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Complementary results 

Behavioural data 

Effect of public information on mean rating change. As a starting point, we tested whether 

evaluations of face trustworthiness produced by the 261 participants who satisfied the 

inclusion criterion of the online study and by the 17 participants who satisfied the inclusion 

criterion of the laboratory study, changed after the exposure to the evaluations provided by 

the fictive group of peers (public information). We thus examined how much participants’ 

changed their trustworthiness ratings by looking at the mean difference between their test 

and post-test ratings. For participants of both the online and the laboratory studies, we 

computed this rating change in agreement trials as well as in trials where the group rating 

was either higher than the participant’s initial rating (positive disagreement) or lower 

(negative disagreement); and the deviation was either moderate (+2/-2 points deviation) or 

strong (+3/-3 points deviation).  

Online study. A first look at the online data indicates that the mean rating change differed 

from zero in each type of trials (moderate negative disagreement: M = -0.28 ± 0.61; strong 

negative disagreement: M = -0.52 ± 0.60; moderate positive disagreement: M = 0.11 ± 0.58; 

strong positive disagreement: M = 0.40 ± 0.61; agreement: M = -0.09 ± 0.41; all ts > 3.15, all 

ps < .001). Importantly, the mean rating change obtained in each type of disagreement trials 

differed from the mean rating change obtained in agreement trials (all ts > 4.71, all ps < .001). 

Thus, participants on average biased their rating more when exposed to public disagreement 

than when exposed to public agreement (Supplementary Figure S1). 

Laboratory study. Participants who performed the experiment in the laboratory presented 

the same pattern than those recruited online (Supplementary Figure S1). Mean rating change 

differed from zero in trials featuring negative disagreements (moderate: M = -0.17 ± 0.26, t = 

2.72, p = .015; strong: M = -0.47 ± 0.23, t = 8.48, p < .001), positive disagreements (moderate: 

M = 0.32 ± 0.30, t = 4.61, p < .001; strong: M = 0.47 ± 0.25, t = 7.81, p < .001), and in trials 
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displaying public agreement (M = 0.12 ± 0.22, t = 2.35, p = .032). The mean rating change 

obtained in all types of disagreement but the negative disagreement of moderate strength 

differed from the mean rating change obtained in agreement trials (all ts > 2.35, all ps < .05).  

 

 

Supplementary Figure S1. Effects of disagreement types on mean rating change (±SEM) 
in the online and the laboratory study. Positive and negative mean rating changes (y axis) 
indicate that participants increase or decrease their trustworthiness ratings along the task.  
 

 

Effect of indicators of perceived vulnerability to extrinsic morbidity risks on mean 

rating change calculated in agreement trials. A Bayesian analyses showed no evidence that 

indicators of perceived vulnerability to extrinsic morbidity risks used in the online study and 

in the laboratory study as well affected the mean rating change calculated in agreement trials.  

Online study. Models including either the Germ Aversion score or the Perceived Infectability 

score had a lower predictive power than a null model including the intercept only (Germ 

Aversion vs. null: BF10 = 0.34 ± 0.79%; Perceived Infectability vs. null: BF10 = 0.32 ± 0.83%). 

Laboratory study. Similarly, the null model which included the intercept only outperformed 

the models involving the Germ Aversion and the Perceived Infectability scores as predictors 

(Germ Aversion vs. null: BF10 = 0.63 ± 0.47%; Perceived Infectability vs. null: BF10 = 0.76 ± 0.37%). 
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Computational analyses of behavioural data 

In the context of the present task, individuals who felt vulnerable to extrinsic morbidity risks 

may rely on public information not because they overvalue it, but because they may for 

example exhibit impaired working memory capacities making their representations noisier. 

To disentangle these two possibilities, we fitted participants’ behaviour using a canonical 

model of choice. 

