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Supplementary Methods 

Model Description: Dynamical Form. 

The RML general schema in its dynamical form is the same as the one described in Figure 1 in 

the main text. In Table A are reported the parameters for this version of the RML. 

 

Table A. Parameter values for the dynamical version of the RML  

Parameter Value Meaning Equation 

 0.1 Noise filter cut-off (to be 

used in case of noisy 

neurons) 

S1 

 0.1 Synaptic weights decay S1b 

 0.1 Neural activity decay S2-4, 

 0.05 Neural units noise 

variance 

S2-4 

 0.35 DA dynamics S5a,b 

 0.6 Softmax temperature S7 

 0.0015 Approximate Kalman 

filtering meta-parameter 

S9-10, 13 

 0.055 Learning rate scaling S14 

 0.3 Boosting cost S15 

 

 

 

Here follows a detailed description of the RML dynamical implementation. We parceled the 

description in paragraphs describing the interaction between modules pairs (here called systems). 
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The dACCAct-VTA system. The dACCAct (action selection) - VTA (dopamine) system is shown in 

Fig S1. Its aim is to learn state-action values from both primary reward and reward signals from the 

onset of conditioned stimuli (higher order conditioning). The dACCAct module exchanges 

information with the external environment by means of six channels. Three of them code for 

environmental states (empty blue bars) and the other three code for actions. The information about 

states and actions is encoded in the vector o, where the first three dimensions (i) represent only 

states, while the others encode state-action pairs. The activations of the state-action pairs are 

computed by Kronecker product of state (s) and action (a) channels (o = s  a,  i > 3). Any time a 

specific environmental state occurs, the corresponding state channel is set to one. If any action is 

required, the action channels are pre-activated (all set to small number > 0), otherwise, they are set 

to zero. Vector o is connected to the three Critic sub-modules (neuronal triplets) by matrix W. Each 

Critic sub-module computes reward prediction (v units) and prediction error ( units) related to o 

activation. Each element of the connection matrix W (between the input layer o and the set of Critic 

systems) is updated by: 

 

 
 jjjiji ow        S1 

 

where the index j indicates the Critic sub-module (1 to 3 in our implementation, Figure A),  + and  

– respectively positive and negative prediction error units activation (Equations S3-4), and  is the 

dynamic learning rate, controlled by the interaction between the j-th Critic sub-module and the j-th 

sub-module of the LC (Equation S19). If  units are noisy (or their baseline activity is greater than 

zero) their contribution to S1 must be first filtered by a threshold , to cut-off spurious contribution 

by baseline activity. As we used noisy neural units in the Critic, we set 1.0 . The connections 

matrix W stores the long-term values of states and state-action couples. To prevent the same state-
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action couple to be represented in multiple critic sub-modules (due to reward signal propagation 

through dACC-VTA serial connectivity, Equation S5b), we introduced a synaptic competition 

between sub-modules, such as: 

 

 
ji

j
jiji wjww maxarg|        S1b 

 

where  = 0.1 is a synaptic decay parameter. The instant value associated to state-action 

combinations is computed in each value unit vj inside each Critic sub-module (indexed with j). The 

v units are noisy leaky integrators. Their update equation is: 

 

    voWv       S2 

 

where v is the vector of v units, is a random variable representing noise ( ~ N(0,)) and  

is a decay parameter. The prediction error units () update equations for the j-th Critic sub-module 

are: 

 

   


jjjj TvDA      S3 

   


jjjj DATv      S4 

 

respectively for positive and negative prediction error units. Here [x]+ indicates  x,0max , while 

DA is the outcome signal (dopamine) afferent from the VTA module (Equation S5a,b). Finally, T is 
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the timing signal indicating the expected occurrence of any feedback (for any j) in time (boxcar 

signal with unit amplitude). Here, for simplicity, we set T by hand, as a function of any event 

playing the role of environmental feedback. Alternatively, T can be learned trial-by-trial [1]. The 

outcome signal (DA) provided to the j-th Critic submodule by the VTA is defined by: 

 

