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Supplementary Results: Dynamical Model 

Simulation S1 (learning rate control).  

In the continuous version of the task administered in Simulation 1, the RML performance in 

terms of optimal choices percentages was: Stat = 80% (± 1.5% s.e.m.), Vol = 61% (± 2.6% s.e.m.). 

The percentage of optimal choices in the Stat condition is higher for the continuous task than for the 

binary one. This is because in Simulation 1, we made decisions more challenging by assigning a 

slightly higher reward magnitude to options with a lower reward probability (see Table B in S1 

File). Learning rate control as a function of volatility did not change with respect to the binary 

version of the task (Figure F). Also for the continuous task version, there was a main effect of 

volatility on learning rate (F(2,11) = 15.3, p = 0.0001). Post-hoc analysis shows that stationary 

conditions did not differ (Stat2 > Stat, t(11) = 2, p = 0.07), while in volatile condition learning rate 

was higher than in stationary conditions (Vol > Stat2, t(11) = 3.47, p < 0.005; Vol > Stat, t(11) = 

5.2, p < 0.0001). 

 

 

Figure F Learning rate (± s.e.m.) as a function of environmental volatility in the continuous version 

of the task in Simulation S1. 
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Simulation S2: DA Shifting in Classical Conditioning.  

A typical experimental finding on DA dynamics is the progressive shifting of DA release 

onset from primary reward to CS [1]. At the same time, omission of expected primary reward 

typically leads to dips in neural activity in dopaminergic neurons, dropping their discharge rate to 

zero. DA shifting develops exclusively in the CS-locked and US-locked time windows, without the 

signal progressively propagating backward from US to CS [1]. We now investigate these properties 

in the RML. 

 

Simulation results and discussion. Figure G shows the VTA response (both from RML and 

animal data) during a classical conditioning paradigm. These results replicate our previous model 

RVPM simulations (Silvetti et al. 2011). We hypothesized (cf Equation S5b) that DA dynamics 

during conditional learning is determined by dACC-VTA interaction, by combining the information 

from reward expectation and reward PE. More precisely, cue-locked VTA activity shown in Figure 

Gc-d is due to the reward prediction temporal difference ([ v ]+), while reward-locked activity is due 

to PE temporal difference (        ). This mechanism can closely simulate the progressive 

shifting of DA activity from reward period to cue period (Figure Gc), and the DA dip when 

expected rewards are omitted (Figure Gd). In conclusion, we propose that higher-order conditioning 

(in instrumental paradigms: Simulation 3b) is based on the DA response due to CS-locked reward 

prediction signal from the dACC. 
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Figure G. Dynamical version of RML. a) Classical conditioning task administered to the model. A 

cue was presented, then a primary reward was delivered. b) Recording site (dashed circle) of VTA 

activity (Equation S5b) plotted in c and d. Black arrows indicate cue and reward input to the RML. 

c) Simulated VTA activity shifting from reward to cue period in three different training phases 

(early, mid and late). The bottom plot shows empirical data from Stuber et al. (2008). d) Simulated 

VTA baseline activity suppression when an expected reward is omitted after extensive conditional 

training (late training phase). The bottom plot shows empirical data from Schultz et al. (1997).  
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Figure H. Dynamical version of RML dACCAct module prediction error activity during classical 

conditioning, in early and late stages of training. NPE: reward-locked (US) negative prediction error 

time course grand average (in missed reward trials). PPE: reward-locked positive prediction error 

time course grand average (in rewarded trials). Plot shadows indicate s.e.m., plots are recorded from 

+ (PPE) and - (NPE) units (Equations S3-4) in the Critic’s sub-module with j = 1 (computing 

first-order conditioning).  
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Supplementary Results: Main results replication with the discrete model 

Simulation S3: Learning rate control (replication of Simulations 1 and S1 with the discrete 

model) 

 

Figure I. Discrete version of RML. a) Learning rate  (± s.e.m.) as a function of environmental 

volatility in the binary version of the task, to be compared with Figure 2 (main text) from the 

dynamical RML. b) Learning rate  (± s.e.m.) as a function of environmental volatility in the 

continuous version of the task, to be compared with Figure F from the dynamical RML. c-d) 

Unsigned PE activity recorded from dACCAct module as a function of environmental volatility (± 

s.e.m.), during respectively binary and the continuous version of the task. In both cases, dACC 

responded more strongly to environmental entropy (Stat2 condition) rather than to volatility. Plots 
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can be compared with the one in Figure 3b (main text), which is from the dynamical version of the 

model. 

Simulation S4a: physical effort optimization (replication of Simulation 2a with the discrete 

model) 

 

Figure J. Discrete version of RML. Effort task results obtained with the discrete version of the 

model, to be compared with Figure 4 (main text; same results obtained with the dynamical model), 

with which it shares the same caption. Some s.e.m. intervals are not visible due to small variance. 

Simulation S4b: physical effort optimization (replication of Simulation 2b with the discrete 

model) 
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Figure K. Discrete version of RML. Recovery of HR option preference in DA lesioned subjects, 

results obtained with the discrete form of the model. This figure is to compare with Figure 6 (main 

text; same experiment with dynamical model), with which it shares the caption. Some error 

intervals are not visible due to small variance. 

 

Simulation S5a and S5b: classical and instrumental higher-order conditioning (replication of 

simulations 3a-b with the discrete model) 

 

Figure L. Discrete version of RML. a) Experimental results for higher-order classical conditioning. 

b) Experimental results for higher-order instrumental conditioning. c) dACCBoost efferent signal as a 

function of conditioning paradigm. This figure is to be compared with Figure 8 (main text; same 

experiment with dynamical model), with which it shares the caption. VTA activity is from Equation 

6a (main text). 
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