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SUMMARY

Real-world decisions have benefits occurring only
later and dependent on additional decisions taken
in the interim. We investigated this in a novel deci-
sion-making task in humans (n = 76) while measuring
brain activity with fMRI (n = 24). Modeling revealed
that participants computed the prospective value of
decisions: they planned their future behavior taking
into account how their decisions might affect which
states they would encounter and how they them-
selves might respond in these states. They consid-
ered their own likely future behavioral biases (e.g.,
failure to adapt to changes in prospective value)
and avoided situations in which they might be prone
to such biases. Three neural networks in adjacent
medial frontal regions were linked to distinct compo-
nents of prospective decision making: activity in
dorsal anterior cingulate cortex, area 8 m/9, and
perigenual anterior cingulate cortex reflected pro-
spective value, anticipated changes in prospective
value, and the degree to which prospective value
influenced decisions.

INTRODUCTION

Many decisions depend on the values of objects or goods that

might be chosen and the neural mechanisms mediating those

decisions are increasingly well understood (Abitbol et al., 2015;

Howard et al., 2016; Hunt and Hayden, 2017; Rudebeck and

Murray, 2014; Rushworth et al., 2011). However, in other cases,

our choices are determined by quite different factors. It may be

important to consider not only the short-term, but also the

longer-term implications of a choice, or in other words, the

choice’s ‘‘prospective value.’’ This crucially depends on one’s

own future behavioral strategy—i.e., how one will respond to

changes in the environment that are not yet known fully at the

time of the initial decision. Because such changes may in turn

be due to one’s own future behavior, studying prospective deci-
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sion making in the laboratory is difficult and has received

comparatively little attention.

For example, deciding whether to quit one’s job and enter the

job market depends not only on the quality of one’s job, but also

the current state of the job market (Figure 1A). If one can only

accept or reject a single offer at any given time, it is important

to consider the maximum amount of time one can look for a

job (time or search horizon; Figure 1B). If, for example, the job

seeker can wait ten weeks with relatively minor waiting costs,

it might be worth rejecting inferior offers while holding out for

the dream job (Figure 1C). If, however, the search horizon is

restricted, one might have to accept an inferior job for fear of

ending up with an even worse offer or because one can simply

not wait any longer. In other words, a job seeker should not solely

consider the average of all available jobs (‘‘myopic value’’), as

this would fail to reflect the opportunities they will have to reject

specific interim offers in the hope of getting a future offer that is

better than the current average (Figure 1D). In other words, the

prospective value of an environment is more than just its average

or myopic value (even if opportunities are sampled with replace-

ment). This effect should become even more pronounced if one

has a longer search horizon: the prospective value of the job

market is even higher if you can reject bad offers and search

for longer. A long search horizon is particularly beneficial when

there is variability in the quality of job offers; there is more to

be gained from waiting for the best offer if that offer is far from

the mean value of jobs.

In summary, the overall value of the environment (sometimes

called ‘‘search value’’) can be decomposed into myopic and pro-

spective components. The myopic component corresponds to

theaveragebenefits thatmight immediately followadecisionwhile

prospective valuecorresponds to futurebenefits thatmight accrue

over the longer term by taking a particular choice now. While the

neural correlates of myopic value have previously been investi-

gated (Kolling et al., 2012; Stoll et al., 2016) here we focus on pro-

spective value. Delay discounting (Kable and Glimcher, 2007),

spatial planning (Kaplan et al., 2017), or simpler fixed decision se-

quences (Kolling et al., 2014; Symmonds et al., 2010) on the other

hand do not require self-determined planning of multiple and

sequential choices nor the use of prospective value.

In some ways the scenario resembles the classic secretary

problem (Costa and Averbeck, 2015; Ferguson, 1989) that
mber 5, 2018 ª 2018 The Authors. Published by Elsevier Inc. 1069
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Figure 1. Prospective Decision Making

(A) A job market has different jobs (horrible to

amazing) with specific odds (percentage and

patch size).

(B) Decision making should depend not just on the

average value of the options, but instead one

should take into account the search horizon—how

many weeks one could afford to search. If the

search horizon is long (Bi), the job seeker might

reject inferior offers, hoping for the dream job.

However, if the search horizon is shorter (Bii), one

might have to accept an inferior job for fear of a

worse offer in the end.

(C) The ideal solution for deciding whether one

should search for a new job or not, is to simulate a

decision tree of the value of all possible outcomes

and their probabilities, given what kinds of jobs one

would accept, at a given acceptance threshold

(Figure S1A illustrates a numeric example). In this

example, the acceptance threshold is to accept

jobs that are at least ‘‘good.’’

(D) Computing the overall search value of the deci-

sion tree in this way is then repeated for each

possible acceptance threshold (see also Fig-

ure S1B). For example, the first bar in the histogram

illustrates the search value, for a given time horizon,

of setting theacceptance thresholdat ‘‘horrible’’ and

above; any job offer is accepted. The next bar

illustrates thesearchvalueofsetting the acceptance

threshold at ‘‘bad’’ and above and so on. In this

example, search value is maximized by setting the

acceptance threshold at ‘‘good’’ and above. If the

decision maker is too ‘‘unfussy’’ and accepts any

offer (left) or too fussy and isonly prepared to accept

‘‘amazing’’ jobs (right), then search value is lower.

(E) The search value can decrease at different rates as the number of future opportunities decreases. This is because environments can differ in their statistical

properties, some of which are more affected by reduced search horizons. For example, if the variance of an environment is very high, its value will fall more

quickly as receiving unlikely but very good outcomes becomes unlikely. Knowing about the decreases in search value and how quickly value changes might

affect the initial decision a person takes.
considers how many secretaries an administrator should inter-

view to learn enough about the quality of secretaries to make

an optimal job offer. However, secretary problems are not just

about decision making but also about optimal information sam-

pling. By contrast, we are examining a pure decision situation in

which no learning is necessary because all information is explic-

itly shown.

Importantly in such scenarios, to judge the prospective value

of an initial decision, an agent needs insight into the decision

strategy it will use in the future when it encounters options.

We propose that the decision strategy can be derived from a

simple decision rule inspired by prey-encounter models (Blan-

chard andHayden, 2014; Stephens andKrebs, 1986). The future

decision strategy determines the probabilities for accepting op-

tions and when as the search horizon diminishes (Figures 1D

and 1E). For this, the model assumes a threshold for future de-

cisions: a minimum value at which an option should be

accepted. With such a model an overall expected value for

any environment can be easily computed for every possible

threshold (Figure S1; STARMethods). Without a future decision

rule, it is not possible to determine the complete value of the

environment over the longer term. The threshold has important

implications: if it is too low, one misses the opportunity to wait
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for something better; too high and one may pass up a good

opportunity. It is also of note that as fewer and fewer searches

remain, the value of searching decreases (Figure 1E). This is

for the same reason as discussed above when comparing

environments in which many or few searches were available

initially (Figure 1B).

RESULTS

We developed a novel task to measure how humans decide to

initiate a course of behavior entailing a sequence of ‘‘search de-

cisions’’ and how they subsequently negotiated the sequence.

We collected participants in the lab with fMRI (n = 24) and online

via the internet (n = 51). On each trial of the task (160 for the fMRI

sample), participants tried to win as many points (equal to

money) as possible. Participants were shown an ‘‘offer,’’ a sym-

bol (a dial) denoting the number of points to be won. They chose

to accept or reject the offer (Figure 2Ai). If they accepted the offer

they moved on to the outcome phase to discover whether they

had won or lost (50% probability; Figure 2Aiii). The inclusion of

probabilistic reward delivery meant that it was possible, even

with fMRI, to separate neural activity related to the choice from

subsequent neural activity related to offer receipt.



Figure 2. Example Trial

(A) On each trial, participants decided whether to

accept an offer shown at the bottom of the screen.

(Ai) The offer’s reward magnitude was indicated by

the position and color of the dial (yellow indicated

twice the rewardmagnitude as blue; clockwise dial

position indicated number of points between 5 and

160). If a participant rejected the offer, then they

searched for an alternative (between two and six

in each environment); they received a new offer

drawn from the search environment (‘‘alterna-

tives’’) at the top of the screen. The probability was

indicated by size of the area occupied (here the

blue and yellow alternatives had probabilities of

90% and 10%). Participants were also shown the

search horizon (nine possible searches in this

example) and how much it would cost to do so

(search cost is low [six points] here but could also

be ‘‘none’’ or ‘‘high’’ [12 points]). The order of

feature presentation was randomized. (Aii) If a

participant chose to search, then they potentially

embarked on a sequence of decisions to accept or

reject each new offer drawn from the alternatives.

Each time they searched, they received a new offer

from the alternatives, the cost was subtracted

(top), and the number of available searches was

reduced by one (display of alternatives remained

the same because alternatives were sampled with

replacement). The search phase ended either with

an accept decision or there were no searches left.

(Aiii) Only in 50% of trials (tick) were rewards

actually received in the subsequent outcome

phase (crosses signaled losses).

(B) Acceptance decisions varied with the differ-

ence between search value derived from the

computational decision-tree model (Figure 1C,

which reflected the magnitude of alternatives, their

probabilities, costs, search horizon) and offer

value. Black circles: participants’ mean data

binned by value difference; black line: simulated choices using a computational model fitted on all participants together; colored lines: each participant’s actual

choices (binned).

(C) Histograms of demeaned reaction times for initial and subsequent decisions. The initial decisions took longer than subsequent decisions even though

participants had several seconds to examine options before being cued to make the first response.
In contrast, if participants rejected the offer they received a

new offer from the set of alternatives (the ‘‘environment’’; Fig-

ure 2Aii). We refer to this choice as ‘‘searching’’ (Kolling et al.,

2012). For each alternative, participants saw the reward magni-

tude (dial) and the probability of it being drawn if they searched

(indicated by the proportion of the area in the environment occu-

pied by an alternative). Participants were shown how much they

would have to pay to search (‘‘search cost’’) and howmanymore

times they could search on a given trial (search horizon or ‘‘avail-

able searches’’). Each time participants searched, the cost was

subtracted from the points that they had accumulated so far and

the number of available searches decreased by one. This search

phase continued until participants had exhausted the total num-

ber of searches or accepted an offer they had encountered while

searching. We used a parametric-model-based experimental

design, which has several advantages. First, we can disentangle

several distinct aspects of value behaviorally and neurally using

multiple regressions. This is particularly important for dissoci-

ating prospective from myopic search value. Second, we can
control for other possible confounds such as the difficulty of a

decision itself (Kolling et al., 2016a, 2016b). An important addi-

tion in the online study was a debrief questionnaire at the end

of the experiment asking participants about their strategies

and probing their insight. Task details for the online sample

differed slightly (see STAR Methods), but the key task features

remained constant and behavioral performance was compara-

ble (cf. Figures 3 and S5).

Participants Make Decisions Prospectively
When deciding whether to search or accept the current offer,

participants should consider the set of alternatives, search

costs, remaining search horizon, and the future accept-search

decisions they would make for subsequent offers (Figure 1). In

other words, they should employ the information contained in

the decision trees, derived from prey-encounter models (Fig-

ure 1C). The computational model (STAR Methods; Figure S1)

used considers all possible acceptance thresholds (i.e., mini-

mum offer value that will be accepted) in a trial. For each
Neuron 99, 1069–1082, September 5, 2018 1071



Figure 3. Behavioral Results

(A) Search decisions (Ai) were more likely as offer value and search costs decreased and as the model-derived myopic and prospective values (which together

constituted search value) increased (all p < 0.00001). (Aii) Model comparison of model with prospective value against one with several non-prospective heuristics

(bGLM1e2) but without prospective value (bGLM1e; summed AIC difference: 175.7; figure shows average AIC differences for individual participants, across all

searches). See also Figure S2 for other types of heuristics. (Aiii) Model comparison prospective vs effortless strategy. Similarly, the prospective value model

(bGLM1a) was better than a model using a ‘‘planless’’ or ‘‘effortless strategy’’ (bGLM1d; summed AIC difference:3929).

(B) Example of search value decrease with depleting searches (here trial started with 10 searches). The decrease is due to diminishing prospective value, which

goes to zero for the last search, resulting in the only value being myopic. Prospective value at search one is called ‘‘ProspVSearch1’’ and changes between this

and current search is ‘‘ProspS1-Adapted’’. The average prospective value change (Avg.ProspVChange) is the difference between the initial search value and the

last search with any prospective value divided by the number of available searches.

(C) Participants adjusted their prospective value estimates (bGLM3a; ProspS1-Adapted, p < 0.001). Searching also became more likely with more previous

searches within a trial even when controlling for all resulting changes in value.

(D) At the first search in a trial, people avoided initiating searches in sequences with rapidly declining prospective value, suggesting insight (bGLM5a, p < 0.001).
acceptance threshold, themodel builds a complete decision tree

of all possible states (a state is defined by the offer and number of

searches used), how likely these states are to be encountered,

and their values to calculate the expected value of searching

(‘‘search value’’). To determine the actual value of searching in

a trial, the model simply picks the acceptance threshold that

yields the highest search value (Figure 1D). We found that partic-

ipants behaved as expected from the model: they modulated

their decisions to search or accept the current offer as a function

of the search value (Figure 2B).