  1|  jbRrDAj        S5a 

         1|1 111 










 jvbDA jjjj      S5b 

 

where r is a binary signal indicating the presence of a reward (boxcar function with unity 

amplitude), R indicates reward magnitude (𝑅 ≠ 0), and b is the boosting signal from the dACCBoost 

module. In both equations S5a and S5b,  = 0.35 is a scaling parameter. The time derivatives of the 

neural units from the j-th sub-module are computed as discrete time differences. In all our 

simulations, we used a time step of 10 network cycles, corresponding to 100 ms, simulating a 

transient VTA neural response when a prolonged stimulus (v and ) is applied. Rectifications 

prevent negative neural input when derivatives are negative. As specified in the main text, the VTA 

signal that allows higher-order conditioning derives from the v units input (i.e. DA response locked 

to conditioned stimulus). Recent single unit data showed a wide range of neural response during 

conditioning, with many neurons showing response shifting from reward to CS (like in the TD 

algorithm), while others being influenced by either reward expectation or PE [2], or even coding for 

primary rewards (Equation S5a) [3]. The terms in equations 5a-b, related to reward expectation [ v ]+ 

and PE [ ]+ model how the contribution of afferents from the dACC can be combined to generate a 

prototypical VTA neuron activity shifting from reward to CS onset. 
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The Actor module, which selects actions based on the Critic’s evaluation, is described by the 

following two equations. 

 

ℎ𝑖 = (∑ 𝑤𝑖𝑗𝑗 ) −
𝐶𝑖

𝑁𝐸
       S6 

  

  10|,softmax)|(  ii oihip h     S7 

 

In Equation S6, Ci is the cost associated to the i-th state-action couple (vector o), while NE is the 

LC module output (norepinephrine) which is determined by the dACCBoost module. Here we chose 

NE= b, as we here consider the simplest situation in which the LC works like a broadcasting system 

of the dACC boosting decision. Equation S7 expresses the probability of selecting the action 

associated to the i-th state-action couple (with  as a temperature parameter) when the i-th 

action was pre-activated (if there is no premotor activation, the dACCAct module emits no action). 

Like in the main text, here we define      /exp//exp),softmax( iii xxx . Once one action is 

selected, the corresponding unit is set to one, while all the others having a smaller activation are set 

to zero. The selected state-action unit remains active until feedback from environment (either 

primary reward or state transition) is provided.  
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Figure A. Schema displaying in detail the dACCAction – VTA system (see also Figures 1-2 in the 

main text). Units o represent either environmental states (empty disks) or state-action couples (filled 

disks). The latter are pre-activated by state (s) and action (a) conjunctions (), then the Actor 

selects the optimal action based on the Critic evaluations stored in matrix W. The reward can be 

primary (DA1, dark red arrow), or learned (deriving from higher-order conditioning). In the latter 

case, after an action selection, the system will perceive a new environmental state (from empty blue 

bars), which was previously associated to a primary reward. The subsequent activation of the sub-

module with j = 1 (which evaluates states and actions from primary rewards) leads to DA2 

activation (arrow from sub-module with j = 1 to DA2) that rewards the expectations formulated in 

the sub-module with j = 2, and so on toward a progressive emancipation of learning from primary 

rewards (bottom gradient arrow). 
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The dACC-LC system: Learning rate control. As we described also in the main text, we 

hypothesize that the LC can estimate the Kalman gain by an approximation algorithm based on 

prediction error and reward prediction signals from the dACC. In Figure B we describe the 

connection schema between the dACCAct and the LC modules. Each critic sub-module (computing 

reward prediction and prediction error) is connected to a corresponding LC sub-module, which uses 

these signals to control the learning rate. The RML approximation of process variance ( Var (v)), for 

the state-action couple oi, and the j-th critic sub-module, is computed by: 

 

       2
1

ˆrâV



jtijtijti ovovov      S8 

 

where v̂  is the estimated “true” value of oi, and it is computed by the following low-pass linear 

filter: 

 

        
11

ˆˆˆ



jtijtijtijti ovovovov      S9 

 

where  is a meta-parameter ( 0015.0 ) that defines the frequencies to be filtered out (decreasing 

 lowers the inferior bound of filtered frequencies). The squared PE in Equation S9 is reported in 

Equation S8. We now define the estimated global error ̂  as the estimated unsigned prediction 

error (that is due to both noise and volatility), and it is computed by: 
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        
11

ˆˆˆ



jtijtijtijti oooo      S10 

 

where  is the instantaneous (at time t) unsigned prediction error: 

 

    jtjtjtio        S11 

 

Like in Equation S1, if v and  units are noisy, we need to apply a filter (same threshold ) to 

update equations S9-S10 only when v and  are active above baseline noisy activity. The squared 

global error (
2̂ ) represents the variance of v due to both process and noise variance. We can now 

approximate Kalman gain ( K̂ ) by: 

 

 
  

  21
ˆ

râV
ˆ

jti

jti

jti

o

ov
oK





     S12 

 

Then, we smooth K̂  over time as follows: 

 

        
11

ˆˆˆˆ



jti

s

jtijti

s

jti

s
oKoKoKoK      S13 

 

And finally we computed the learning rate  as: 

 

s

jtjt K
ˆ        S14 
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where 
s

jtK
ˆ

 is the average of  
jti

s oK̂  over vector o, and  is a scaling parameter ( = 0.055). We 

decided to compute one single learning rate for each critic j (averaging over vector o), to avoid the 

strong assumption that the dACC-LC system can provide a specific K estimate for each possible 

state-action couple. With this algorithm, we are able to approximate Kalman gain with the only 

assumption that noise power peaks at higher frequency than signal, implemented in the meta-

parameter . 