 

Computational model description and fitting. The fitted computational model 

hypothesizes that the decision of adjusting a rating after the integration of public information 

are formed on the basis of a comparison between the faces presented in post-test trials and 

public information presented in test trials. The model consisted of two free parameters, fitted 

to each participant’s behaviour: 1) a social influence parameter 𝛿 corresponding to the 

adjustment of an initial rating in post-test trials (superior to zero for adjustments in line with 

public information, equal to or inferior to zero for adjustments independent of public 

information), measured as the signed fraction of disagreement between the initial rating and 

the subsequent rating representing public information, and 2) an internal noise magnitude 

parameter 𝜎 corresponding to the standard deviation of the post-test rating. The mean rating 

in post-test trials 𝜇 thus corresponds to a linear combination between the initial rating 𝑥ini 

and the group rating 𝑥group following: 

𝜇 = 𝑥ini ∙ (1 − 𝛿) + 𝑥group ∙ 𝛿 

The probability of choosing the discrete rating 𝑥 in post-test trials can be computed 

using the following equation: 

𝑝(𝑥) = Φ (𝑥 +
1

2
 , 𝜇, 𝜎) − Φ (𝑥 −

1

2
 , 𝜇, 𝜎) 

where Φ( . ) is the cumulative normal density function. 
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We obtained maximum-likelihood estimates of the two parameters 𝛿 and 𝜎 separately 

for each participant’s behaviour using gradient descent of the negative model likelihood using 

the ‘interior-point’ algorithm of the fmincon routine implemented in Matlab (Mathworks, 

Natick, MA). We derived model predictions in terms of social influence scores for all measures 

made directly from participants’ behaviour, as means to test the adequacy of the model. 

 

 

 
 
Supplementary Figure S2. Effects of disagreement types on social influence scores 
(±SEM) in the online and the laboratory study. Positive and negative social influence 
scores (y axis) indicate that participants adjusted their ratings towards or away from public 
information. The discs represent the predictions of the computational model for each type of 
disagreement (see Material and Methods for details).  
 

Testing the adequacy of the computational model. All the effects revealed by the analyses 

of the participants’ mean rating changes calculated from data collected online as well as in the 

laboratory were replicated by the model’s predictions (Supplementary Figure S2).  

Online study. First, mean rating change predicted in each type of disagreement trials were 

greater than the mean rating change predicted in agreement trials (all ts > 15.94, all ps = < 

.001). Second, the model predicted a social influence score that positively differed from zero 

for negative disagreements of both moderate (M = .28 ± .11, t(16) = 10.30, p < .001) and 

bigger strength (M = .44 ± .17, t(16) = 10.47, p < .001) (Supplementary Figure S2). The model 



6 
 

also predicted a greater social influence score for strong negative disagreement trials 

compared to moderate negative disagreement trials (t(520) = 5.39, p < .001). Conversely, the 

model predicted a social influence score that positively differed from zero for positive 

disagreements of both moderate (M = .29 ± .24, t(260) = 18.86, p < .001) and bigger strength 

(M = .43 ± .35, t(260) = 19.56, p < .001), the latter condition leading to a greater score than 

the former condition (t(520) = 5.58, p < .001) (Supplementary Figure S2).  

As we just saw the model well predicted the sign of the social influence score in each 

disagreement type. However the size of the scores observed in the participants differed from 

its modelled counterpart in two types of disagreement: strong negative disagreement 

(observed: M = .52 ± .60 vs. modelled: M = .41 ± .35; t(520) = 2.68, p = .008), and moderate 

positive disagreement (observed: M = .11 ± .58 vs. modelled: M = .28 ± .24; t(520) = -4.23, p 

< .001).  

The adequacy of the computational model, comprising only two free parameters, was 

further evidenced by the amount of inter-individual variance of the observed social influence 

scores averaged across all disagreement types that was captured by the model-predicted 

scores (R2 = .92, p < .001) (Supplementary figure S3.a). This was also observed in each 

disagreement type: negative disagreement of moderate (R2 = .19, p < .001) and big strength 

(R2 = .40, p < .001) as well as positive disagreement of moderate (R2 = .16, p < .001) and big 

strength (R2 = .24, p < .001) (supplementary figure S4).  
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Supplementary Figure S3. Observed social influence scores average across all types of 
disagreement regressed on predictions of the computational model. a. Online study. b. 
Laboratory study. 