As described in the Introduction, search value can be split into

an immediate myopic value (sum of all the alternatives’ magni-
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tudes 3 probabilities) and a prospective value. The decision-

treemodel was used to compute the latter, but it is not necessary

for the former (as it is the straight-forward average of all values in

the environment). General linear model (GLM) analyses were

used to examine the influence of the two types of value on

participants’ decision making (precise details of each behavioral

GLM [bGLM] and fMRI GLM [fGLM] are provided in STAR

Methods and in Table S1). Participants’ decisions reflected

both myopic and prospective values (bGLM1a; myopic:

t24 = 11.07, p = 6 3 10�11; prospective: t24 = 6.64, p =

7 3 10�7; Figure 3Ai). In several control analyses, we examined

whether, instead of computing prospective value, participants



used simpler non-prospective heuristics; i.e., we wanted to rule

out the possibility that participants did not actually plan ahead. In

short, we found strong evidence that participants’ decisions are

better explained by models incorporating prospective elements.

As we discuss later, this does notmean that participants perform

a tree search that is identical to that employed by our computa-

tional model in every last detail. Participants may well approxi-

mate a tree-search using some heuristic. What we can rule

out, however, is that participants’ decisions are informed solely

by non-prospective heuristics.

The first set of non-prospective heuristic that we tested

included regressors for simple properties of the environment

that could be used to make decisions (bGLM1e). We compared

this model with an identical model that additionally included the

prospective value term and found that the latter model provided

a better account of the data (Figure 3Aii, summed AIC difference:

175.7; see Figure S2 for results of a related analysis using an

alternative set of simple properties). Next, we considered a sec-

ond alternative strategy that participants might use instead of

prospection—i.e., instead of building a mental (tree) model of

what theymight do in the future: participants could use an almost

effortless decision rule to reject any offer that is not the best

possible offer until they have only one search left. At that point

they should accept anything that is not the worst offer (bGLM1d).

However, we find that our model that included prospective value

(bGLM1a) explains behavior better (Figure 3Aiii). The partici-

pants’ subjective reports given during debriefing also indicated

that they used mental simulation of what might happen if they

searched and of what they might do if they encountered various

opportunities (Figure 4A).

In the prospective tree-search model, as fewer and fewer

searches remain on a trial after continued engagement, prospec-

tive value decreases (Figure 1E); when only one search remains,

the search value becomes equivalent to the myopic value (Fig-

ure 3B). Importantly, this means that, when the search horizon

has shrunk, you should accept some options that you should

have rejected earlier. To test whether participants flexibly adapt-

ed search value, as predicted from the model, as they pro-

gressed through a trial, we split prospective value at the current

search into two components: its initial value at the start of the

sequence and howmuch it had decreased by the current search

in the sequence (bGLM3a). We discovered that participants’

behavior over the course of a sequence of searches was sensi-

tive to decreases in prospective value (Figure 3C): the more

prospective value decreased, the less likely participants were

to search compared to what would have been expected had

they continued to use the initial prospective value without adapt-

ing it (bGLM3a, regression weight for the change in prospective

value: t24 = �3.93, p < 0.001). Similarly, participants reported

during debriefing that they adapted their estimate of prospective

value (i.e., that they accepted offers later in a trial that they would

have rejected early on, Figure 4Bi).

Although participants were clearly making adjustments to the

way they made decisions during the sequence, surprisingly they

made those adjustments despite responding faster and faster as

they progressed through each sequence (Figures 2C and S3A,

main effect of first search on reaction time [RT]: t24 = 7.39, p <

0.001). This suggests that participants did not re-compute the
decision tree online in the same manner as initially after every

search. One way participants might do this is by exploiting the

fact that prospective value decays over the course of searching

in an approximately exponential manner (Figures 3B and S3B).

Indeed, we found that participants’ reaction times later in se-

quences were better described by search values based on the

exponential approximation rather than true prospective values

(Figure S2E).

Planning Using Future Decision Tendencies
So far, we have considered all decisions within sequences

together. However, incorporating future possibilities when

making an initial search decision is only useful if you later

take advantage of the possibilities when they arise. For

example, as discussed in the previous section, an initial deci-

sion that is based on a prospective value estimate that de-

creases in an adaptive manner as the sequence progresses

is only valuable if you do indeed actually go on to adjust your

behavior. If participants possess insight and realize that their

behavior later in the sequence may be subject to non-optimal

biases, then such insight should affect how their initial decision

to search is taken. In other words, when they compute the pro-

spective value in a sequence they need to plan in a way that is

consistent with the behavior they themselves are likely to pro-

duce in the future.

One notable bias exhibited by participants was a tendency to

over-persevere; participants tended to search more than was

optimal given the model-derived estimate of search value

(appropriately adapted for progress through the sequence as

the search horizon shrunk). Specifically, participants were

more likely to search yet again as a function of how often they

had already searched earlier in the sequence (Figure 3C,

bGLM3a, t24 = 6.81, p < 0.001). Again, we found further support

for this effect in the debriefing questionnaire, with participants

reporting that they were aware that they sometimes searched

more than they should because they had already searched on

this trial (Figure 4Bii).

Over-perseverance in later searches enabled us to examine

whether people take their own future behavioral tendencies

into account: if they are aware that they will later be biased in

certain situations, then an adaptive strategy would be to avoid

these situations. The cost of over-perseverance increases

when prospective value collapses rapidly during the sequence

and so we examined whether participants avoided initiating the

series of searches in such trials and just took the initial offer

instead. We tested this by including a regressor indexing how

much prospective value might change, on average, per future

search (Avg.ProspValueChange, see Figure 3B, bGLM5a).

Indeed, participants searched less as a function of this factor

(Figure 3D, t24 = �5.03; p < 0.001). Essentially, participants

pre-emptively avoided sequences requiring extensive future

recomputation of prospective value. This is sensible because

performance in such sequences would be especially impaired

by over-perseverance. We again found further support for this

pre-emptive avoidance in the debrief questionnaire: some

participants reported that they pre-emptively avoided trials for

fear of over-persevering (Figure 4C). Inclusion of the debrief

questionnaire in the online sample allowed us to examine more
Neuron 99, 1069–1082, September 5, 2018 1073



Figure 4. Self-Report Questionnaires Collected in the Online Sample, Relating to Behaviors in Figure 3

(A) Histogram of debrief questionnaire scores confirmed participants (n = 51) planned their future searches (Ai). They did this taking into account the prospective

element of being able to reject potentially undesirable offers until eventually obtaining a desirable offer (Aii).

(B) They also reported that, over the course of a trial, they adapted their search strategy by decreasing their acceptance threshold (Bi). Somewere also aware that

they nevertheless sometimes over-persevered (Bii).

(C) Participants reported that, to avoid over-perseverance later in the trial, they sometimes pre-emptively avoided trials.

(D) Indeed, there was a correlation between the subjective reports of over-perseverance and the subjective report of pre-emptive avoidance (non-parametric

correlation: Kendall’s tau = 0.27, p = 0.018).

(E) The relationship between the behavioral measures of over-perseverance and pre-emptive avoidance (from our regression model [bGLM3a, Figure 3C and

bGLM5a, Figure 3D]) wasmoderated by explicit subjective awareness (Ei: t43 =�2.14, p = 0.038, n = 47). (Eii) To illustrate this moderation effect, participants were

split into those who reported no awareness that they ever over-persevered and those who did report that they at least sometimes over-persevered. Only in

participants that were aware that they over-persevered was there a relationship between how much they over-persevered (regression weight for number of

previous searches, Figure 3C) and how much pre-emptive avoidance they showed (regression weight for Avg.ProspVChange, Figure 3D): the more biased a

participants was to over-persevere, themore likely they were to pre-emptively avoid trials with potentially large decreases in search value, requiring adaptation of

search strategy (t43 = �2.63, p = 0.012). The same result is also illustrated with box-and-arrow diagrams (Eiii). See STAR Methods for full wording of the debrief

questionnaire questions.
directly whether the pre-emptive avoidance was a response to

awareness of the over-perseverance bias: first, we found that,

across participants, those who were more aware that they

over-persevered also reported using more pre-emptive avoid-

ance (Figure 4D, non-parametric correlation: Kendall’s tau =

0.27, p = 0.018, n = 51). Second, we found that the subjective

awareness of a bias to over-persevere moderated the relation-

ship between the behavioral measures of the over-perseverance

bias and the pre-emptive avoidance (Figure 4Ei, t43 = �2.14, p =

0.038, n = 47). As is illustrated in Figure 4Eii–iii, this moderation
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effect was driven by the fact that only those participants who re-

ported awareness of an over-perseverance bias showed pre-

emptive avoidance (t43 = �2.63, p = 0.012).

Value Signals at the Initial Decision and Decision
Sequence Planning
We used whole-brain fMRI analyses to explore the neural basis

of prospective planning and initiation of decision sequences.

Most notably, we found that activity in the dorsal anterior cingu-

late cortex (dACC, z = �4, y = 22, z = 26, Table 1), dorsolateral



Table 1. Activation Table of Brain Analyses

x y z Max Z Score p Value No. of Voxels

fGLM1

Prospective value (activation)

Posterior cingulate cortex �6 �48 22 4.06 2.97E-18 2,078

Pre-SMA, 8 m/9 (left)a �16 20 54 3.98 9.30E-14 1,402

Pre-SMA, 8 m/9 (left)a: Dorsolateral prefrontal cortex �24 36 42 3.67 – –

Pre-SMA, 8 m/9 (left)a: Rostral cingulate cortex area 24c �10 34 18 3.94 – –

Thalamus (left), extending to hippocampus �14 �16 2 3.74 1.89E-05 417

Cerebellum 0 �62 20 4.16 5.13E-05 377

Thalamus/hippocampus (right) 18 �36 0 4.1 1.61E-02 175

Myopic value (activation)

Inferior parietal lobule (IPL_C, IPL_D, IPL_B)b �50 �50 34 4.22 1.73E-14 1,577

Ventral striatum (extends bilaterally) 8 10 �8 4.57 3.04E-11 1,114

Pre-SMA, 8 m/9 (left)a �10 8 60 3.7 8.34E-07 574

Frontal operculum (left) �48 14 �4 4.08 4.29E-05 401

Posterior cingulate cortex (area 23)c �4 �28 30 3.69 1.85E-04 342

Dorsal anterior cingulate cortex (area 32d)c 2 38 26 3.77 2.35E-03 247

Medial frontal pole (bilateral)c �2 56 8 3.52 3.41E-03 234

Middle temporal gyrus (right) 54 �18 12 3.68 3.35E-02 159

fGLM2

Prospective value (activation)

Cerebellum 0 �62 20 3.99 9.24E-06 475

Dorsal anterior cingulate cortex (anterior rostral

cingulate zone, area 24)c
�4 20 30 3.63 1.52E-02 187

Average prospective value change (activation)

Temporoparietal junction (left)d �56 �50 38 4.31 7.18E-09 886

Pre-SMA/ area 8 m/9 (left-middle) �2 26 54 3.96 1.19E-07 737

Temporoparietal junction_p/a (right)d 58 �48 32 4.02 2.30E-05 465

Middle temporal gyrus (left) �64 �34 12 3.59 4.59E-02 161

Decision phase (neural) 3 prospective value (behavior)

Perigenual ACC (area 32pl, left)c �16 50 4 4.15 3.76E-10 1,496

Lingual gyrus/percuneous (right) 14 �54 4 4.83 1.81E-03 380

Perigenual ACC (area 32pl)c �4 46 0 4.21 6.55E-03 311

Primary motor cortex (left)c �16 �28 70 4.06 4.12E-02 220

White matter (right), extending to hippocampus 40 �32 �6 4.17 4.59E-02 215

Average prospective value change (neural) 3 average prospective value change (behavioral)

Perigenual ACC (area 32pl)c 16 42 2 3.86 8.34E-07 610

Lateral occipital cortex (left) �46 �64 40 4.73 5.54E-04 317

Footnotes refer to the names of anatomical atlases used for labeling.
aNeubert cingulate orbitofrontal (Neubert et al., 2015)
bMars parietal connectivity (Mars et al., 2011)
cNeubert cingulate (Neubert et al., 2014)
dMars temporal parietal junction (TPJ) connectivity (Mars et al., 2012)
prefrontal cortex (dlPFC, x = �24, y = 36, z = 42, Table 1), and

posterior cingulate cortex (PCC, x =�6, y =�48, z = 22, Table 1)

was sensitive to both prospective and myopic value (Figures 5A

and 5B). A formal conjunction analysis confirmed that both sig-

nals were present in partly overlapping voxels in each of these

regions (Figure S5A; Table S2).
The dACC has already been linked to myopic value (Kolling

et al., 2012), but a number of findings indicated a central

role of dACC-dlPFC interactions in relation to prospective as

opposed to myopic value. This was demonstrated by con-

ducting two psycho-physiological interaction (PPI) analyses to

investigate the relationship between activity in the two areas as
Neuron 99, 1069–1082, September 5, 2018 1075



Figure 5. Main Neural Decision Signals

(A) Whole-brain effects of prospective value (green, Ai) andmyopic value (red, Aii) when the initial search decision ismade. Parts of dACC and dlPFC and posterior

cingulate cortex are sensitive to both aspects of value (p < 0.001, cluster-corrected; see also Table 1).

(B) Time course of the regression weights for prospective (green) and myopic (red) value on brain activity in dACC and dlPFC.

(C) Connectivity between dACC and dlPFC is increased when prospective value is high as opposed to low (Ci) (see Figure S6A for regression instead of split).