 

 

Figure B. Schema of the interactions between the dACCAct module and the LC, for learning rate () 

control. Each sub-module (indicated with index j) in the dACC is connected with a LC sub-module, 



dACC-brainstem as a meta-learner 

 

10 
 

approximating a Kalman filter. This mechanism allows the RML to estimate volatility as a function 

of reward prediction and prediction error time course (connections from v and  units), and thence 

to dynamically change influencing learning dynamics (Equation S1).

 

 

The dACCBoost-LC-VTA system: cognitive control and catecholamines boosting. In the previous 

section we described one meta-learning mechanism embedded in the RML, i.e. optimal control of 

learning rate. RML meta-learning involves also optimal control over primary and nonprimary 

reward signal (Equation S5a, b) and over cost estimation (Equation S6). We hypothesize that both 

mechanisms are controlled by an Actor-Critic module (the dACCBoost) similar to dACCAct, except 

that the decisions made by the first are directed toward the internal environment (LC and VTA 

modules). More precisely, the dACCBoost selects the boosting level in order to maximize long-term 

reward from VTA (Figure C). We assigned to the dACCBoost Critic no index j but rather a subscript 

B to distinguish it from the set of critics in the dACCAct. The boosting values associated to each 

specific environmental state are encoded in an n x b matrix (n = 3; b = 10) named Y, where rows 

indicate environmental state (from vector s) and columns indicate boosting level (b). Reward signal 

from VTA is discounted by boosting cost: 

 

)( bRrDAB        S15 

 

where DAB is the reward signal from the VTA directed to the dACCBoost module, and  is a 

meta-parameter, determining the cost of boosting b. Like in Equation S1, the learning rule is 

defined by:  
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   BBBnbnb yq        S16 

 

where Q is the weights matrix connecting the state-boost units of Y to the reward prediction unit vB 

in the critic submodule, B are the prediction error units, and B is the corresponding dynamic 

learning rate. The latter is estimated by means of the approximate Kalman filter algorithm described 

in Equation S14. All the variables in Equations S8-S14 must be substituted by the variables 

representing the internal state of the dACCBoost module. For example, vector o will be substituted by 

matrix Y, and index j with subscript B. The boosting level b is defined by the b-th index selected by 

the Actor according to: 

 

  nbnb ynqbp  0|,softmax)|( q    S17 

 

Like for the dACCAct module, once the b-th boosting unit is selected, all the others are set to zero up 

to the primary reward onset. Before the selection of b by Equation S17, the y units that are pre-

activated for entering the pool of selectable units (logical condition in Equation S17) are those 

corresponding at the current environmental state: nnb sy  . 
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Figure C. dACCBoost module. The machinery of the Actor-Critic system is the same as the one 

described for the dACCAct, except that this system does not select motor actions, but the amount of 

boosting to increase the level of catecholamines (Equation S17). This system receives only primary 

rewards discounted by the selected boosting (Equation S15). The aim of this system is to find the 

optimal boosting (given a specific state s) to maximize the net (discounted by boosting cost) long-

term primary reward. 

 

Experimental Methods (for Both dynamical and Discrete Model) 

General settings. For all the experimental paradigms, environmental state s3 (arbitrarily chosen) 

was kept active during each trial, representing a uniform contextual coding of the task. This was not 

true during higher-order conditioning tasks (simulations 3b-c), where state-to-state transitions were 

part of the task. For all tasks, every action had a default cost equal to 1 (0.5 for the discrete model; 

this is a general cost of emitting a response), except for the “stay” option which had a cost equal to 

zero (as in this case the RML decides to emit no response). “Stay” option was never rewarded, 

when the RML decided to “Stay”, the stimulus delivering program simply moved to the next trial. 
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Task settings were the same for both dynamical and discrete model, with exception of simulations 

2a-c (see below). All the initial state-action values for the dACC modules were set to zero, while 

initial value for the learning rate () was 0.003 for the dynamical model and .3 for the discrete 

model. 

 

Simulations 1 and S1 (learning rate control). The task, described in Figure 2a-b (main text), was 

administered in a version where the outcome was binary (Simulation 1, main text) and in a version 

where the outcome was continuous (Simulation S1, below).  

