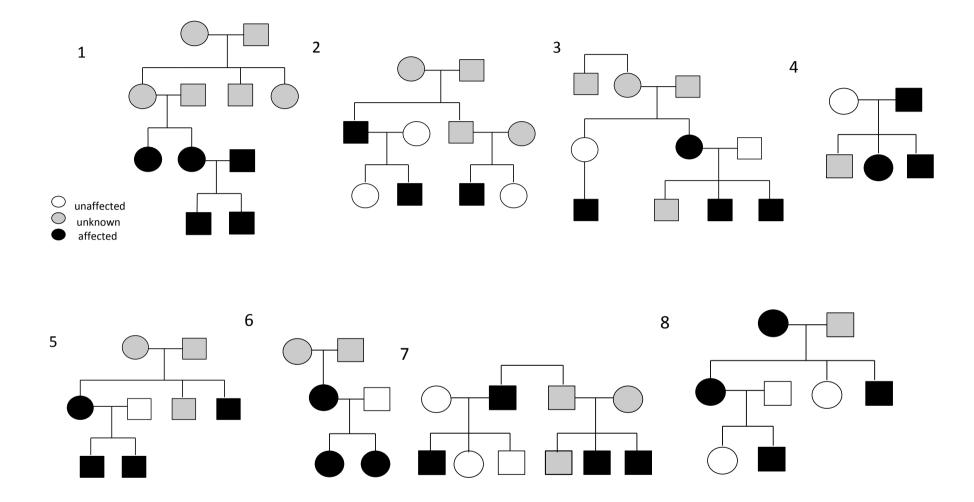
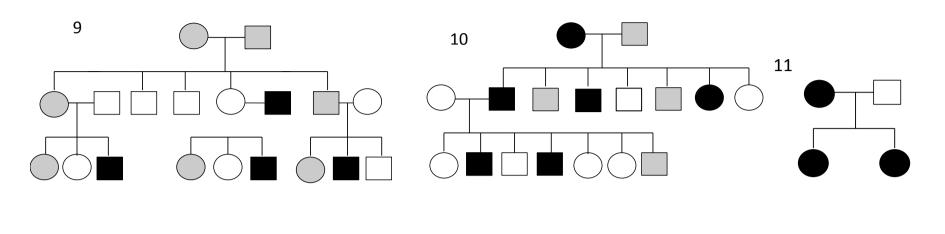
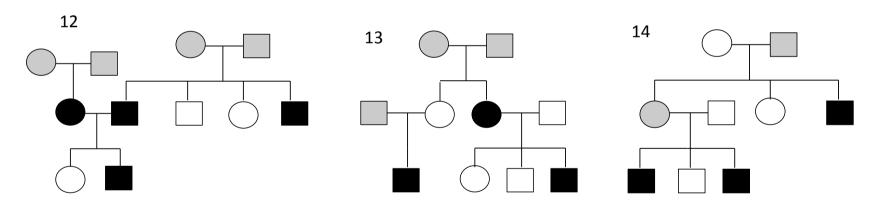
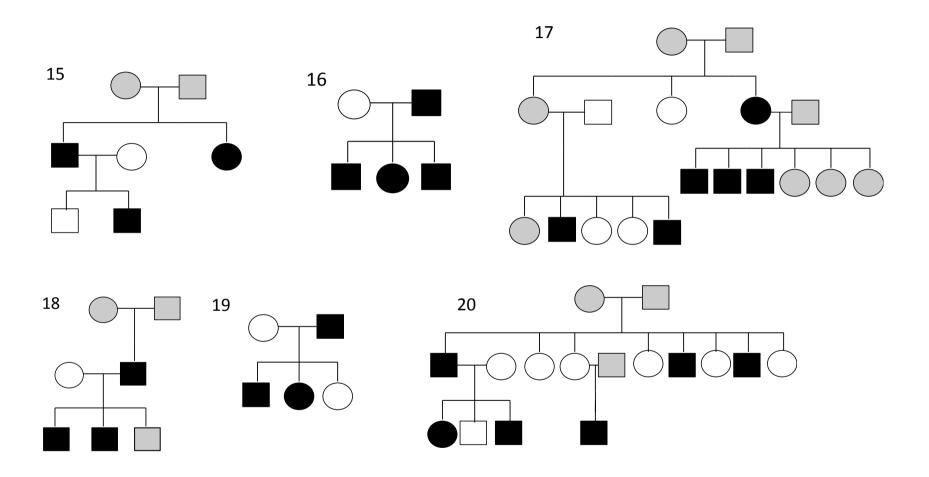
Supplementary Appendix