Although both dACC and dlPFC are also activated by myopic value, this form of value does not lead to the same connectivity effects; there is no difference

between dACC-dlPFC connectivity when myopic value is high or low (Cii).

(D) Value-related activity in dACC is not due to difficulty. A whole-brain analysis time-locked to decision onset and using the same statistical significance

thresholds as used in analyses of value-related signals found no evidence that a choice uncertainty-based metric of difficulty activated dACC at the time of

decision (Di). Subsequent dACC time course analyses (ROI based on the peak of prospective value effect shown in crosshair [x = �10, y = 34, z = 18], but using

anatomical ROI of rostral cingulate zone yields very similar results) found activity at the end of the trial reflected choice uncertainty (Dii) and reaction time (Diii);

dACC activity was only protracted when it was difficult to select a response and reaction times were long. (Div) Although the number of alternatives might

intuitively be thought to make a trial difficult, they were not associated with an increase in dACC activity (whole-brain result in Figure S5C). Time courses show

means and standard error of the mean (shaded area). Vertical black line in all plots illustrates average reaction time across all participants. Horizontal ranges (in

black) show the mean SD around the mean median reaction time across participants.
a function of either myopic value or prospective value. We

compared the impact of dACC activity on dlPFC (in a regression,

controlling for all other task variables) after median-splitting the

trials, first, as a function of prospective value, then as a function

of myopic value (Figure 5C). Using a leave-one-subject-out

procedure to avoid biased tests of positive or negative peaks,

we found a significant increase in connectivity as a function of

prospective (t23 = 3.26, p = 0.003) but not of myopic value

(t23 = �2.05, p = 0.052); in fact, if anything, myopic value led to

a late decrease in connectivity.

Note that the increase in prospective-value-based connectiv-

ity between dACC and dlPFC occurred before the time when the

prospective value signal peaked in each of the two areas. Further
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analysis revealed that prospective-value-based connectivity

peaked at the same time that the prospective value signal was

rising fastest in each area (the temporal derivative of prospective

value was highest: Figure S6B). In other words, prospective-

value-based connectivity is coincident with the genesis of the

prospective value signal in dACC and dlPFC.

Prospective Value Signals Are Not Confounded by
Difficulty
There has been controversy over whether myopic value can be

dissociated from the difficulty associated with a decision (Kolling

et al., 2016a, 2016b). The type of difficulty that has been pro-

posed to drive dACC (also called ‘‘choice uncertainty’’) is related



Figure 6. Neural Signals of Within-Sequence of Prospective Value

(A) Illustration of initial prospective value and change in prospective value as the number of remaining sequences are depleted as the search horizon decreases.

(B) The effect of average change in prospective value (pink) in dorsomedial frontal cortical areas 8m/9 is shown together with the main effect of prospective value

(green) in the same analysis (fGLM2). The prospective value effect is more circumscribed in this analysis because prospective value and average change in

prospective value are correlated. Nevertheless, the main effect of prospective value remains centered in the RCZa sub-region of dACC (see Figure S5B). Activity

is time-locked to the initial decision period, p < 0.01, cluster-corrected.

(C) Region-of-interest (ROI) analyses of the BOLD data extracted from area 8 m/9 (ci) and dACC (cii), showing the effect of prospective value per se (green) and

average change in prospective value (pink). Note that as ROIs were selected based on activity (change in prospective value for 8 m/9 and prospective value for

dACC), statistical tests were only performed for the other regressor, respectively, showing that prospective value per se did not activate 8 m/9 (p > 0.1) and that

the average change in prospective value did not affect activity in dACC (p > 0.6).
to the difference, in inverse, of the absolute value between two

choices—in other words, the more similar the two options, the

harder the choice. While in a previous experiment (Kolling

et al., 2012) there was a positive correlation between myopic

value and decision difficulty, here difficulty was negatively corre-

lated with both myopic (r = �0.270) and prospective value (r =

–0.306). Therefore, if it is a confound with difficulty that really

drives dACC activity, then both myopic and prospective value

should negatively affect dACC. However, both myopic and pro-

spective value are associated with an increase in dACC activity

(Figure 5A). Moreover, all our analyses, such as in Figure 5A,

are from a GLM controlling for difficulty. We also did not find

cluster-corrected difficulty-related activity on the whole-brain

level (Figure 5Di). A more thorough look into the time course of

dACC activity reveals that this was because difficulty only had

an effect on dACC very late in the trial (Figure 5D), approximately

6 s after a decision could bemade and the effects of prospective

and myopic value became apparent. One way to interpret this is

that myopic and prospective value are initially driving dACC ac-

tivity for evaluative purposes. However, when decisions are

harder, participants take longer, and therefore dACC activity

also persists for longer.

We also examined the impact of three other possible indices

of difficulty that have less frequently been used but also

conform to intuitions of difficulty. First, reaction time was again

only associated with late dACC activity (Figure 5Diii). This is

further evidence that residual variance in dACC activity at

the end of the trial reflects difficulty. Second, we looked at

the effect of number of search alternatives; more alternatives

might make decisions harder. However, for this factor dACC

activity was decreased rather than increased (Figures 5Div

and S7C) (it had no direct effect on choices but affected reac-
tion times). Finally, we also considered a very different possi-

bility of a very high level form of difficulty; specifically, we

looked at expected mental effort associated with a decision

sequence. This was captured by the average change of pro-

spective value expected during the sequence; the more pro-

spective value changes during the sequence of decisions,

the more the decision rule needs to be revised. This measure

is unassociated with dACC activity (Figure 6C). This is dis-

cussed in the next section.

Medial Prefrontal Neural Signals of Change in
Prospective Value
In addition to prospective value, we were also interested in neu-

ral signals that might allow participants to anticipate future

adjustments in prospective value. For this, we used an additional

regressor of how much prospective value might change on

average for each decision in the sequence (Figure 6A). The

fMRI analysis was thus like the behavioral analysis showing initial

decisions to begin a search sequence were promoted by search

value but were deterred when the change in prospective value

during the sequence was likely to be high (Figure 3D). Both

regressors were correlated because the amount of prospective

value determines how much it can fall during the course of

searches (prospective value and average change in prospective

value correspond to starting point and slope in Figure 6A (r =

0.78; see Figure S7D). Due to this correlation, there is now a

somewhat smaller, but nevertheless significant and robust

prospective value signal in dACC (x =�4, y = 20, z = 30, Table 1;

Figure 6B). To confirm the effect is indeed present and

unchanged in an anatomically defined area within dACC, the

anterior rostral cingulate zone (RCZa as defined by Neubert

et al., 2015), we show the overlap between the RCZa anatomical
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Figure 7. Neural Effects of Individual Differences in Prospection

(A) Illustration of prospective value in the tree-search model (Ai); participants’ use of the prospective value as given by the logistic regression shown in Fig-

ure 3A (Aii).

(B) Correlation of the amount of prospective value usage as indexed by the regression with the neural main effect at the decision stage. At the time of decision-

making pgACC is more active in participants that are more prospective (p < 0.01, cluster-corrected).

(C) The average change in prospective value, which requires adaptation of search strategy, leads to activity in areas 8 m/9 (pink) and also to avoidance of initially

engaging in such decision sequences (Ci, behavioral regression weight shown in Figure 3D). However, variation in pgACC activity related to the same regressor

(Cii, in blue) is predictive of less over cautious pre-emptive avoidance of such search sequences (p < 0.001, cluster-corrected).

(D) Connectivity between pgACC and the ventral striatum increased significantly as a function of search costs; when there was an increased need to overcome

costs, activity in ventral striatum and pgACCs ismore strongly linked. See Figure S7 for ROI analyses showing the effects of costs (and other regressors) in pgACC

and ventral striatum. Time course shows means with the shaded area being the SEM. Vertical line show average reaction time and horizontal line shows reaction

time range.
mask and the prospective value effect estimated in both GLMs

(Figure S4B). In addition, the analysis also revealed a strong

effect of prospective value change in a medial frontal region

(Figure 6B) outside cingulate cortex. The activation location

now straddled medial areas 8 (8 m) and 9 just anterior to

and possibly extending into the pre-supplementary motor area

(pre-SMA) (x = �2, y = 26, z = 54, Table 1). Thus, while dACC

signals the prospective value estimate that leads participants

to begin a sequence of searches, the adjacent area 8 m/9 region

signals an important feature of the upcoming sequence: the

rate at which the prospective value estimate will change.

Region-of-interest (ROI)-based analyses showed that in fact

each of the two regions did not possess the signal present in

the other region (Figure 6C, dACC: change in prospective value;

t23 = �0.90, p = 0.379; 8 m/9: prospective value; t23 = �1.56,

p = 0.13).
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Neural Signals in Perigenual ACC Correlate with
Variation in Prospection
As our task hadmany different dimensions to consider and it was

up to the individual participants howmuch toweigh each constit-

uent aspect of value when making a decision, we wanted to test

whether any specific brain regions were more active when the

initial decision was more prospective. We found that perigenual

ACC (pgACC) was among the regions in which there was more

activity during decision making (decision phase main effect) in

participants who used prospective value more to guide their

behavior (Figure 7B, x =�4, y = 46, z = 0, Table 1). In other words,

overall decision activity in pgACC is predictive of the degree to

which prospective value will drive participants’ behavior. Intrigu-

ingly, pgACC activity does not carry a strong parametric pro-

spective value signal (Figure S7). Nevertheless, our result shows

variation in pgACC’s decision-related activity is associated with



variations of the impact of prospective value, which itself is

encoded in dACC. The importance of pgACC in decision making

is being increasingly recognized, despite the weakness of para-

metric value signals. Accordingly, it has also been highlighted in

studies of individual differences in activity in this region (Gusnard

et al., 2003; Kolling et al., 2012).

One feature of search sequences deterring participants from

searching was the degree to which within-sequence adaptation

was likely to be required. Using our neural data, we wanted to

know whether there is activity, which might oppose such avoid-

ance. Specifically, we looked for increased signals related to the

average change in prospective value in participants less likely to

be deterred by such changes during initial planning. Again, we

identified pgACC (Figure 7Cii, x = 16, y = 42, z = 2, Table 1).

Perigenual ACC Interacts with Ventral Striatum to
Overcome Costs
So far, we have seen that high pgACC activity levels predicted

both that a participant would be influenced by prospective value

(Figure 7B) and that they would be undeterred by the likely need

to readjust prospective value estimates (Figure 7C). However,

this still leaves open the question of what aspect of search

behavior is enabled by pgACC. Previous studies, mainly con-

ducted in rodents (Croxson et al., 2014; Friedman et al., 2015;

Rudebeck et al., 2006) but in one case in humans (Kolling

et al., 2012), have suggested that pgACCs, or areas sharing ho-

mology with pgACC, are important when the costs of taking a

course of action have to be considered but overcome. Intrigu-

ingly, these studies have suggested that pgACC or its homolog

might not encode the costs in a simple way. Instead, changes

in its interactions with the striatal regions, such as striosomes,

that predominate in ventral striatum may underlie preparedness

to pay a cost in order to achieve a reward goal.

We therefore conducted connectivity analysis between bilat-

eral pgACC and ventral striatal ROIs. Both regions were anatom-

ically defined (see STAR Methods). We used a PPI approach as

above. We estimated pgACC-ventral striatal connectivity in trials

involving costs as opposed to no costs. We found that, indeed,

pgACC-striatal connectivity increased with increasing costs

(Figure 6C, t23 = 2.76, p = 0.011). Intriguingly, however, there

was no evidence that parametric changes in either pgACC or

ventral striatum covaried with parametic changes in costs

(Figure S7).

DISCUSSION

Sequential decision tasks are ubiquitous in natural environments

when animals forage (Kolling and Akam, 2017; Stephens and

Krebs, 1986), but they are also part of contemporary human life

(Pearson et al., 2014). This relationship to everyday decisions

could make it particularly useful for the understanding of psychi-

atric disorders (Addicott et al., 2017; Scholl and Klein-Fl€ugge,

2017). This study demonstrates humans making sequential deci-

sions are not only considering their immediately available options.

Instead, they incorporate the average value of future options, their

variability, the time frame or search horizon, as well as search

costs. Furthermore, they even consider their own capacities and

preferences for making decisions in the future.
A Model for Prospective Sequential Decision Making in
Known Environments
We have previously shown that in complex multi-alternative de-

cision-making scenarios people consider both the value of the

current or default choice with which they are engaged but also

the average value and best value of alternative opportunities

(Boorman et al., 2013; Kolling et al., 2012, 2016b; Scholl et al.,

2015). The average value of alternative options resembles what

we termed myopic value in the current study. As previously,

the immediate or myopic value of alternative options influenced

decision making in the present study (Figure 3A). In addition,

however, we showed that, when people are given the opportu-

nity to explore alternatives over an extended time horizon, their

decisions are guided by an estimate of another quantity that

we call prospective value (Figures 1C and 3A). This prospective

value was derived from a decision-tree model, i.e., a model of

participants imagining what could happen as a result of their de-

cision rules in an environment and how they might respond to

new opportunities arising (e.g., ‘‘I will only accept encountered

offers that are at least 50 points worth. Otherwise, I will keep

searching for better alternatives. How good is this strategy?’’).

