAGCGCTTGTGTCTCA. In situ 

hybridization probes were prepared and hybridizations were performed with the aid of an 

InSituPro robot (Intavis) as described (1). Primary and secondary antibody staining for 

immunofluorescence was performed as described in (6).  Antibodies used in this study 

were anti-PCNA (mouse; Sigma) at 1:200, anti-Mef2 (rabbit; Santa Cruz Biotechnology) 

at 1:75, CT3 (mouse; DSHB) at 1:150, anti-EGFP (rabbit; Abcam) at 1:200, Alexa Fluor 

488 (mouse and rabbit; Life Technologies) at 1:200, Alexa Fluor 594 (mouse and rabbit; 

Life Technologies) at 1:200, and Alexa Fluor 633 (mouse; Life Technologies) at 1:200. 

Confocal imaging was performed using a Zeiss LSM 700 or a Zeiss LSM 510 

microscope. Thickness of the compact muscle layer was determined by staining hearts 

with anti-Tnnt antibody, selecting the largest section, and performing tilescan confocal 

imaging. For each section, the primordial muscle layer was used to define the anatomic 

boundary of the compact muscle and the inner trabecular muscle.  The primordial 

muscle layer can be visualized as a thin stripe with increased fluorescence with either 

BFP or after immunostaining for Tnnt. Maximal thickness was determined by taking the 

largest distance from the cortical muscle layer to the epicardial surface of Tnnt signal.  

Measurements were performed on blinded images using ImageJ (2).  An analogous 

approach was used to quantify maximal tcf21+ cell thickness from sections of hearts 

from tcf21:DsRed fish.  Cardiomyocyte proliferation indices were obtained from confocal 

images of sections that were stained for Mef2 and PCNA.   The resulting images were 

blinded, cropped to the resection plane, manually thresholded using ImageJ, and 
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subjected to segmentation analysis using the EBImage package of R/Bioconductor (13).  

The proliferation index is the number of Mef2+/PCNA+ nuclei over the total number of 

Mef2+ nuclei (2, 4, 6, 12, 14-16). Blinded regenerates were scored on a scale from 1 to 3 

after staining for Tnnt as described in reference (17). Images from cmlc2:H2A-EGFP fish 

were quantified by blinding the images and manually thresholding the images using the 

“Spots” feature of the Imaris software package (Bitplane).  Picro-Mallory staining was 

performed as described previously and imaging was performed using a Zeiss 

AxioImager.Z2 microscope (18, 19). 

 

RNA-Seq.  RNA was extracted by using whole ventricles from cmlc2:CreER; bact2:BS-

vegfaa fish as previously described (15).  RNA libraries were generated and sequencing 

was performed through the Duke Sequencing and Genome Technologies Shared 

Resource.  RNA-seq data was processed using the TrimGalore toolkit which employs 

Cutadapt to trim low quality bases and Illumina sequencing adapters from the 3’ end of 

the reads (20, 21).  Only reads that were 20nt or longer after trimming were kept for 

further analysis.  Reads were mapped to the GRCz10v87 version of the zebrafish 

genome and transcriptome using the STAR RNA-seq alignment tool.  Reads were kept 

for subsequent analysis if they mapped to a single genomic location (22, 23).   Gene 

counts were compiled using the HTSeq tool (24).  Only genes that had at least 10 reads 

in any given library were used in subsequent analysis.  Normalization and differential 

expression was carried out using the DESeq2 Bioconductor package with the R 

statistical programming environment (25-27). The false discovery rate was calculated to 

control for multiple hypothesis testing.  Gene set enrichment analysis was performed to 

identify differentially regulated gene ontology terms for each of the comparisons 

performed (28). 
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SUPPLEMENTARY FIGURES 

 
 

Figure S1. vegfaa:EGFP expression in larval and adult fish. (A-B) Tile-scanned, 

maximum intensity projection of the trunk of a kdrl:DsRred fish and a vegfaa:EGFP; 

kdrl:DsRred fish at 3 dpf. Boxed region corresponds to the magnified region shown in 

the adjacent panel. (C-E) Tiled images of vegfaa:EGFP hearts without injury, at 3 days 

post amputation (dpa), and at 7 dpa.  Sections were immunostained with for EGFP and 

Tnnt. Boxed region corresponds to the magnified region shown in the adjacent panel. 

Curved lines approximate the amputation plane.  (Scale bars 100 µm) 
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Figure S2. Transgenic overexpression of vegfaa from cardiomyocytes. (A) 

Transgenic approach to overexpress vegfaa from cardiomyocytes. (B-C) In situ 

hybridization for vegfaa on sections from ventricles of cmlc2:CreER; βact2:BS-vegfaa 

animals 7 days post incubation (dpi) with vehicle or tamoxifen. Violet staining indicates 

expression. Boxed region corresponds to the magnified region shown in the adjacent 

panels.  (D-E) Schematic depicting juvenile and adult experiments in Figure 3. (F-G)  

Tile-scanned images of ventricular surfaces from cmlc2:CreER; βact2:BS-vegfaa; 

fli1a:EGFP fish at 6 wpf following incubation with vehicle or tamoxifen at 30 dpf.  (H-I) 

Tile-scanned images of sections from ventricles of cmlc2:CreER; βact2:BS-vegfaa; 

fli1a:EGFP animals 7 days after treatment with vehicle or tamoxifen. Yellow arrows 

indicate nucleated blood cells in the lumen of ectopic blood vessels.  (Scale bars 100 

µm) 
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Figure S3. Cardiac vegfaa overexpression induces markers of EMT. In situ 

hybridization for snai2 (A-B), twist1 (C-D), and pdgfrb (E-F) on sections from ventricles 

of cmlc2:CreER; βact2:BS-vegfaa animals 14 days after treatment with vehicle or 

tamoxifen. Violet staining indicates expression. (Scale bars 100 µm) 
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Figure S4: Transcriptional profiles of vegfaa overexpression. (A) Heatmap of RNA-

seq data for cmlc2:CreER; βact2:BS-vegfaa hearts 14 days after treatment with vehicle 

(n = 3) or tamoxifen (n = 3). (B-D) Selected results for pathways enriched in vegfaa 

overexpression hearts as determined by Gene Set Enrichment Analysis (GSEA). (E-G) 

Selected results for pathways downregulated in vegfaa overexpression hearts as 

determined by GSEA.  
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Figure S5. Cardiac vegfaa overexpression causing scarring after ventricular 

resection. Picro-Mallory staining of regenerating hearts overexpressing vegfaa. Tiled, 

brightfield images of sections from control animals show limited collagen (blue) at the 

site of injury and within the ventricular wall (A-C).  By contrast, animals overexpressing 

vegfaa have scar at the resection site and throughout the ventricular wall (D-F).  (Scale 

bars 100 µm) 

Additional Dataset S1 (separate file). Differentially expressed transcripts following 

vegfaa overexpression. RNA-Seq was performed using cmlc2:CreER; βact2:BS-

vegfaa hearts 14 dpi with vehicle (n = 3) or tamoxifen (n = 3). Gene ID corresponds to 

the Ensembl ID of the mapped transcript. logFC is provided for tamoxifen treated hearts 

relative to vehicle treated hearts.  p-value is the result of an unadjusted t-test.  padj is the 

FDR corrected p-value.  
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