 

Laboratory study. Mean rating change predicted in each type of disagreement trials were 

greater than the mean rating change predicted in agreement trials (all ts > 7.52, all ps = < 

.001). In addition, the model predicted a social influence score that positively differed from 

zero for negative disagreements of both moderate (M = .28 ± .11, t(16) = 10.30, p < .001) and 

bigger strength (M = .44 ± .17, t(16) = 10.47, p < .001) (Supplementary Figure S2). The model 

also predicted a greater social influence score for strong negative disagreement trials 

compared to moderate negative disagreement trials (t(32) = 3.15, p = .004). The model also 

predicted a social influence score that positively differed from zero for positive disagreements 

of both moderate (M = .32 ± .13, t(16) = 10.02, p < .001) and bigger strength (M = .46 ± .18, 

t(16) = 10.78, p < .001), the latter condition leading to a greater score than the former 

condition (t(32) = 2.78, p = .009) (Supplementary Figure S2). 

The computational model well predicted the sign of the social influence score observed 

in each disagreement type but, remarkably, also predicted its magnitude in each condition. 

The adequacy of the computational model was further evidenced by the amount of inter-

individual variance of the observed social influence scores averaged across all disagreement 
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types that was captured by the model-predicted scores (R2 = .97, p < .001) (Supplementary 

figure S3.b). This was also the case when the different disagreement types were analyzed 

separately: negative disagreement of moderate (R2 = .18, p = .05) and big strength (R2 = .24, 

p = .03) as well as positive disagreement of moderate (laboratory study: R2 = .39, p = .004) and 

big strength (laboratory study: R2 = .23, p = .03) (supplementary figure S4).  
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Supplementary Figure S4. Observed social influence scores regressed on predictions of 
the computational model for each type of disagreement. Online study: a. moderate 
negative disagreement. b. strong negative disagreement. c. moderate positive disagreement. 
d. strong positive disagreement. Laboratory study: e. moderate negative disagreement. f. 
strong negative disagreement. g. moderate positive disagreement. h. strong positive 
disagreement. 
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Effect of indicators of perceived vulnerability to extrinsic morbidity risks on the social 

influence parameter 𝜹 and the noise parameter 𝝈  

We then conducted an analysis comparing a baseline model with type 1 and type 2 models 

including indicators of perceived vulnerability to extrinsic morbidity risks (Germ Aversion 

and Perceived Infectability), age or gender as predictor. Each models took successively 𝛿 or 𝜎 

as the dependent variable. 

Online study. When the social influence parameter 𝛿 was taken as the dependent variable, 

the type 2 model including Germ Aversion as the indicator of perceived vulnerability to 

extrinsic morbidity risks was the only model that outperformed the baseline model. (Germ 

Aversion vs. Baseline: BF10 = 3.92 ± 7.81%) (Supplementary Figure S5.a). This model also 

outperformed type 2 models in which age or gender was entered as the interaction term (Germ 

Aversion vs. age: BF10 = 4495.49 ± 4.62%; Germ Aversion vs. gender: BF10 = 89.11 ± 4.19%). 

Model parameters indicated that the effect of the Germ Aversion score had a main effect on 

the social influence parameter 𝛿 (β = 0.04 ± 0.02, t(259) = 1.99, p = .047), and that it also 

interacted with disagreement valence and disagreement strength (β = -0.08 ± 0.03, t(777) = -

2.34, p = .018). As with the real social influence scores, this interaction effect was caused by a 

negative relation of the two variables exclusively found in strong positive disagreement trials 

(β = -0.04 ± 0.01, t(259) = -2.78, p = .006). In all other types of disagreement trials, a positive 

association was found (moderate positive disagreement: β = 0.05 ± 0.02, t(259) = 2.80, p = 

.006; strong negative disagreement: β = 0.02 ± 0.01, t(259) = 1.67, p = .096; moderate negative 

disagreement: β = 0.03 ± 0.02, t(259) = 1.64, p = .102). A complementary model in which 

strong positive disagreement trials were excluded confirmed the positive main of Germ 

Aversion on the social influence parameter 𝛿 (β = 0.04 ± 0.01, t(259) = 3.36, p < .001). 