While participants’ behavior canonly beexplainedbyassuming

they use prospective values and not simply heuristics based on

myopic value information, this does not necessarily mean that

participants performed a full decision-tree search on each trial,

i.e., that they imagined every possible decision rule they could

use and every possible scenario that could arise based on

applying this rule. Instead, they may have used approximations

of the optimal prospective strategy. One possible short cut is to

chunk very similar alternatives together. This would reduce the

amount of computation needed as fewer possible thresholds

would be considered. Additionally, participants’ behavior on later

searches within a sequence revealed one approximation of

prospective value, namely, that they assumed exponential decay

of the initial prospective value across decisions in a sequence.

Equally participants might use a complementary approach

when they initially estimateprospective value: theymight estimate

prospective value for the situation in which one or two searches

only are available and then extrapolate ‘‘backward’’ to approxi-

mate the prospective value of searching when the available

numbers of searches is higher. In short, different simplifications

that participants could use to compute prospective value are

possible. Importantly, however, these simplifications all require

some form of prospective value estimation and that in some

way participants plan or imagine their future behavior.

Although the task design obviated any need for learning, we

note that when agents are still learning about their environments

they should also favor exploration of more variable environments

when there is a long time horizon (Wilson et al., 2014; Zajkowski

et al., 2017). In the real world, both factors (directed exploration

and prospective value) could work together to further drive a

preference for variability, novelty, or surprise in resource rich or

safe contexts.

Another finding that underscored participants’ prospective

planning when making their initial decisions was their consider-

ation of their own biases. As participants progressed through an

environment, they generally adapted their behavior appropriately

(as search value decreased with depleted searches). However,
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wealso found thatparticipantswerebiased toover-persevere, i.e.,

to reject offers and keep looking for alternatives, and they did so

more if they had already rejected many offers (Figure 3C). Impor-

tantly, we found that participants tried to counter-act this

over-perseverance bias by pre-emptively avoiding environments

with extensively changing search values during the sequence of

decisions (Figure 3D). Participants’ subjective reports revealed

that some were explicitly aware of these biases (Figure 4Bii) and

that such awareness drove a direct relationship between over-

perseverance biases and pre-emptive avoidance (Figure 4E).

A Neural Circuit for Prospective Decision Making
We have previously found that themyopic average value of alter-

natives and value of the best alternative are reflected in the activ-

ity of dACC (Boorman et al., 2013; Kolling et al., 2012, 2016b;

Scholl et al., 2015, 2017b), and again this was true in the present

study (Figure 5Aii). It has been suggested that such reports are

due to a confound between myopic value and choice uncer-

tainty. In the current study, however, we were able to rule out

this possibility as well as the possibility that three alternative

indices of difficulty were the cause of the myopic value signal

in dACC (Figures 5D and 6C). Specifically, both myopic and pro-

spective value signals in dACC were time-locked to the onset of

the decision independently from choice uncertainty and reaction

time effects that only emerged late in a trial. In summary, the re-

sults suggest that dACC activity reflects myopic and prospective

values, both key decision variables, but, when decisions are diffi-

cult and take longer, then dACC is also active for longer.

In addition, however, in the present study we were able to

show that activity in dACC also reflects prospective value (Fig-

ure 5Ai). Again prospective value was dissociable from any

metric of difficulty (Figures 5D and 6C). Moreover, prospective

value, unlike myopic value, was an important determinant of

the strength of interactions between dACC and dlPFC. These in-

teractions occurred at an early point in the decision process and

peaked when the increase in prospective value (temporal deriv-

ative of prospective value) peaked (Figure S6B). The interactions

between dACC and dlPFC that we identified were revealed by

correlations in blood-oxygen-level-dependent (BOLD) signal

levels but probably correspond to interactions between the

same areas established in neurophysiological studies (Khamassi

et al., 2015; Oemisch et al., 2015; Voloh et al., 2015). These ex-

periments demonstrated changes in dACC-dlPFC following

reward or non-reward feedback after choices were made. The

current results suggest that a critical feature of such feedback

is that it informs macaques about the choices likely to lead to

reward in the future. This enables them to form a prospective

plan for future behavior and the outcomes that might be ex-

pected from such behavior. The current results also highlight

the importance of examining not just feedback activity in dACC

(Fischer and Ullsperger, 2013; Ullsperger et al., 2014) but activity

related to the planning of extended sequences of behavior (Pro-

cyk et al., 2000) and changing between such behaviors (Barack

et al., 2017; Pearson et al., 2014). Activity in dACC reflects prog-

ress through a sequence (Juechems et al., 2017; Kolling et al.,

2014;Wittmann et al., 2016) and so dACCactivation for prospec-

tive value in the current experiment may reflect simulation of

possible routes through decision-tree branches.
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Participants’ decisions also reflected an estimate of the

change in prospective value that would occur as the search

horizon diminished, not just the initially estimated prospective

value. Activity related to this factor was found in medial frontal

area 8 m/9 (Figure 6) but was not found in adjacent dACC. Ac-

tivity in nearby regions has also been reported in other reward-

guided decision-making tasks in tandem with dACC activity

(Kolling et al., 2014). This suggests that computation of the ex-

pected change in search value is distinct from the initial

computation of prospective value (see Figure 6C). In fact, as

the change in prospective value is always a reduction in this

study, we coded the regressor denoting expected change in

prospective value as positive (more reduction, higher regres-

sor, but leading to reduced search value). Thus, the activity

patterns in 8 m/9and dACC are profoundly different: increasing

the initial prospective value makes dACC more active,

whereas 8 m/9 is more active when this value will collapse

faster. Thus, it was possible to make a clear distinction be-

tween variables related to initial planning and later adaptation

of behavior. This is especially interesting given the broader

debate about the respective function of these adjacent—and

frequently co-activating—brain regions during tasks of behav-

ioral flexibility and adaptation.

ANeural Circuit forMotivating an Extended Sequence of
Behavior
Participants were dissuaded from beginning behavior se-

quences in which larger changes in prospective value occurred

as the search horizon diminished (Figure 3D). While such biases

are potentially the result of effortful computations and planning

performed in 8 m/9, the biases were reduced in participants

with greater pgACC activity (Figure 7C). PgACC, partly through

its interactions with ventral striatum, is important for motivating

effortful sequential search decisions over time (Figures 7B and

7D). In contrast to dACC, which carried strong signals related

to the planning of an extended behavioral sequence, pgACC ac-

tivity was more closely related to the motivation to engage in the

sequence.

Experiments with both humans and rats, in tandem with the

present results, suggest pgACC exerts its influence on behav-

ioral motivation via interactions with striosomes, which are

prominent in the ventral striatum, through a well-described

anatomical circuit (Friedman et al., 2015; Kolling et al., 2012).

In the current experiment, participants paid a cost to make

each search decision. The cost also dissuaded participants

from engaging in a search sequence (Figure 3A); however,

when there was an increased need to overcome costs, activity

in ventral striatum and pgACC was more strongly coupled

(Figure 7D).

These results suggest pgACC plays a prominent role in moti-

vating choices, yet it is relatively little discussed in the context

of motivation and decision making in human fMRI experiments.

This may be because, unlike dACC, pgACC activity does not

vary significantly with prospective value. Nevertheless, it is

active each time a decision is taken and its importance is under-

lined by examination of individual differences in decision making

(Figures 6B and 6C; Gusnard et al., 2003; Kolling et al., 2012).

The pgACC is distinct from more ventral granular prefrontal



regions such as areas 14 and 10 concernedwith other aspects of

reward-guided decision making (Neubert et al., 2015).
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METHOD DETAILS

Participants
25 participants (11 female), aged 21-36 years, completed the task inside the FMRI scanner. All participants were paid £10 plus a per-

formance-dependent bonus of between £5-11. Ethical approval was given by the Oxford University Central University Research

Ethics Committee (CUREC) (Ref-Number: MSD-IDREC-C1-2013-095). One person was excluded from all neural analyses because

a break in the middle of scanning resulted in difficulties in concatenating the multiple fMRI scans for pre-processing and analysis.

Behavioral data from all participants was included in all analyses. Additionally, 51 participants (32 female), aged 21 to 40 years,

completed an online version of the task, collected via Prolific.ac. The experiment was coded in JavaScript and the study was run

using JATOS (Lange et al., 2015), using surveyJS (Devsoft Balitc OU) for questionnaire collection. Participants were paid £6.25

plus a performance dependent bonus between £0-2. Ethical approval was given by the Oxford University CUREC (Ref-number:

R54722/RE001). No participants were excluded from all analyses, but some participants were excluded from some analyses if their

data did not permit analysis, e.g., if for regression analyses of just the first decision on each trial, participants did not show enough

variation in their behavior to fit the regression models—or if their behavioral measure was an outlier (cut-off was defined as mean ± 3

standard deviations). The number of participants included is provided for each analysis separately.

Training
For the group of FMRI participants: before the main task began, participants were given written instructions and trained on 20 trials

with the experimenter in the room. Theywere allowed to ask questions. As soon as they understood the task they began themain part

of the experiment consisting of 160 trials. For the online participants: training was automated so that participants read through in-

structions, followed by 5 training trials. They then completed a multiple-choice test, assessing task understanding. If they did not

respond correctly to all questions, the training was repeated. 42 participants passed the multiple choice test on the first attempt

and 9 participants on the second attempt. Participants then completed 200 trials of the main task.

Experimental Task
Participants had to make decisions between choice options represented by visual tokens shown on a computer monitor that were

associated with different values of monetary payment to be paid at the end of the experiment. On each trial, participants were shown

one option that we refer to as the ‘‘offer.’’ Its value was defined by the position of the dial of a clock-like stimulus (two different colors

were used to indicate two different currencies, one being twice as valuable as the other; value range = 5 to 280 points). We used dials

to indicate value; wewanted to give participants an intuitive sense of valuewithout showing numbers explicitly. We used two colors to

represent different currencies to further increase the range of option values. This allowed us to show very large but very rare outcome

values. The presence of such options on some trials is important because participants pursue such options when many searches

were available. The offer was the default option that the participants would have unless they decided to search for a better alternative
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instead. They were told that if they decided to search a new offer would be randomly drawn from the alternatives with replacement.

There were between two and six alternatives in each trial.

Specifically, if participants decided to engage and stay with an offer, and pressed the corresponding button, they would proceed to

the next stage of the trial. If, however, they pressed the other button and thus decided to search, one out of the alternatives was pre-

sented to them as their new offer. The probability of each alternative being drawn was equal to the proportion of the overall area for

alternatives occupied by that particular alternative (Figure 2Ai). In other words, alternatives occupying large areas were more likely to

be drawn than the ones occupying small areas.

Every time the participants opted to search they incurred the fixed cost within a given trial. However, across trials the costs varied

across three levels, none (zero points), low (six points) and high (twelve points). The costs were indicated to participants by ‘‘Costs:

none,’’ ‘‘Costs: low’’ or ‘‘Costs: high’’ being shown on the computer monitor.

Participants could search only a maximum number of times indicated by a number next to the alternatives. The maximum number

of searched varied between trials (initial values were between one and ten searches).

At the decision stage the alternatives and the search horizon were presented together and the costs and current offer were pre-

sented separately. The order in which the information was presented was randomized across trials. Each piece of information was

presented for a certain duration before the next piece was also revealed, with the duration between presentations drawn randomly

from a Poisson distribution that depended on the feature revealed. The mean duration for the presentation of information about the

alternatives and number of searches was 4.2 s (range 3.8–4.8 s, standard deviation [SD] 0.2 s). For information about the costs and

current offer the duration was 1.2 s (range 0.8–1.7 s, SD 0.2 s). Only after all three presentation stages could a choice bemadewhen a

question mark appeared on the screen after on average 2.8 s (range 0.2–13 s).

After the first decision, if the offer was selected, the frame surrounding the offer would turn yellow and the frames around the

alternatives turned red to indicate the choice the participant had taken. It remained this way for, on average, 4 s (SD = 1.8 s). If

however, search was chosen then, on average, after 4 s (SD = 1.8 s), the new offer was revealed and subsequently a series of further

search decisions could bemade at 200ms intervals until all the opportunities for searching had run out or the participant had decided

to keep an offer.

Regardless of whether searches had been made or not, in the last stage of the trial, the offer currently held was shown alone in the

middle of the screen for a further 3.9 s (range 2–7.2 s, SD 1.3 s) after which the outcome was presented (win or lose) for another 1.5 s

(range 1.1–2.1 s, SD 0.2 s). There was always a 50% chance of winning in this stage that was independent of the participants’ pre-

vious choices. Participants were instructed about this and furthermore to ensure its credibility, all past wins and losses were counted

and presented to the participants at the outcome time, to reassure them that losses andwins averaged out at about 50%. Thismanip-

ulationmeant that neural activity associatedwith the decision timewas not confoundedwith participants having certain knowledge of

reward receipt. Instead, reward receipt related activity should only occur at the outcome.

This was followed by an inter-trial-interval (ITI) until the next trial started. The ITI was, on average, 4 s (range 2–7.2 s, SD 1.3 s).