HS6ST1 insufficiency causes self-limited delayed puberty in contrast with other GnRH deficiency genes


Authors - Howard SR, Oleari R, Poliandri A, Chantzara V, Fantin A, Ruiz-Babot G, Metherell LA, Cabrera CP, Barnes MR, Wehkalampi K, Guasti L, Ruhrberg C, Cariboni A, Dunkel L


AA Change	dbSNP137	PhyloP ¹	SIFT ²	Polyphen2 ³	LRT ⁴ Pred	MutationTaster ⁵	FATHMM ⁶	CADD ⁷ Pred	GERP ⁸ ++
		Pred	Pred	Pred		Pred	Pred		
p.Arg375His	rs182882999	С	Т	В	D	D	D	D	4.3


Supplementary Table 1 – Prediction of variants according to web-based prediction software programs and conservation across species. C – conserved, D – deleterious, disease causing or damaging, B – benign, T - tolerated


Nucleotide	Amino acid	Exon	MAF from DP	MAF from cohort controls (%)	MAF from Exac database (%)
change	change		probands (%)	(n=145)	Finnish/European/All
			(n=109)		
c.1124G>A	p.Arg375His	2	0.92	0	0.03/0.003/0.03

Supplementary Table 2 – Minor allele frequency in study population and control cohorts. Minor allele frequency data for the control population was retrieved from the ExAC Browser (Exome Aggregation Consortium (ExAC), Cambridge, MA: http://exac.broadinstitute.org, accessed May 2017).

Supplementary Figure 1 – 20 example cohort pedigrees from which probands were sent for initial whole exome sequencing

species	match	gene	aa alignment
Human			375 Q L E R R E Q R L R S R E E R L L H R A K E A L
mutated	not conserved		375 Q L E R R E Q R L R S H E E R L L H R A K E A
Ptroglodytes	all identical	ENSPTRG00000012440	375 Q L E R R E Q R L R S E E R L L H R A K E A
Mmulatta	all identical	ENSMMUG00000030614	359 Q L E R R E Q R L R S R E E
Fcatus	all identical	ENSFCAG00000012548	375 Q L E R R E Q R L K S E E R L L H R A K E A
Mmusculus	all identical	ENSMUSG00000045216	375 Q L E R R E Q R L R N E E E R L L H R S K E A
Ggallus	all identical	ENSGALG00000002155	346 Q L E R M E Q R I K N E E E R L L H R S N E A
Trubripes	not conserved	ENSTRUG00000015423	383 Q Q E R R Q Q R I K N H I R Q S L T S K L E D
Drerio	no alignment	ENSDARG00000054754	n/a
Dmelanogaster	no alignment	FBgn0038755	n/a
Celegans	no alignment	<u>Y34B4A.3</u>	n/a
Xtropicalis	all identical	ENSXETG00000016769	370 MEQRKKNEEERLLHRSNEA

Supplementary Figure 2 Multiple sequence alignment (m.s.a.) for the p.Arg375 (R375) residue.

M.s.a. was generated using MutationTaster ⁵. The p.Arg375 residue is highly conserved amongst different species, GERP score 4.3.

References

- 1. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome research 2010;20:110-21.
- 2. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols 2009;4:1073-81.
- 3. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nature methods 2010;7:248-9.
- 4. Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome research 2009;19:1553-61.
- 5. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nature methods 2014;11:361-2.
- 6. Shihab HA, Gough J, Cooper DN, et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Human mutation 2013;34:57-65.
- 7. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nature genetics 2014;46:310-5.
- 8. Cooper GM, Stone EA, Asimenos G, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome research 2005;15:901-13.