Bayesian analyses showed that this complementary model outperformed its baseline version 

by a factor of 5 (BF10 = 11.60 ± 2.01%). Similar results were obtained when the noise 
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parameter 𝜎 was taken as the dependent variable: the type 2 model including Germ Aversion 

as the indicator of perceived vulnerability to extrinsic morbidity risks was the only model that 

performed better than the baseline model. (Germ Aversion vs. Baseline: BF10 = 1.72 ± 6.87%).  

However, evidence in favor of an explanatory power of Germ Aversion on the noise 

parameter 𝜎 was weak (Germ Aversion vs. Baseline: BF10 = 1.72 ± 6.87%), even though the two 

variables were positively linked (β = 0.12 ± 0.05, t(259) = 2.56, p = .01). Finally, the Perceived 

Infectability score had no effect neither on the social influence parameter 𝛿, nor on the noise 

parameter 𝜎 (BFs < 1). 

Laboratory study. When the social influence parameter 𝛿 was taken as the dependent 

variable, the type 1 model including Perceived Infectability as the indicator of perceived 

vulnerability to extrinsic morbidity risks was the only model that outperformed the baseline 

model (Perceived Infectability vs. Baseline: BF10 = 1.28 ± 5.66%). This model also outperformed 

type 1 models which included age or gender as predictor (Perceived Infectability vs. age: BF10 = 

3.27 ± 5.37%; Perceived Infectability vs. gender: BF10 = 1.70 ± 6.61%) (Supplementary Figure 

S5.b). More specifically, the social influence parameter 𝛿 increased as long as participants felt 

more vulnerable to extrinsic morbidity risks (β = 0.04 ± 0.01, t(15) = 2.49, p = .025). A weak 

improvement was also observed when the noise parameter 𝜎 was taken as the dependent 

variable (Perceived Infectability vs. Baseline: BF10 = 1.20 ± 5.23%). However, model parameters 

showed that the relation between the two variables was not significant (β = 0.10 ± 0.06, t(15) 

= 1.81, p = .09). The Germ Aversion score had no effect neither on the social influence 

parameter 𝛿, nor on the noise parameter 𝜎 (BFs < 1). 

Analyses of computational data therefore suggest that, overall, the positive effect of 

indicators of perceived vulnerability to extrinsic morbidity risks on participants’ susceptibility 

to social influence is mediated by an increased sensitivity to social feedbacks rather than by a 

corruption of their internal representations by noise. 
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Supplementary Figure S5. Model selection analyses a. Online study. b. Laboratory 
study. Bayesian analyses of models with and without indicators of perceived vulnerability to 
extrinsic morbidity risks (Germ Aversion and Perceived Infectability), age or gender as 
predictor of social influence score (columns) and of the fitted social influence parameter delta 
(discs). The baseline model only includes disagreement valence and disagreement strength as 
within-subject factors; alternative models include indicators of perceived vulnerability to 
extrinsic morbidity risks, age or gender either as a main effect (type 1) or as a term interacting 
with disagreement valence and disagreement strength (type 2). A Bayes factor > 1 indicates 
greater evidence for the alternative model. 
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Multivariate decoding 

Decoding public information as a function of disagreement valence and disagreement 

strength. Since analyses behavioural data collected in the laboratory showed that 

disagreement valence and disagreement strength had an independent effect on social influence 

scores, we studied the effect that these two factors may have on electroencephalographic 

activity separately using the same decoding methods as the one described in the main 

manuscript. The effect of disagreement valence was thus investigated by pooling together 

trials featuring a moderate negative disagreement with trials featuring a strong negative 

disagreement on one hand, and trials featuring a moderate positive disagreement with trials 

featuring a strong positive disagreement on the other hand. The effect of disagreement 

strength was investigated by pooling together trials featuring negative and positive 

disagreement of a moderate strength with trials featuring negative and positive disagreement 

of a bigger strength. Results fairly similar to those described in the main manuscript were 

obtained with decoders distinguishing – classifying – agreement trials from positive 

disagreement trials, negative disagreement trials, and strong disagreement trials 

(Supplementary Figure S6.a, S6.b). When moderate disagreement trials were entered in the 

classification pipeline however, the decoding sensitivity differed from chance during the time-

period that was comprised between 200ms and 400ms post-stimulus. After that point, 

significance was only reached during a narrow period of 90ms starting 570ms post-stimulus. 