Task differences in the online study
As participants could only be given standardized task instructions, rather than ‘‘in person’’ instructions by the experimenter, the

graphic layout was changed: the alternatives were represented on a ‘‘wheel of fortune’’ and ‘‘searching’’ was referred to as ‘‘spinning

the wheel.’’ Instead of using the symbols for currencies and cost as before, we used explicit numbers. The outcome phase, with the

50% probability of getting the accepted offer, was omitted as no neural data were acquired. The timings of the task were sped up to

maintain motivation and task engagement: delay before the first response ranged from 3 to 6 s (uniform distribution); delay between

decisions to search and new offer: 0.3–2 s (uniform distribution); delay to next trial: 1.5 s (fixed). To ensure that despite these differ-

ences in task design, behavior was nevertheless comparable, all analyses from the main manuscript were replicated (Figure S3).

Questionnaires
In the online sample only, participants completed an extensive debriefing questionnaire to gain additional insight about their behav-

ioral strategies after the behavioral task. The questions reported in the main manuscript were: Q8) ‘‘Howmuch did you take the likeli-

hood of getting your preferred outcome eventually (even if not on the first spin) into account?’’ (answers in 7 numerical steps from ‘‘not

at all’’ to ‘‘very much’’); Q9) ‘‘In the beginning of each round, did you feel like you only thought about the very first spin or did you plan

further ahead?’’ (possible answers: ‘‘no planning’’, ‘‘very first spin’’, ‘‘2-3 spins’’, ‘‘4 spins’’, ‘‘5 or more spins’’) [note that for ease of

explanation, in the version of the task for the online participants, decisions to search were referred to as ‘‘spins’’ of a ‘‘wheel of for-

tune’’]; Q10) ‘‘Were there ever any offers that you banked later in a round that you would not have banked at the beginning of a

round?’’ (answers in 7 steps from ‘‘never’’ to ‘‘always’’) [note that in the version for the online participants, decisions to accept an

offer were referred to as ‘‘bank an offer’’]; Q12) ‘‘Did you ever feel like you continued spinning the wheel just because you had

spun the wheel already this round, rather than because you really thought this was the right thing to do?’’ (answers in 7 steps

from ‘‘never’’ to ‘‘always’’) [note that in the online sample, trials were referred to as ‘‘rounds’’ in a game]. Q13) ‘‘Did you ever avoid

starting spinning the wheel in the first place in a round because you were worried that you might end up spinning it too many times?’’

(answers in 7 steps from ‘‘never’’ to ‘‘always’’). Participants also completed various psychiatric questionnaires that were not analyzed

for this manuscript.
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Computational model
The aim of the model is to compute the value of searching taking into account the possibility for future searches given the current

search horizon (available number of searches), the alternatives’ properties, and search costs. This model-based value can then

be compared to the current offer to make the decision of whether to accept the offer or to search for a better alternative. To find

the value of searching, the model simulates a series of full decision trees, each time applying a different acceptance-threshold,

i.e., a value above which it would accept a new offer and otherwise reject it to search again. Examples of decision trees are shown

in Figure S1. For each end-state of the decision tree (i.e., ‘‘branch’’), themodel computes the probability of this state given the accep-

tance-threshold. It thenmultiplies this probability with the reward value of the end-state outcome (taking into account both the reward

received and the cost of the number of searches taken to get to this point). The value of searching (VSearch) thus becomes:

VSearch=
XmaxSearch�1

s= 1

h
pðSearchÞs�1 � ðAcceptUtility� s � cost � pðAcceptÞ

i

+pðSearchÞmaxSearch�1 � ðMyopic utility�maxSearch � costÞ
Where p(Search) is the probability of searching which is equivalent to the summed probabilities of the alternatives below a given

acceptance threshold. P(Accept) is the opposite: the probability of not searching and instead accepting an alternative in the decision

tree (i.e., an offer that is received). MaxSearches corresponds to the search horizon: the maximum number of searches possible in a

trial and therefore the depth of the decision tree. Cost is the point loss incurred for every search decision on a given trial (Figure S1A

illustrates a step-by-step derivation of the formula). Note, the model also employs a changing acceptance-thresholds at each search

step; it allows for different p(Search)and p(Accept) for every step in the sequence (or level of the tree; Figure S1B). The term s cor-

responds to the search number within the tree (e.g., s = 1 is the first search in an environment).

Regression analyses
Weperformed regression analyses, predicting either participants’ decisions to reject an offer and search (i.e., draw a new alternative)

or their reaction times. See Table S1 for a concise list of all regressions. We performed regressions on three different subsets of trials:

First we included all responses throughout all trials in the analysis (bGLM1a-e). Second to examine behavior during the sequence of

search decisions that occurred after the initial decision to undertake a sequence, we carried out a similar analysis but included only

the responses after the initial one on each trial (bGLM2-4). Third, we carried out the complementary analysis and focused only on the

initial decision whether or not they undertake a sequence; this analysis included only the very first response on each trial (bGLM5). To

analyze decisions, we used a logistic regression. To analyze reaction times, we used a log link function and a gamma distribution

(model comparisons suggested this combination as the best fit for our reaction time data). Regressions were performed in MATLAB

(glmfit). In the reaction time analyses, we also included a separate regressor to indicate whether a search was the first one in a trial as

reaction times were markedly different between the first and subsequent searches (Figures 2C and S3A). All regressors were z-score

normalized. Regression analyses were performed separately for each participant. Regression weights were tested for significance at

the group level using t tests.

Analysis of all decisions
The main aim of the analyses was to test whether participants’ behavior was influenced by prospective and myopic values

(Figure 3A):

bGLM1a:

logit Yð Þ= b0 + b1 OfferValue+ b2 SearchCost + b3 MyopicValue+ b4 ProspectiveValue

We also tested whether people really planned their future behavior or whether instead they used some simpler non-prospective heu-

ristic. For this, we built two models in which we included different non-prospective heuristics participants could use instead of the

model-derived prospective value. To test whether prospective value explained behavioral variation beyond those heuristics, we

included prospective value as an additional regressor. In the first of these models, we included as non-prospective heuristics:

bGLM1e:

logitðYÞ= b0 + b1OfferValue+ b2SearchCost + b3MyopicValue+ b4HighestAvailableMagnitude+ b5MagnitudeRange

We then tested whether prospective value still had a significant impact on behavior when controlling for these other factors. To sup-

plement the t test of the regression weight for prospective value, we performed amodel comparison: to test whether themodel fit was

improved by including prospective value in addition to a simpler heuristic, we ran another regression (bGLM1e2) including all regres-

sors from bGLM1e, and additionally the prospective value. Model fits were then compared using Akaike’s information criterion (AIC).

We plot the AIC difference scores (between the twomodels of interest) for each participant. We also compute the total AIC difference

scores, i.e., by summing across all searches done by all participants.

For the construction of a similar additional set of non-prospective heuristics (see Figure S2), we noted that for example prospective

value as estimated from a decision tree is a non-linear function of search horizon and the variation, indexed by standard deviation, in

the values of the alternatives (participants can keep searching for one exceptional high value alternative or reject really bad outcomes
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if the search horizon is long andmany opportunities to search again remain). Nevertheless prospective value can be approximated by

the linear effects and interactions of search horizon, standard deviation of alternative values, and costs. We therefore examined

whether the model-derived estimate of prospective value explained search decisions over and above the linear effects of search ho-

rizon, standard deviation of alternative values, and costs in the following GLM:

bGLM1b:

logitðYÞ=
b0 + b1OfferValue+ b2SearchCost + b3MyopicValue+ b4ProspectiveValue+ b5AvailableSearches
+ b6Standard deviation of patches ðSTDÞ+ b7½AvailableSearches � EnvironmentStdev�
+ b8½AvailableSearches � SearchCost�

where the variance (i.e., square of the standard deviation) of the options in the environment (standard deviation of patches, STD) was

computed (for n options in an environment) as:

Xoption= n

option= 1

h�
Magnitudeoption �Magnitudeaverage

�2 � Probabilityoption
i

Model fits were compared as described above.

As a third alternative strategy that participants might use instead of computing prospective value, we considered an ‘‘effortless’’

strategy, i.e., that participants would always reject an offer unless it was the highest, apart from on the second to last available search

in a trial in which they would accept anything that was not the lowest offer:

logit Yð Þ= b0 + b1OfferisHighestAndNotLastSearch + b2OfferisNotLowestAndLastSearch

Results of these analyses are shown in Figures 3A and S2.

Finally, we performed regressions to decide how best to include myopic value in the analyses of the neural data. Instead of

includingmyopic value as a single regressor, we split it into two separate regressors carrying themyopic value of the threemost likely

alternatives and the rest (the main effect of whether there were more than three alternatives was removed through z-scoring of the

second regressor for only trials with more than three alternatives, otherwise it was set to zero). We did this because in the task, the

number of available alternatives was varied between 2 and 6 and we wanted to assess how this affected the use of less likely aspects

of the alternatives when computing the average. In bGLM1c we thus included:

logitðYÞ= b0 + b1OfferValue+ b2SearchCost + b3Myopicvalueðthree most likely alternativesÞ
+ b4Prob Myopicvalueðremaining alternativesÞ+ b5ProspectiveValue

Results of this analysis are shown in Figure S4.

Analysis of later decisions
In these analyses we tested whether decision and reaction times in searches after the very first one in each environment.

The first aim of the analyses performed on the later decisions in each trial was to assess whether participants adjusted their search

values over the course of a trial (as there were fewer and fewer searches remaining) and whether they were biased to either under or

over persevere. For this we included two new regressors. The first was howmany searches participants had already performed on the

current trial. This should not influence their decisions to search or accept per se because all variables that should rationally influence

their decisions were also included in theGLM. The secondwas howmuch the prospective value on the current search was lower than

at the first search. Given that themodel also included a regressor of prospective value at the first search, then participants who adjust

their prospective value as it decreases with fewer searches remaining should show a negative regression weight for the difference

between initial and current prospective value (value is always positive or zero). This is because the regressor should capture the

updating of prospective value over the course of a trial.

bGLM3a:

logitðYÞ= b0 + b1OfferValue+ b2SearchCost + b3Myopicvalue+ b4ProspectiveValueInitialSearch

+ b5ðProspectiveValueInitialSearch � ProspectiveValueCurrentSearchÞ+ b6NumberOfPreviousSearches

Finally, we were interested in whether participants only computed the prospective value at the initial search and how it might change

and then, instead of recomputing full decision trees at every subsequent search, use the initial value and discount it as they progress

through the search sequence. First, we note that an exponential function approximates the effect that number of searches has on the

decrease in prospective value over the course of a trial (Figure 3B). Based on this, we took all prospective values for all searches

shown to participants and fit an exponential curve to them, separately for different cost levels, in order to get an empirically derived

discount function:

ProspValcurrentSearch =ProspValinitialSearch � ed�
�

Searchesdone
Searchesmax�1

�
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Where d are the discount factors that we determined from the data (separately for different search costs). We note that this analysis is

solely based on what was shown to participants, not on the choices they made. The very strong correlations between prospective

value derived in this way and the precise model-based tree-search derived prospective value are shown in Figure S2D.

To test whether this approximation of the prospective value changing within a sequence explained our data better than the precise

model-based tree-search derived prospective value, we ran two regressions (bGLM4a+b) that contained as regressor of interest

either the true prospective value or the exponential curve-based approximation (in both cases all other regressors were as in

bGLM1a). We compared the fits of these models using AIC.

Analysis of initial decisions
Finally we also looked at initial decisions in each trial. We wanted to test whether participants even at the first decision in a sequence,

anticipated whether the subsequent search sequencemight be taxing because it required readjustment of the search value. To index

this we included a regressor of interest corresponding to the average change in search value within a trial. We reasoned that

participants might be less likely to begin searching if they knew that they would have to adapt their search strategy in the future.

This potential change in prospective value per search was computed as:

AvgProspValueChange=
ProspValSearch1 � ProspValMaxSearches�1

MaxSearches

We used the prospective value at the second to last search, because at the last search on each trial the prospective value is always

zero and so there are no remaining searches to be prospective with. The prospective value at the first search is always higher than

at later searches. Therefore, the value of AvgProspValueChange is always positive. In the regression, we predict that if people pre-

emptively avoid such taxing search sequences then their regression weight for AvgProspValueChange should be negative.

bGLM5a:

logit Yð Þ= b0 + b1OfferValue+ b2SearchCost + b3MyopicValue+ b4ProspectiveValue+ b5AvgProspValueChange

Validation of the regression analyses by simulation
To validate that our regression analyseswere both sensitive if the effect of interest was present in our data and at the same timewould

not show a false positive effect if there were no effect in our data, we used simulations (Palminteri et al., 2017). This analysis step was

alsomotivated by the fact that we noticed that some regressors showed high correlations and we therefore wanted to ensure that our

analyses were nevertheless valid. In each case, we used a computational model to simulate data from 25 participants (same size as

real dataset, FMRI sample) that made choices on each trial (using a standard soft-max decision rule) based on the same information

as our real participants. Figures S2F–S2I illustrates details of all the simulations performed to verify the different regressions. We

found that all our regression analyses were both sensitive to the presence of effects of interest but in addition they were selective;

they showed no false positives.

Analyses of debriefing questionnaires (online sample only)
We tested whether subjectively reported awareness of a bias to over-persevere (Q12) moderated the relationship between over-

perseverance (measured in the behavioral regression analysis of the later searches, bGLM3a, as regression weight for ‘‘number

of previous searches’’) and pre-emptive avoidance (measured in the behavioral regression analysis of the first search on each trial,

bGLM5a, as regression weight for ‘‘average prospective value change’’). The moderation analysis was done as a regression analysis

across participants predicting pre-emptive avoidance (behavioral regression weight) based on over-perseverance (behavioral

regression weight), awareness of over-perseverance (questionnaire rating) and the interaction of the two regressors (i.e., the

moderator effect); all regressors were z-score normalized and to compute the interaction regressor, both regressors were z-score

normalized before being multiplied together.

