| Gene       | Forward                   | Reverse                    |  |  |
|------------|---------------------------|----------------------------|--|--|
| COL1A1     | GAGGGCCAAGACGAAGACATC     | CAGATCACGTCATCGCACAAC      |  |  |
| COL3A1     | GGAGCTGGCTACTTCTCGC       | GGGAACATCCTCCTTCAACAG      |  |  |
| COL6A1     | ACTCAGAGGGACACCAGACC      | GAGCCTGGGATGAAGTCAAA       |  |  |
| FN1        | CTGGCCGAAAATACATTGTAAA    | CCACAGTCGGGTGGTCAGGAG      |  |  |
| MMP2       | CCATTTTGATGACGATGAGCCTATG | GTTGTACTCCTTGCCATTGAACAA   |  |  |
| HIF1A      | TGCTCATCAGTTGCCACTTC      | CAAATCACCAGCATCCAGAA       |  |  |
| СҮСВ       | GGAGATGGCACAGGAGGAAA      | CGTAGTGCTTCAGTTTGAAGTTCTCA |  |  |
| TIMP-1     | ACTTCCACAGGTCCCACAAC      | TTTGCAGGGGATGGATAAAC       |  |  |
| TIMP-2     | CAGAAAAAGCTGGGTCTTGC      | CATAGTGTCCTGGAGGCTGAG      |  |  |
| ACTB       | CTCTTCCAGCCTTCCTTCCT      | AGCACTGTGTTGGCGTACAG       |  |  |
| TNF- alpha | CCCCAGGGACCTCTCTCTAATC    | ACATGGGCTACAGGCTTGTCA      |  |  |
| MCP1       | GATCTCAGTGCAGAGGCTCG      | AATGGTCTTGAAGATCACAGCTTCT  |  |  |
| CD68       | GCTTCTCTCATTCCCCTATGGA    | ATGTAGCTCAGGTAGACAACCTTCTG |  |  |
| IL-6       | TTTTGTACTCATCTGCACAGC     | GGATTCAATGAGGAGACTTGC      |  |  |
| IL-8       | TTGGCAGCCTTCCTGATTTC      | AACTTCTCCACAACCCTCTG       |  |  |

Supplemental Table 1. Primer sequences for quantitative PCR

| Characteristic                            | Caucasian (n = 22)                             | Chinese (n = 26)                             | p value |
|-------------------------------------------|------------------------------------------------|----------------------------------------------|---------|
| Age (years)<br>Gender                     | 46 ± 14<br>13/9                                | 45 ± 10<br>14/12                             | ns      |
| (female/male)<br>BMI (kg/m <sup>2</sup> ) | 32.0 ± 10.4                                    | 27.3 ± 5.3                                   | 0.04    |
| Weight (kg)<br>WC (cm)                    | $90.0 \pm 28.0$<br>106.3 ± 26.3<br>35.6 ± 16.7 | $70.3 \pm 17.4$<br>91.1 ± 14.4<br>26.7 ± 8.1 | 0.02    |
| r™ (ky)<br>%BF<br>VAT mass (kg)           | $37.1 \pm 9.1$<br>0.63 + 0.4                   | 33.3 ±6.6<br>0 47 + 0 2                      | ns      |
| % VAT/FM<br>% VAT/ weight                 | $1.7 \pm 0.7$<br>$0.6 \pm 0.5$                 | $1.9 \pm 0.6$<br>$0.5 \pm 0.2$               | ns      |
| Insulin (mU/L) *<br>FPG (mg/dL) *         | 15.7 ± 12.4<br>104.3 ± 50.5                    | 15.1 ± 12.1<br>102.6 ± 27.6                  | ns      |
| HOMA-IR*                                  | 4.9 ± 7.1                                      | $4.4 \pm 4.8$                                | ns      |

Supplemental Table 2. Characteristics of Study Subjects Undergoing SCAT biopsy

\*Subjects on insulin were excluded from the analysis (2 Caucasian and 1 Chinese individuals). WC: waist circumference; FM: fat mass; %BF: percent body fat; VAT: visceral adipose tissue; FPG: fasting plasma glucose. ns: not significant. HOMA-IR = Fasting insulin (mIU/L) x [FPG (mg/dL)/405]. Values are presented as mean  $\pm$  SD. Differences between groups were analyzed by Student's t-test (significance: p<0.05).