Matrices of temporal generalization for positive, negative and strong disagreement 

trials all revealed two distinct processing stages. A first stage showed a sharp sensitivity peak 

around 300ms post-stimulus (AUC peak of .62 on average) which was caused by a negative 

deflection recorded within fronto-central sites of the scalp surface (Supplementary Figure 

S6.a, S6.b). The second processing stage was much more stationary, covered a wider time-

window, and was caused by a negative differential activity in the vicinity of the right frontal 

electrodes and by a positive differential activity that was mainly distributed around the 
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occipito-parietal sites (Supplementary Figure S6.a, S6.b). This second processing stage was 

present for each type of disagreement trials. However, it was particularly marked for the 

decoding of strong disagreement trials, and almost absent for the decoding of moderate 

disagreement trials (Supplementary Figure S6.b). 

In order to investigate which of the two processing stages better correlated with social 

influence scores, we performed correlation analyses similar to those described in the 

manuscript. First, the correlation analyses were applied on participants’ social influence scores 

following negative disagreement trials and the corresponding decoding sensitivities computed 

at each time-point of the epoch. Results showed that, in the first processing stage, the two 

variables tended to correlate (cluster 1: p* = .07; mean r = .57), and were found to be 

significantly related in the second stage of processing. A second cluster of correlations 

emerged in a time-window comprised between 535ms and 760ms post-stimulus (p = .007, 

mean r = .55). Of note is that while the fitted noise parameter 𝜎 never correlated with decoding 

sensitivities, patterns of correlations similar to those observed with real social influence scores 

were obtained with the fitted social influence parameter 𝛿 (1st stage cluster: p* = .058, mean r 

= .57; 2nd stage cluster 1: p* = .03, mean r = .52; 2nd stage cluster 2: p* = .02, mean r = .55). No 

correlation between social influence scores obtained in positive disagreement trials and the 

corresponding decoding sensitivities was found. 

Note finally that clusters of correlation found in moderate disagreement trials were 

not significant. In strong disagreement trials however, the correlation of social influence 

scores with decoding sensitivities was near-significance in the first (p* = .053, mean r = .51) 

processing stage, and turned significant in the second processing stage (p* = .035, mean r = 

.47).  
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Supplementary Figure S6. Decoding stages of public information processing and 
temporal generalization. Sensitivity of the decoders that were trained to classify the various 
types of disagreement trials and agreement trials on the basis of the EEG activity recorded 
during the 1000ms that followed the exposure to public information. Decoders trained at each 
time point were tested on data from all other time points, revealing the presence of two distinct 
processing stages (stage 1 = 200-400ms post-stimulus; stage 2: 400-900ms post-stimulus). 
The diagonal (where testing time = training time) gives the curve for canonical decoders 
performance over time. Topographical maps of the differential EEG activity resulting from 
the contrast between the two classes of stimuli that were entered in each decoder are 
representative of processing stages 1 and 2. a. Disagreement trials are split as a function of 
their valence (positive, negative). b. Disagreement trials are split as a function of their 
strength (moderate, strong). Clusters of adjacent time-points in which the decoder’s 
sensitivity significantly differed from chance are represented by the markers located up to the 
x axis. 
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Decoding public information as a function of perceived vulnerability to extrinsic 

morbidity risks. We also tested whether the participants’ vulnerability to extrinsic morbidity 

risks was associated with the decoders’ performance obtained at the two distinct stages of 

social feedback processing. For each stage (stage 1: from 200ms to 400ms post-stimulus; stage 

2: from 400ms to 900ms post-stimulus), we ran correlation analyses between scores in 

Perceived Infectability or Germ Aversion and the decoders’ sensitivities computed at each 

time-point of the epoch. We found that Perceived Infectability scores were positively related 

to decoding sensitivities obtained from the processing of strong disagreement trials, with a 

significant cluster of correlations emerging 755ms and ending 895ms post-stimulus (p* = 

.033; mean r = .52). No other significant clusters of correlations were found.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