Preemptive avoidancebehavioral = b0 + b1Overperseverancebehavioral + b2Overperseverancequestionnaires + b3Overperseverancebehavioral

�Overperseverancequestionnaires

To illustrate themoderation affect, we performed a second analysis again predicting pre-emptive avoidance and including as regres-

sors of interest separately the behavioral over-perseverance for participants who reported no awareness of over-persevering and for

the remaining participants. As control regressor, we again included the questionnaire score for awareness of over-perseverance.

MRI data acquisition
Structural MRI and fMRI measurements were taken using a Siemens 3 T MRI scanner. For the fMRI, we used a Deichmann echo-

planar imaging (EPI) sequence (Deichmann et al., 2003) [time to repeat (TR): 3000 ms; 3x3x3mm voxel size; echo time (TE): 30ms;

flip angle: 87�; slice angle of 15� with local z-shimming] to minimize signal distortions in orbitofrontal brain areas. This entailed orient-

ing the field-of-view at approximately 30� with respect to the AC-PC line. We acquired between 1252 and 1724 volumes (depending

on the time needed to complete the task) of 45 slices per participant. Additionally for each participant, anatomical images were
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acquired with a T1- weighted MP-RAGE sequence, using a GRAPPA acceleration factor of 2 (TR: 2200 ms; TE: 4.53 ms; inversion

time: 900ms; voxel size: 1x1x1 mm on a 176x192x192 grid) [same protocol as Chau et al., 2014].

We used FMRIB’s Software Library (FSL) (Smith et al., 2004) for image pre-processing and analysis. Analyses were run on a local

computer using HTCondor and code from Neurodebian (Halchenko and Hanke, 2012) to share analyses across cores. Functional

images acquired were first spatially smoothed (Gaussian kernel with 5mm full-width half-maximum) and temporally high-pass filtered

(3 dB cut-off of 100 s). Afterward, the functional data were manually de-noised using probabilistic independent component analysis

(Beckmann and Smith, 2004), identifying and regressing out obvious noise components (Kelly et al., 2010); we considered only the

first 35 components of each participant which had the greatest potential to interfere with task data (total up to 550).We used the Brain

Extraction Tool (BET) from FSL (Smith, 2002) on the high-resolution structural MRI images to separate brain matter from non-brain

matter. The resulting images guided registration of functional images in Montreal Neurological Institute (MNI)-space using non-linear

registrations as implemented in FNIRT (Jenkinson et al., 2012). The data were pre-whitened before analysis to account for temporal

autocorrelations (Woolrich et al., 2001). Statistical analysis was performed at two levels. At the first level, we used an event-related

general linear model (GLM) approach for each participant. On the second level, we used FMRIB’s Local Analysis of Mixed Effects

(FLAME 1) (Beckmann et al., 2003) with outlier de-weighting and tested the single group average. The main effect images are all

cluster-corrected results with the voxel inclusion threshold of z = 2.7 and cluster significance threshold of p = 0.05.

Whole-brain fMRI analyses
In the fMRI analysis we looked for neural signals related to how participants made the first decision on each trial. In fGLM1 our two

regressors of interest were the prospective value and the myopic value, time-locked to the decision. However, a number of other

control regressors were also employed.

First, we used three regressors to denote the occurrence of three phases within each trial: decision phase (when participants first

decides to take the offer or search for a better alternative); search phase (when participants moved through a sequence of searches);

outcome phase (delivery or non-delivery of the reward probabilistically). These were modeled with a stick regressor for the ‘‘decision

phase’’ (i.e., duration of 0), a box car regressor for the ‘‘search phase’’ (from beginning to the end of the search period; average =

3.4 s), and finally a box car regressor for the outcome phase (from beginning to end of this period; average = 1.5 s). Second, a number

of parametric regressors were used at the time of each trial phase. For the decision phase all parametric regressors were stick figures

locked to the onset of the decision period and all with the same duration of zero as the decision phase regressor described above.

They included: the value of the initial offer, the myopic value (separately for the 3 most likely options and the remaining very unlikely

options, see Figure S4 for the argument for this and description of bGLM1c above)-, the decision cost, the natural logarithm of par-

ticipants’ RTs, the prospective value, the standard deviation of the values of the options in the environment (as defined above) and the

difficulty of the decision. Difficulty was defined as the negative of the absolute distance from indifference (50/50 choice prediction)

between searching and staying, often referred to a choice uncertainty:

difficulty = � absðpðsearchÞ � 0:5ÞÞ:
For this, the probability of searchingwas obtained using a standard soft-max decision rule whereby all choices each participantmade

were predicted based on the difference in search value and offer value, allowing also for an individual bias to search independent of

search value:

pðSearchÞ= eb�ðValueSearch +SearchBiasÞ

eb�ðValueAcceptÞ + eb�ðValueSearch +SearchBiasÞ

where b is the inverse temperature.

This two-parameter model was fitted separately to each participant’s data using MATLAB’s fminsearch. In the search phase

parametric regressors had the duration of the search phase and included: the final offer that participants accepted, the myopic value

(again, split into two separate regressors), the cost of searching, the prospective value, the number of searches done, and the stan-

dard deviation of the values of the options in the environment. In the outcome phase, the parametric regressor had the duration of the

outcome phase and included: the prediction error (i.e., themagnitude of the reward outcome participants actually receivedminus the

final offer value). We also included six motion regressors as derived from FSL’s motion correction algorithm as confound regressors.

In a second analysis (fGLM2), we tested for the neural correlates of potential future changes in prospective value. We therefore

included the regressor AvgProspValueChange (computed as described above) in addition to all the regressors detailed for

fGLM1. Correlations between regressors are shown in Figure S7D. To see whether the neural signals identified for prospective value,

or future change in prospective value related to behavioral measures, we performed fGLM2b. Here, at the group level, we included for

each participant their (z-scored) regression weights for prospective value and AvgProspValueChange (both from bGLM5 as

described above).

Computing overlap between prospective and myopic activity
To quantify the amount of overlap between myopic and prospective value in dACC, dlPFC and posterior cingulate cortex, we used

anatomical masks for these regions (Neubert et al., 2015; Sallet et al., 2013). Specifically for dACC, we included the rostral cingulate
e6 Neuron 99, 1069–1082.e1–e7, September 5, 2018



zone and area 32d (Neubert et al., 2015); for posterior cingulate cortex, we included area 23ab (note that its posterior boundary was

determined by the posterior limit of the region investigated by Neubert and colleagues, 2015) while the dlPFC region included areas

8b and 9/46d (Sallet et al., 2013). In these masks, we calculated the number and percentage of voxels for each contrast that ex-

ceeded p < 0.05 or p < 0.01 as well as the percentage of voxels that showed significant activity related to both of the contrasts,

myopic value and prospective value, independently. Analyses were done in FSL (FEAT), including the respective masks for pre-

threshold masking and using uncorrected thresholds (i.e., no correction for the number of voxels in each ROI to facilitate comparison

between the ROIs that were differently sized).

ROI time course and inter-regional activity correlation analyses
To illustrate the time course of the activity identified in the whole brain analyses and to measure connectivity between brain regions,

we analyzed data in regions of interest. A detailed graphical depiction of the approach is provided by Scholl and colleagues’ (Scholl

et al., 2017a) Figure S6. In short, we extracted data from ROIs, which were spheres with a 3 voxel radius (6 mm3), identified in MNI

standard space. We then up-sampled the time course data by a factor of 10 and cut the data into epochs aligned to the onset of the

decision phase. All regressors as described above in the decision phase were included. Any time courses which were extracted from

non-orthogonal contrasts are for illustration purposes only and no statistical testswere performed. Time courseswith statistical tests,

were either based on anatomical ROIs (such as RCZa) or based on orthogonal contrasts (connectivity effects). To test connectivity

between brain areas, we used psycho-physical interaction (PPI) analyses.We note that as the connectivity analyses are orthogonal to

the main effects used to identify the ROIs, there are no problems of biased sampling. In the first analysis we tested whether connec-

tivity between dACC and dlPFC (which both showed activity with prospective value) varied with prospective value, but not with

myopic value. For this we extracted the BOLD signal based on activity peaks in dACC and dlPFC. We created two separate regres-

sors: we separately included dACC activity on the half of trials when prospective value was high or low (median split). As control re-

gressors we included the same psychological regressors as described above, as well as the average time course from the whole

brain. We then formed the contrast between the regression weights for the trials of high versus low prospective value, to determine

when the correlation in brain signal between the two areas changed as a function of prospective value. For statistical testing to remain

unbiased in peak selection or by the exact temporal profile of the PPI effect, we used a leave-one-subject-out procedure to find the

peak time (within a window of 0.5 to 12 s) for all but the left out subject. For the left out subject we then noted down the regression

weight at that time point. This was repeated 25 times, each time leaving out a different participant. We repeated this analysis for split-

ting trials according to myopic value. Very similarly, for statistical tests of the time courses of the impacts of regressors on BOLD

activity (e.g., as shown in Figure S9), we also used a leave-one-out procedure. The only difference was that instead of extracting

just the BOLD value for each participant at the peak time point (based on the peak of the remaining participants’ activity), we use

hemodynamic convolution, as previously described (Scholl et al., 2017a). In the second PPI analysis, the psychological regressor

of interest used to split the data into two categories was the cost level (either no search costs or costs) and the brain areas of interest

were the bilateral perigenual ACC and the bilateral striatum, both identified anatomically. To test whether there is a connectivity effect

when the cost needs to be overcome we have a later time window (4.5 to 12 s). The pgACC ROI was the prelimbic area 32 (p32) in the

anatomical parcellaton of Neubert and colleagues (Neubert et al., 2015; threshold at 25%) and the nucleus accumbens ROI in the

ventral striatum from the Harvard-Oxford atlas (threshold at 25%) from the FMRIB software library (FSL) (Smith et al., 2004).
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Supplementary	information	
	

	 	
	
Figure	 S1.	 Decision	 tree	 to	 compute	 search	 value,	 Related	 to	 Figure	 1.	 A)	 Illustration	 of	 how	 the	
computational	model	 computes	 the	 expected	 value	 of	 searching	given	a	 single	 example	 threshold.	 In	 this	
example	there	are	four	alternatives	with	magnitude	A≥B≥C≥D	and	the	number	of	available	searches	is	four.	
The	model	is	run	for	each	possible	acceptance-threshold	(≥A	(accept	A	only),	≥B	(accept	A	or	B),	≥C	(accept	
A,	B	or	C),	≥D	(accept	A,	B,	C	or	D).	Here	we	illustrate	the	calculations	if	the	acceptance-threshold	is	≥B.	The	
key	point	is	that	to	compute	the	expected	utility	of	searching	at	search	one,	the	model	has	to	compute	the	
sum	of	all	the	branches	in	the	decision-tree:	
	
			p(A)*(mag(A)-cost)	+	p(B)*(mag(B)-cost)	
+	p(Search)1*[p(A)*(mag(A)-2*cost)+p(B)*(mag(B)-2*cost)]	
+	p(Search)2*[p(A)*(mag(A)-3*cost)+p(B)*(mag(B)-3*cost)]	
+	p(Search)3*[p(A)*(mag(A)-4*cost)+p(B)*(mag(B)-4*cost)+p(C)*(magC-4*cost)+p(D)*(magD-4*cost)]	
	
with	p(Search)	=	p(C)+p(D)		
Or	equally:	pSearch	=	(1-	(p(A)+p(B)),		as	A,	B,	C	and	D	have	a	combined	probability	of	1	
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To	simplify	these	equations,	we	can	use:	
	
p(Accept)	=	p(A)	+	p(B),	and	
AcceptUtility	=	p(A)*mag(A)	+	p(B)*mag(B)			
Myopic	utility	=	p(A)*mag(A)	+	p(B)*mag(B)	+	p(C)*mag(C)	+	p(D)*mag(D)	
	
The	search	value	at	search	step	one	then	simplifies	to:	
		
		p(Search)0*(	AcceptUtility	–	cost*	p(Accept))	
+	p(Search)1*(	AcceptUtility	–	2*cost*	p(Accept))	
+	p(Search)2*(	AcceptUtility	–	3*cost*	p(Accept))	
+	p(Search)3*(	Myopic	utility	–	4*cost)	
	
Generalizing	this,	we	obtain	the	following	expression	for	the	value	of	searching	(as	described	in	Methods):	
	

𝑉𝑆𝑒𝑎𝑟𝑐ℎ =  𝑝(𝑆𝑒𝑎𝑟𝑐ℎ)!!! ∗ (𝐴𝑐𝑐𝑒𝑝𝑡𝑈𝑡𝑖𝑙𝑖𝑡𝑦 − 𝑠 ∗ 𝑐𝑜𝑠𝑡 ∗ 𝑝(𝐴𝑐𝑐𝑒𝑝𝑡)
!"#$%"&'!!!

!!!

+ 𝑝(𝑆𝑒𝑎𝑟𝑐ℎ)!"#$%"&'!!!