 

Simulation 1. For the binary task, the reward rates and magnitudes for respectively optimal and 

non-optimal choices are reported in Table B. We assigned higher reward magnitudes to choices 

with lower reward rates [4], in order to promote switching between choices and to make the task 

more challenging. The Pascalian value of each choice (probability  magnitude) remained higher 

for higher reward rates. 

 

Table B. Mean reward rates assigned to the 2 possible choices in the task of Simulation 1, and 

their respective magnitudes (in arbitrary values). 

Statistical condition Reward rate Reward magnitude 

Stat (stationary) 70%-30% 1.5-2.5 

Stat2 (stationary uncertain) 60%-60% 2-2 

Vol (volatile) 90%-10% 1.5-2.5 

 

 

We ran 12 simulations, reproducing the performance of 12 experimental subjects. The order of 

presentation of different statistical environment was randomized between subjects. Yet like in 
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Behrens et al. (2007), each simulated subject executed one Stat condition (practice) before the task. 

Each statistical condition consisted of 144 trials, for a total of 432 trials. All the statistical analyses 

were conducted after excluding the first 20 trials from each statistical condition, in order to exclude 

the influence of volatility effects at the transitions between stationary environments (like in Behrens 

et al., 2007; Silvetti et al., 2013). In the volatile (Vol) condition, the reward rate (and associated 

reward magnitude) switched between options every 18 trials on average (uniform distribution 

between 14 and 22 trials). 

 

Simulation S1. For the continuous task version, the reward rate was the same for every option 

(80%) but reward magnitude varied trial-by-trial with a random Gaussian distribution (Table C). All 

the other features were in common with the binary task, except for the fact that volatility was 

introduced by switching exclusively mean reward magnitudes between choices. 

 

Table C. Simulation S1, task specifics 

Statistical condition Mean reward magnitude Reward magnitude variance 

Stat (stationary) 2-1 0.04-0.04 

Stat2 (stationary uncertain) 2-2 2.25-2.25 

Vol (volatile) 3-1 0.04-0.04 

Mean reward magnitudes assigned to the 2 possible choices in the task of Simulation 1b (arbitrary 

values), and their respective variances (e.g., to choice 1 in Stat condition was assigned a mean 

reward magnitude of 2, with variance 0.04). In Vol condition, the two mean reward magnitudes 

switched between choices, on average every 18 trials. 

 

Simulation 2a: Physical effort control and decision-making in challenging cost/benefit trade 

off conditions. The task was executed both in normal conditions and after DA lesion. Before task 

execution, we administered to the RML a version of the Effort task where both the possible options 
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required low effort, to expose the model to different reward magnitudes [6]. For the DA lesion 

condition, we first administered the No Effort task to the normal RML, then we implemented the 

DA lesion and afterwards we administered the Effort task. The lesion to the dopaminergic system 

was simulated multiplying all the VTA outputs by 0.6 (40% lesion; 70% lesion for the discrete 

version of the model), while the lesion to both the dACC modules was simulated by multiplying the 

activity of all the neural units (including the boosting signal efferent from the dACCBoost module) by 

0.6 (0.7 for the discrete model). Each experiment consisted of 70 trials. We summarize costs and 

rewards magnitudes in Table D. All the statistical analyses were run on the last 40 trials, in order to 

rule out learning effects. Animal data are from reference [6], for DA lesion we averaged the 

behavioural results from both haloperidol administration and nucleus accumbens lesion from 

Figures 3-5 in [6]. Data extraction from figures was performed by WebPlotDigitizer. 

 

Table D. Summary of effort-to-reward ratios for all the option type in tasks administered in 

Simulations 2a and 2b.  

Effort/reward High reward Low reward 

High effort 7/3 (6/5) 7/1 (6/1) 

Low effort 1/3 (0.5/5) 1/1 (0.5/1) 

Values used for the discrete version of the model are between brackets. 

 

The net subjective value (nsv) represented in Figure 4g was computed as the sum of the net values 

from both the dACC modules: 

𝑛𝑠𝑣 = ℎ𝑖 + 𝑞𝑛𝑏     S18 

where h and q are the net estimated values from respectively dACCAct (Equation S6) and dACCBoost 

(Equation S16). 
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Simulation 2b: performance recovery after DA lesion, in cost/benefit trade off conditions. We 

tested the potential recovery of the preference for high reward option, by administering to the DA 

lesion group two other tasks where effort differences were removed. To the DA lesion group, after 

the Effort task execution, we administered either a No Effort task (Figure 4d, two low effort 

options) or a Double Effort task (Figure 6a, two high effort options). Table D summarizes the 

effort-to-reward ratios also for these tasks. Animal data for comparison are from [6], we averaged 

the behavioural results across the experimental blocks in Figure 5 (for Double Effort and No Effort 

respectively) from [6]. Data extraction from original figures was performed by WebPlotDigitizer. 