| mRNA levels of pro-inflammatory genes |               |                |               |                |                |  |  |  |
|---------------------------------------|---------------|----------------|---------------|----------------|----------------|--|--|--|
| CAUCASIAN                             |               |                |               |                |                |  |  |  |
|                                       | TNF-alpha     | MCP-1          | CD68          | IL-6           | IL-8           |  |  |  |
| BMI (kg/m²)                           | 0.54*         | 0.65‡          | 0.56*         | 0.49*          | 0.59*          |  |  |  |
| %BF                                   | 0.49*         | 0.36           | 0.38          | 0.36           | 0.45*          |  |  |  |
| VAT mass (kg)                         | 0.59‡<br>0.30 | 0.62‡<br>0.47* | 0.56‡<br>0.35 | 0.69‡<br>0.41* | 0.57*<br>0.45* |  |  |  |
| FPG (mg/dL) <sup>a</sup>              |               |                |               |                |                |  |  |  |
| Insulin (mU/L) <sup>a</sup>           | 0.63‡         | 0.55*          | 0.53*         | 0.66‡          | 0.51*          |  |  |  |
| HOMA-IR <sup>a</sup>                  | 0.57*         | 0.64‡          | 0.51*         | 0.57*          | 0.50*          |  |  |  |
| CHINESE                               |               |                |               |                |                |  |  |  |
| Parameter                             | TNF-alpha     | MCP-1          | CD68          | IL-6           | IL-8           |  |  |  |
| BMI (kg/m²)                           | 0.51*         | 0.61‡          | 0.45*         | 0.45*          | 0.52*          |  |  |  |
| %BF                                   | 0.48*         | 0.46*          | 0.39          | 0.33           | 0.36           |  |  |  |
| VAT mass (kg)                         | 0.55*         | 0.56*          | 0.64‡         | 0.56*          | 0.40           |  |  |  |
| FPG (mg/dL) <sup>a</sup>              | 0.43*         | 0.37           | 0.46*         | 0.37           | 0.46*          |  |  |  |
| Insulin (mU/L) <sup>a</sup>           | 0.65‡         | 0.55*          | 0.68‡         | 0.56*          | 0.52*          |  |  |  |
| HOMA-IR <sup>a</sup>                  | 0.59*         | 0.54*          | 0.61*         | 0.54*          | 0.54*          |  |  |  |

**Supplemental Table 3.** Correlation between the mRNA levels of pro-inflammatory genes in SCAT and specific clinical parameters

\*  $p < 0.05. \pm p < 0.01.$  mRNA levels were measured by qPCR and normalized using the 2<sup>-ΔCT</sup> method, with both beta- actin (*ACTB*) and cyclophilin B (*CYCB*) as endogenous controls. Relationships between parameters were analyzed by Spearman's rho. BMI, body mass index; %BF, percentage body fat; VAT, visceral adipose tissue; FPG, fasting blood glucose. HOMA- IR: Fasting insulin<sup>(mIU/L)</sup> x Fasting glucose<sup>(mg/dL)</sup> / 405. Caucasian n= 22 subjects and Chinese n= 26 subjects. <sup>a</sup> Subjects on insulin were excluded from the analysis (2 Caucasian and 1 Chinese subjects).







## **Supplemental Figure Legends**

Supplemental Figure 1. Associations between %BF and markers of insulin resistance in Caucasian and Chinese subjects. (A and B) Scatter plots showing that %BF positively correlates with fasting insulin levels and HOMA-IR in Caucasian (A), but not Chinese (B) individuals. N = 28 (Caucasian), and 31 (Chinese). Relationships between parameters were analyzed using Pearson correlation coefficient. For all plots, solid lines represent correlations through the data. Subjects on insulin were excluded from analysis (2 Caucasian and 1 Chinese subjects).

Supplemental Figure 2. Associations between BMI and VAT mass, respectively, and components of insulin resistance. (A and B) Scatter plots showing that BMI positively correlates with HOMA-IR (A) and fasting plasma insulin levels (B) in both Caucasian and Chinese subjects. (C and D) Plots showing that VAT mass correlates with HOMA-IR and fasting plasma insulin levels in both Caucasian and Chinese subjects. N = 28 (Caucasian), and 31 (Chinese). Relationships between parameters were analyzed using Pearson correlation coefficient. For all plots, solid lines represent correlations through the data. Subjects on insulin were excluded from analysis (2 Caucasian and 1 Chinese subjects).

## Supplemental Figure 3. Associations between indicators of adiposity and fasting

**plasma glucose (FPG)**. (**A** and **B**) Scatter plots showing a positive correlation between FPG and BMI (**A**) in both Caucasian and Chinese subjects, however FPG correlated with VAT mass (**B**) only in Chinese individuals. (**C**) Plots showing no correlation between %BF and FPG in either Caucasian or Chinese subjects. N = 28 (Caucasian), and 31 (Chinese). Relationships between parameters were analyzed using Pearson correlation coefficient. For all plots, solid lines represent correlations through the data. Subjects on insulin were excluded from analysis (2 Caucasian and

1 Chinese subjects).