∗ (𝑀𝑦𝑜𝑝𝑖𝑐 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 −𝑚𝑎𝑥𝑆𝑒𝑎𝑟𝑐ℎ ∗ 𝑐𝑜𝑠𝑡)	
	
B)	Example	of	full	range	of	possible	acceptance-threshold	combinations	for	the	same	foraging	environment	
as	shown	in	A).	We	can	re-apply	the	same	computations	as	detailed	 in	A)	 for	all	possible	combinations	of	
acceptance	thresholds.	This	takes	into	account	that	it	is	possible	that	acceptance	thresholds	change	over	the	
course	 of	 a	 trial,	 in	 other	 words	 that	 a	 value	 that	 should	 be	 rejected	 when	 there	 are	 many	 searches	
remaining,	 should	be	accepted	with	 fewer	researches	 remaining.	We	know	 from	human	behavior	 (fig	3C)	
that	people	indeed	decrease	their	estimate	of	the	prospective	value	over	the	course	of	repeated	searches	in	a	
trial.		
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Figure	S2.	Dissociating	prospective	value	 from	non-prospective	heuristics,	Related	to	Figure	3.	In	
the	main	text	(figure	3Aii-iii),	we	found	that	a	model	using	prospective	explained	participants’	choices	better	
than	 two	alternative	models	using	non-prospective	heuristics.	Here	we	are	 testing	an	additional	model	of	
non-prospective	heuristics.	These	included	the	search	horizon,	i.e.	the	number	of	available	searches	(#Avail	
Searches),	the	standard	deviation	of	the	values	of	the	alternative	options	(STD),	the	interaction	between	the	
standard	 deviation	 of	 the	 values	 of	 the	 alternative	 options	 and	 the	 number	 of	 available	 searches	 (STD	 x	
#Avail	 S)	and	 finally	 the	 interaction	between	 the	number	of	available	 searches	and	 the	 cost	of	 searching	
(#Avail	S	x	Cost).	We	included	these	non-prospective	heuristic	regressors	in	a	regression	analysis	to	predict	
search	decisions	as	opposed	to	accept	decisions	(bGLM1b).	A)	We	orthogonalized	the	prospective	value	with	
respect	to	all	other	regressors	in	the	GLM	it	(i.e.	we	removed	any	variance	from	prospective	value	that	was	
shared	with	the	other	regressors)	to	test	whether	the	model-derived	prospective	value	provided	additional	
explanatory	power	even	after	considering	the	influence	of	the	simpler	heuristics.	We	found	prospective	value	
remained	a	highly	significant	predictor	of	behavior	(red	bar	on	far	right;	t24=4.664;	p<0.001).	We	note,	that	
(unsurprisingly)	the	same	result	was	found	when	prospective	value	was	not	orthogonalized	before	inclusion	
in	the	GLM.	This	control	analysis	provides	evidence	that	people	indeed	decided	whether	to	search	or	not	by	
taking	into	account	future	decision	states	that	might	become	available	and	that	they	did	not	exclusively	rely	
on	simple	non-prospective	heuristics.	B)	The	same	result	can	be	found	using	model	comparison,	analogous	
to	figure	3Aii,	(summed	AIC	difference	=	35.4).	Note	that	in	12	participants	the	prospective	value	improves	
the	fit,	while	in	13	it	does	not,	suggesting	heterogeneity	in	the	degree	to	which	participants	use	prospective	
value.	C)	To	test	statistically	whether	reaction	times	(RT)	on	the	first	search	were	slower	than	on	subsequent	
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searches	 –	 as	 suggested	 by	 the	 historgram	 in	 figure	 2C	 –	we	 ran	 a	 regression	 analysis	 on	 the	 RTs	 of	 all	
searches	 in	 each	 trial	 (bGLM1a).	We	 found	 that	 the	 first	 search	 on	 each	 trial	 (‘search	 1’)	was	markedly	
slower	than	subsequent	searches	(t24=7.40,p<0.001).	This	suggests	that	participants	do	not	go	through	the	
time-consuming	process	of	recomputing	a	full	decision	tree	at	later	searches	in	the	trial.	D)	As	shown	in	the	
main	text	(figure	3B),	the	decrease	of	prospective	value	over	the	course	of	a	trial	follows	an	approximately	
exponential	curve.	Exploiting	this	 feature,	we	approximated	the	prospective	value	on	 later	searches	as	an	
exponentially	decaying	function	of	the	initial	prospective	value	and	the	number	of	searches	done	in	the	trial	
(see	Methods,	section	on	’analysis	of	later	decisions’).	There	was	a	very	strong	correlation	between	the	true	
prospective	value	and	the	approximation	fitted	with	this	approach	(r=0.97,	p=3.8*10-262).	This	thus	suggests	
that	 participants	might	 use	 a	 similar	 approximation	 to	 allow	 them	 to	 compute	 the	 prospective	 value	 on	
later	 searches	without	having	 to	 recompute	a	 full	decision-tree.	E)	We	 tested	 this	by	performing	a	model	
comparison	of	two	regression	analyses	predicting	RTs	(bGLM4a	and	bGLM4b)	that	only	differed	in	whether	
prospective	 value	 was	 the	 true	 prospective	 value	 from	 the	model	 or	 the	 exponential	 approximation.	We	
found	 some	 evidence	 that	 the	 exponential	 approximated	 prospective	 value	 explained	 the	 data	 better	
(summed	AIC	difference	=	16.1,	better	fit	in	16/25	participants).	***	p<0.001;**p<0.01,	*p<0.05.	F	to	H)	To	
validate	 that	 the	 regression	 analyses	 that	 we	 performed	 on	 the	 behavioral	 (decision)	 data	 were	 both	
sensitive	 to	 the	 presence	 of	 the	 effects	 of	 interest,	 and	 at	 the	 same	 time	 sensitive	 to	 the	 absence	 of	 such	
effects	we	simulated	data	from	models	that	either	did	or	did	not	have	the	effect	of	interest	as	a	ground	truth	
(see	 Methods,	 section	 ‘Validation	 of	 regression	 analyses	 by	 simulation’).	 In	 each	 case,	 we	 used	 a	
computational	model	to	simulate	data	from	25	participants	that	made	choices	based	on	the	offer	currently	
presented	on	the	screen	and	the	search	value	derived	from	the	optimal	decision-tree	model	(figure	S1)	and	
different	 other	 additions,	 described	 below.	 We	 then	 performed	 the	 same	 regression	 analyses	 on	 the	
simulated	data	from	the	different	models	as	we	did	on	the	data	of	the	real	participants.	F)	We	validated	the	
sensitivity	of	bGLM1b	(figure	S2),	 i.e.	 the	regression	analysis	 to	show	that	participants	used	a	prospective	
value	 derived	 from	 a	 decision-tree	 search,	 rather	 than	 using	 a	 simple	 heuristic	 not	 requiring	 mental	
simulation.	 We	 compared	 a	 model	 that	 used	 the	 search	 value	 from	 the	 optimal	 decision-tree	 model	
(‘Prospective	 model’),	 with	 a	 model	 that	 instead	 derived	 the	 search	 value	 as	 the	 best	 possible	 linear	
approximation	 	 (‘Approximation	 only’)	 given	 the	 myopic	 value,	 the	 number	 of	 available	 searches,	 the	
standard	deviation	of	the	patches	in	the	environment	(STD),	the	cost	of	searching	and	the	interactions:	STD	
x	number	of	available	searches	and	STD	x	cost	of	searching.	The	weights	for	each	factor	for	the	best	linear	
approximation	 were	 derived	 by	 entering	 all	 searches	 across	 all	 participants	 into	 a	 linear	 regression	
predicting	 value	 of	 searching	 by	 the	 linear	 factors.	 Given	 these	 weights	 and	 the	 values	 for	 each	 of	 the	
constituting	 factors	 on	 each	 search	 in	 each	 trial,	 we	 then	 computed	 an	 approximation	 to	 the	 value	 of	
searching	for	each	trial	that	did	not	rely	on	simulating	a	decision	tree.	We	found	that	bGLM1b	was	sensitive:	
it	 showed	a	 significant	effect	of	 (orthogonalized)	prospective	value	beyond	 the	 linear	components	 for	 the	
‘Prospective	 model’,	 but	 does	 not	 find	 an	 effect	 for	 the	 ‘Approximation	 only’	 model.	 G)	 validated	 the	
sensitivity	 of	 bGLM3a	 (figures	 2E),	 i.e.	 analyses	 that	 tested	whether	 participants	 adapted	 their	 perceived	
prospective	 value	 across	 searches	 in	 the	 trial	 appropriately	 or	 instead	 (wrongly)	 continued	 using	 the	
prospective	 value	 from	 the	 initial	 search.	 For	 this	 we	 simulated	models	 that	 either	 used	 the	 prospective	
value	of	the	initial	search	at	each	subsequent	search	(‘ProspStatic’)	or	that	adapted	correctly	and	used	the	
currently	 correct	 prospective	 value	 (‘PropsVAdapted’)	 or	 a	 model	 that	 was	 half-way	 in	 between	
(‘ProspVMixed’).	We	also	simulated	a	model	that	fully	adapted	its	prospective	value,	but	had	a	bias	to	search	
more	the	more	it	had	already	searched	(‘Bias	#Prev	Searches’).	We	found	that	indeed	bGLM3a	showed	the	
expected	 results:	 when	 controlling	 for	 the	 prospective	 value	 of	 the	 initial	 search,	 models	 that	 used	 the	
adjusted	(i.e.	decreased)	prospective	value	of	the	current	search	showed	a	negative	regression	weight	for	the	
regressor	 capturing	 the	 difference	 between	 the	 initial	 and	 the	 current	 search’s	 prospective	 value.	 H)	We	
validated	the	sensitivity	of	bGLM5a,	i.e.	the	analyses	that	investigated	whether	participants	were	less	likely	
to	search	on	the	first	search	if	the	prospective	value	might	decrease	strongly	over	subsequent	searches.	We	
simulated	data	from	a	model	whose	decisions	were	only	driven	by	prospective	value,	offer,	cost	and	myopic	
value	(‘standard	model’)	and	from	a	model	whose	decisions	were	also	driven	by	how	much	the	prospective	
value	 might	 decrease	 per	 search	 (‘pre-emptive	 adjustment’	 model).	 Again	 we	 found	 that	 only	 the	 ‘pre-
emptive’,	but	not	 the	 ‘standard’	model	 showed	 the	expected	effect.	This	was	particularly	 reassuring	given	
that	the	regressors	for	prospective	value	and	change	in	prospective	value	were	highly	correlated	(Fig.	S5D).	
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Figure	S3.	Data	from	the	online	sample,	Related	to	Figure	4.	To	verify	that	behavior	was	comparable	in	
the	 online	 sample	 (n=51),	we	 repeated	 the	 key	 analyses	 that	 had	 been	 conducted	 for	 participants	 in	 the	
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FMRI	scanning	experiment	(using	one-tailed	t-tests	as	we	wanted	to	test	whether	the	effect	was	in	the	same	
direction	as	 in	 the	 fMRI	sample).	Overall,	we	 found	that	participants’	behavior	was	somewhat	noisier;	 for	
example,	for	some	participants	not	all	regression	analyses	could	be	performed	(because	of	too	little	variance	
in	their	choices,	e.g.	some	participants	almost	always	chose	to	search	at	the	first	decision	on	each	trial)	or	
some	participants	sometimes	showed	outlier	regression	weights	(defined	as	more	extreme	than	group	mean	
±	3	standard	deviations).	In	these	cases,	their	data	was	removed	for	those	analyses.	However,	despite	this,	
the	pattern	of	results	was	very	similar.	A)	Analyzing	all	searches	together	(analogous	to	Fig	3Ai),	we	found	
that	 participants	 were	 sensitive	 to	 all	 task	 relevant	 factors	 (all	 p<10-20,	 n=51).	 	 B)	 Analyzing	 only	 later	
searches	(i.e.	excluding	the	first	search	on	each	trial	–	analogous	to	figure	3C),	we	found	that	participants	
adjusted	their	prospective	value	estimates	as	predicted	by	the	model	(regression	weight	 for	the	change	 in	
prospective	value	[‘ProspVS1-Adapted’]:	Wilcoxon	signed	rank	test:		z=-3.2,	p=	0.00056,	n=50).	At	the	same	
time,	participants	also	again	showed	a	bias	to	over-persevere	(regression	weight	for	the	number	of	previous	
searches	done	on	this	trial	[‘Number	of	prev.	searches’]:	Wilcoxon	signed	rank	test:	z=2.9,	p=0.0017,	n=50).	
C)	Examining	the	pre-emptive	avoidance	on	the	first	search	on	each	trial	(analogous	to	figure	3D),	we	found	
that	 participants	 again	 showed	 this	 effect,	 though	 somewhat	 less	 than	 in	 the	 FMRI	 sample	 (t(46)=-1.94,	
p=0.029,	n=47).	The	pre-emptive	bias	was	potentially	reduced	because	of	larger	individual	differences	in	the	
online	sample	that	had	only	been	pre-screened	for	age-range,	but	was	otherwise	not	selected	to	be	mostly	
highly	 educated	 students	 (as	had	been	 the	 case	 in	 the	FMRI	 sample);	 additionally,	 as	 they	performed	 the	
task	 over	 the	 internet	 from	 their	 homes,	 there	 was	 no	 control	 over	 how	 much	 they	 might	 have	 been	
distracted.	D)	In	support	of	the	notion	that	individual	differences	were	responsible	for	the	reduced	size	of	the	
pre-emptive	avoidance	effect,	we	found	–	in	addition	to	the	moderation	effect	noted	in	the	main	manuscript,	
figure	4E)	–	that	pre-emptive	avoidance	measured	behaviorally	(Avg.ProspVChange	regressor)	was	stronger	
(i.e.	more	negative	regression	weight)	in	participants	who	also	reported	in	the	debrief	questionnaire	(Q13,	
see	methods	and	figure	4C)	that	they	used	this	strategy	(Non-parametric	correlation,	Kendall’s	tau=	-0.26,	
p=0.017,	n=47,	 two-tailed	 test	as	analysis	had	not	been	 included	 in	 the	FMRI	 sample).	Possibly,	 if	we	had	
collected	the	debrief	questionnaire	in	the	FMRI	sample,	we	might	have	found	that	they	as	a	group	reported	
higher	scores.	
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Figure	S4:	Reaction	times	(RTs)	show	that	myopic	utility	is	not	unitary.	Related	to	Figure	5.	A)	We	ran	
a	regression	analysis	(bGLM1c,	see	also	Methods	section	in	main	text:	‘Analysis	of	all	decisions’)	on	RTs	from	
all	choices	to	test	whether,	for	the	fMRI	analyses,	myopic	value	should	be	included	as	a	single	regressor	(as	
done	for	the	behavioral	analyses	in	the	main	text)	or	should	be	separated	out	into	two	components	Ai)	We	
found	that	while	the	myopic	value	of	the	three	most	likely	alternatives	was	associated	with	decreased	RTs	
(t(24)=-6.73,	p=6*10-7),	the	myopic	value	of	the	less	likely	alternatives	increased	RTs	(t(24)=3.18,	p=0.004).	
Aii)	 Similarly,	model-comparison	 based	 on	 average	Akaike	 information	 criterion	 (AIC)	 values	 per	 search,	
showed	that	 for	most	participants	 (17	out	of	25)	and	 for	 the	group	as	a	whole,	a	model	 in	which	myopic	
value	 is	 split	 into	 separate	 components	 explained	 RTs	 better	 (summed	 AIC	 difference	 =	 50).	 Given	 that	
values	 of	 the	 less	 likely	 alternatives	 slowed	 participants	 down,	 we	 decomposed	 myopic	 value	 into	 two	
separate	component	regressors	also	in	the	fMRI	analyses.	This	is	because	neural	signals	related	to	the	more	
unlikely	components	of	myopic	value	might	have	a	different	and	delayed	timecourse	compared	to	the	more	
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likely	 components	 	 B)	We	 performed	 the	 same	 regression	 analyses	 on	 participants’	 choices	 to	 search	 or	
accept.	 In	 contrast	 to	 RTs,	 we	 did	 not	 find	 evidence	 that	 a	 decomposition	 of	 myopic	 value	 into	 two	
component	parts	explained	behavior	better	than	a	single	measure	of	myopic	value	(Bii):	model	comparison	
(with	 AIC)	 indicated	 that	 for	 22	 out	 of	 25	 participants	 a	model	with	 a	 single	myopic	 value	 fits	 the	 data	
better	 (summed	 AIC	 difference:	 231).	 For	 this	 reason,	 in	 the	 analyses	 of	 decisions	 in	 the	 main	 text,	 we	
included	myopic	 value	as	a	 single	 regressor.	Overall,	 these	analyses	 suggest	 that	while	participants	use	a	
myopic	value	estimate	approximately	resembling	the	average		value	all	alternatives	when	making	decisions,	
the	onset	and	timing	of	neural	signals	relating	to	different	component	aspects	of	myopic	value	might	vary.	
We	thus	modeled	both	parts	of	myopic	value	separately	in	the	fMRI	analysis.	*p<0.05;**p<0.01;***p<0.001.	
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Figure	 S5.	 Overlap	 of	 neural	 signals	 for	 prospective	 and	 myopic	 value	 and	 fMRI	 design	 matrix.	
Related	to	Figure	5.	A)	Illustration	of	the	overlap	between	myopic	and	prospective	value	in	three	different	
anatomical	 areas	 (see	methods	 section).	 Posterior	 cingulate	 (PCC),	 dorsal	 anterior	 cingulate	 (dACC)	 and	
dorsolateral	 prefrontal	 cortex	 (dlPFC)	 all	 contain	 regions	 in	 which	 prospective	 value	 and	 myopic	 value	
signals	overlap	(copper),	as	well	as	regions	in	which	only	prospective	value	(green)	or	myopic	value	(red)	
appear	within	each	anatomically	defined	brain	region	(white)	based	on	the	atlases	of	Sallet	and	colleagues	
(Sallet	et	al.,	2013)	and	Neubert	and	colleagues	(2015);	specifically,	PCC	included	the	anatomical	Brodmann	
area	 23ab	 (note	 that	 posterior	 boundary	 of	 the	 PCC	 region	 is	 an	 arbitrary	 consequence	 of	 the	
experimenters’	initial	decision	of	which	areas	to	investigate	–	this	was	the	most	posterior	region	identified);	
dACC	included	the	rostral	cingulate	zone	and	Brodmann	area	32d;	dlPFC	included	Brodmann	areas	8B	and	
9/46d.	Bars	illustrate	the	percentage	of	voxels	in	each	region	that	were	sensitive	to	prospective	value	only,	
myopic	 value	 only	 or	 both	 (relative	 to	 the	 total	 number	 of	 voxels	 sensitive	 to	 either	 contrast	
[mathematically:	 prospective	 ∪	 myopic)]);	 see	 also	 table	 S2.	 B)	 Overlap	 of	 activations	 in	 dorsomedial	
prefrontal	cortex.	Prospective	value	is	present	in	the	anterior	rostral	cingulate	zone	(RCZa;	yellow)	of	dACC	
in	the	simple	design	(fMRI	GLM	1;	blue-purple	color)	and	in	the	design	controlling	for	change	in	prospective	
value	 (fMRI	GLM	2;	 green).	 In	 contrast,	 the	 signal	 related	 to	 possible	 future	 change	 in	 prospective	 value	
(Avg.ProspVChange;	 pink)	 is	 only	 found	 in	 dorsomedial	 frontal	 areas	 8/9m.	Results	 are	 cluster-corrected	
(p<0.05).	C)	As	shown	in	fig	5Di,	choice	uncertainty,	a	measure	of	difficulty,	did	not	activate	dACC.	Similarly,	
we	show	here	that	the	number	of	alternatives	in	the	environment	did	not	activate	dACC	and	in	contrast	in	
fact	 led	 to	 widespread	 deactivation	 in	 dACC	 and	 elsewhere.	 Results	 are	 cluster-corrected	 (p<0.05).	 D)	
Correlational	matrix	of	regressors	from	fMRI	design	fGLM2.	fGLM2	only	differs	from	fGLM1	in	the	inclusion	
of		the	Avg.ProspValueChange	regressor.			
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Figure	S6.	Control	analyses	for	connectivity	analyses	and	temporal	derivatives	of	neural	signal	time	
courses.	Related	to	Figure	5.	A)	In	the	main	text	(fig.	5C)	we	computed	psychophysiological	interactions	by	
splitting	neural	activity	in	the	seed	region	by	the	psychological	regressors	and	including	these	separately	in	
a	 regression	 (e.g.	 predicting	 activity	 in	 dlPFC	 [target	 region]	 and	 including	 as	 separate	 regressors	 dACC	
[seed	region]	when	prospective	value	was	high	or	low,	fig.	5Ci).	An	alternative	and	perhaps	more	common	
approach,	albeit	very	similar	in	nature,	is	to	compute	the	PPI	by	including	an	interaction	term	between	the	
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brain	activity	in	the	seed	region	and	the	psychological	regressor.	This	is	done	here.	We	find	the	same	results	
as	before	when	looking	at	connectivity	changes	between	dlPFC	and	dACC	as	a	function	of	prospective	value	
(Ai)	or	myopic	value	(Aii).	B)	We	noted	 in	the	main	text	(fig.	5C)	that	the	change	 in	connectivity	between	
dACC	 and	 dlPFC	 with	 prospective	 value	 occurs	 earlier	 than	 the	 onset	 of	 the	 brain	 signals	 related	 to	
prospective	value	per	se.	In	fact,	this	time	point	coincides	with	the	period	of	fastest	rise	in	brain	activity	in	
response	to	prospective	value	 in	both	dACC	(Bi)	and	dlPFC	(Bii),	as	revealed	by	a	regression	analogous	to	
those	performed	in	fig.	5B,	with	the	only	difference	being	that	the	temporal	derivative	of	the	brain	signal,	
rather	than	the	brain	signal	itself	is	being	predicted.	Black	vertical	bars	show	the	average	response	time	for	
all	participants.	
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Figure	 S7.	 Time	 courses	 of	 neural	 activity	 related	 to	 different	 value	 and	 cost	 signals.	Related	 to	
Figure	5.	Time	courses	of	 impact	of	different	regressors	on	brain	activity	(BOLD)	in	different	ROIs:	dorsal	
anterior	 cingulate	 cortex	 (dACC),	 dorsolateral	 prefrontal	 cortex	 (dlPFC),	 perigenual	 anterior	 cingulate	
cortex	(pgACC)	and	ventral	striatum	(vSTR).	Data	is	shown	as	mean	and	standard	error.	Vertical	lines	show	
the	average	RT	and	the	range	of	RTs	 is	 indicated	by	the	black	horizontal	 line.	Significance	stars	show	the	
results	 of	 significance	 tests	 conducted	 on	 the	 hemodynamically	 convolved	 peak	 activity	 (comparing	 it	
against	zero),	from	leave-one-subject-out	analyses	(see	Methods,	section	‘ROI	timecourse	and	inter-regional	
activity	correlation	analyses’)	for	details.	*<0.05,	**<0.01	
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Table	S1.	List	of	regressors	 in	each	behavioral	regression	analysis.	Related	to	STAR	methods.	 	When	
analyses	were	 run	on	 reaction	 time	 (RT)	data,	 rather	 than	binary	decisions,	 an	additional	 regressor	was	
included	that	specified	whether	a	search	was	the	first	one	on	a	given	trial.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