 

Simulation 2c: Adapting cognitive effort in a WM task (only dynamical model). FROST model 

description. We implemented a simplified version of FROST (FROntal-Striatal-Thalamic) model 

[7] to model the WM module. We did not implement the subcortical modules of this model, as we 

were not interested in simulating in detail the whole neural dynamics in WM-related circuits. Our 

implementation of the FROST model consisted of a dynamical system of two differential equations 

(fronto-parietal recurrent network), which updates the activation of each single neuron within a 

neural matrix of size 3  4 representing a 2D space. The first equation models the posterior parietal 

cortex (P) dynamics: 

 

    ijijijijijij PPFPIP   1      S19 

 

where Iij is the visual input from the ij-th visual unit. The activation of I is transient and encodes the 

presence of a visual stimulus. Fij is the activation of the ij-th unit in the frontal cortex. Parameters 

take on the following values: The dynamics of prefrontal neurons (F) is 

defined by: 
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𝐹̇𝑖𝑗 = (𝜛𝐴𝑖𝑗 + 𝜓𝑃𝑖𝑗)(1 − 𝐹𝑖𝑗) − 𝜁𝑁𝐸−1(∑ 𝐹𝑘𝑙𝑘≠𝑖,𝑙≠𝑗 )𝐹𝑖𝑗 − 𝜐𝐹𝑖𝑗  S20 

 

where A is a signal gating WM retention. It assumed value equal to 1 for the time window when the 

WM has to retain information, otherwise it is zero. In Ashby et al. (2005), A is defined by cortical-

subcortical interactions, in our simulation it was turned to 1 at the beginning of each trial and back 

to zero after the match/mismatch response by the RML. There are three parameters with the 

following values:  = 0.005,  = 0.1,  = 0.02. The term 𝑁𝐸−1(∑ 𝐹𝑘𝑙𝑘≠𝑖,𝑙≠𝑗 )𝐹𝑖𝑗  models lateral 

inhibition between prefrontal neurons. This means that lateral inhibition increases when memory 

load increases. This term is modulated by LC input to the prefrontal cortex (NE), such as the higher 

the LC input the lower is lateral inhibition effect. Therefore, LC input causes a better representation 

of items in WM (gain modulation), increasing the activation especially in those neurons that are 

encoding item positions (Figure D).  

 

RML-FROST interface. The RML selects the match-mismatch option by Equation S7 biased by 

FROST frontal neural representations. More specifically, FROST frontal neurons modulate vector h 

in Equation S7 as follows: 

 

   1

* max FijFmatchmatch Fhh       S21 

  2

*

FijFmismatchmismatch Fhh       S22 
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where h* is the modulated vector for matching and mismatching options while F = 17, F1 = 0.22 

and F2 = 0.12 are parameters. Such a modulation contrasts the average frontal network activation (

ijF  in Equation S22, mismatch) against the activation of the neural unit with the maximal 

activation (Equation S21, match). Afterwards, vector h* is passed as an argument (replacing h) to 

Equation S7 for action selection. It is relevant to note that in this task, action selection would 

depend on both activity of frontal neurons and on action values (stored in h). Because both match 

and mismatch responses were rewarded with the same reward magnitude and they had the same 

action cost C, frontal activity was the only factor biasing the response. 

 

 

Figure D. Activity of two neural units that are encoding one item during a trial. Red plot: prefrontal cortex 

(DLPFC) unit activation; blue plot: posterior parietal cortex (PPC) unit activation. After template 
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presentation (delay between template onset and probe onset, cfr Figure 7a, main text), information about 

items position is retained without perceptual input (recurrent PPC-DLPFC dynamics). LC input (NE) to 

prefrontal neurons increases the activation only for those neurons that were already active to code for 

template items. 

 

Simulations 3a-b. VTA activity plotted in Figure 8 was represented by the time course of DAj with 

j >1 (Equation S5b).    

 

 

Figure E. Possible bifurcations during a trial of higher-order instrumental conditioning task. 

 

Simulation S2 (DA shifting during classical conditioning; only dynamical model). We 

administered a classical conditioning task, where an environmental cue lasted for 2s, followed by a 

primary reward on 80% of all trials. Inter trial interval was 4s. The model was trained with 40 trials 

for each simulation, for each of 12 simulations (subjects). 
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