bGLM1a Constant Offer	
value

Cost Myopic	value Prospective	value

bGLM1b Constant Offer	
value

Cost Myopic	value Prospective	value	
(orthogonalized)

#	Available	
searches

Standard	deviation	
of	patches	(STD)

#	Available	
searches	x	STD

#	Available	
searches	x	cost	

bGLM1b2 Constant Offer	
value

Cost Myopic	value #	Available	
searches

Standard	deviation	
of	patches	(STD)

#	Available	
searches	x	STD

#	Available	
searches	x	cost

bGLM1c Constant
Offer	
value Cost

Myopic	value	
(3	most	
likely)

Myopic	value	
(remaining)

Prospective	
value

bGLM1d Constant

Offer	is	
highest	
and	not	
last	search

Offer	is	
lowest	
and	last	
search

bGLM1e Constant Offer	
value

Cost Myopic	value Highest	available	
magnitude

Magnitude	
range

bGLM1e2 Constant
Offer	
value Cost Myopic	value

Highest	available	
magnitude

Magnitude	
range Prospective	value

bGLM2a
Constant Offer	

value
Search	
Value

bGLM3a

Constant
Offer	
value Cost Myopic	value

Prospective	value	
at	initial	search

Prospective	
value	
change	
(initial-
current)

#	Previous	searches	
in	current	trial

bGLM4a	
(regressors	
as	bGLM1a)

Constant
Offer	
value Cost Myopic	value Prospective	value

bGLM4b
Constant Offer	

value
Cost Myopic	value

Approx.	to	
prospective	value	
(expo.	decay)

bGLM5a

Constant Offer	
value

Cost Myopic	value Prospective	value	

Average	
prospective	
value	
change

bGLM5b	
(regressors	
as	bGLM1a)

Constant Offer	
value

Cost Myopic	value Prospective	value

Analyses	done	on	all	searches	in	each	trial

Analyses	done	on	the	later	searches(≥2)	

Analysis	done	on	initial	search	only
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Table	S2.	Overlap	of	prospective	and	myopic	value	signals.	Related	to	Figure	5,		Percentage	of	voxels	in	dorsal	anterior	
cingulate	cortex	(dACC,	comprising	rostral	cingulate	zone	and	Brodmann	area	32d),	posterior	cingulate	cortex	(PCC,	
Brodmann	area	23ab)	and	dorsolateral	prefrontal	cortex	(dlPFC,	Brodmann	areas	8b	and	9/46d)	that	were	sensitive	to	
myopic	value,	prospective	value	or	to	both	individually	(=number	of	voxels	sensitive	to	both	contrasts	divided	by	the	
number	of	voxels	sensitive	to	either	contrast,	(prospective∩myopic)/	(prospective	∪	myopic)).	Analyses	were	done	
separately	at	uncorrected	thresholds	p<0.05	and	p<0.01	
	
	
	
	
	

	

Myopic	
value

Prospective	
value

Myopic	and	
prospective

Myopic	
value

Prospective	
value

Myopic	and	
prospective

dACC 57% 75% 47% 27% 43% 25%
PCC 80% 85% 82% 50% 67% 57%
dlPFC 74% 62% 57% 39% 25% 22%

Threshold:	p<0.05 Threshold:	p<0.01
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