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NOTE:
In the following, references to equations in the Main Text are labeled with the
acronym MT. For example, Eq. (1) of the Main Text is referred to as (1,MT).

1. General condition for the emergence of anomalous diffusion

Diffusion is described through the following simple, but general stochastic equa-
tion:

dXt

dt
= Vt (1)

being Vt a stochastic process describing a generic random fluctuating signal.
Here Xt and Vt are the position and velocity of a particle moving in a random
medium, respectively. For a generic, nonstationary process, the two-time Prob-
ability Density Function (PDF) p(V1, t1;V2, t2) depends on both times t1 and
t2. Similarly, the correlation function

〈Vt1 · Vt2〉 =

∫
V1 V2 p(V1, t1;V2, t2)dV1dV2
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is, in general, a function of the times t1 and t2
1.5

Now, by integrating in time the above kinematic equation (1), making the
square and the ensemble average, we get the Mean Square Displacement (MSD):

σ2
X(t) = 〈(Xt −X0)2〉 =

∫ t

0

dt′
∫ t

0

dt′′〈Vt′ · Vt′′〉 , (2)

where, in order to get : 〈Xt〉 = X0, we assumed a uniform initial position X0. In
the stationary case, the two-time statistics, including the correlation function,
depends only on the time lag t = |t1 − t2|, and the above formula reduces to:

σ2
X(t) =

∫ t

0

dt′
∫ t

0

dt′′R(|t′ − t′′|) = 2

∫ t

0

(t− s)R(s) ds , (3)

or, equivalently:
dσ2

X(t)

dt
= 2

∫ t

0

R(s)ds . (4)

where R(t) = 〈Vt1+t · Vt1〉 = 〈Vt · V0〉 is the stationary correlation function.
Notice that these expressions have very general validity, independently of the
particular statistical features of Vt.

These expressions were firstly published by Taylor in 1921 [1], which implic-
itly formulated the following:10

Theorem (Taylor 1921)
Given the stationary correlation function R(t), let us define the correlation

time scale:

τc =

∫ ∞
0

R(s)

R(0)
ds , R(0) = 〈V 2〉st .2 (5)

Then, if the following condition occurs:

0 6= τ < +∞ , (6)

normal diffusion always emerges in the long-time regime:

t� τc ⇒ σ2
X(t) = 2D

X
t , (7)

thus defining the long-time spatial diffusivity D
X

:

D
X

:=
1

2
lim

t→+∞

dσ2
x

dt
(t) (8)

independently from the details of the microdynamics driving the fluctuating
velocity Vt.

1 This also means that the statistics of Vt increments: ∆Vt1,t = Vt1+t − Vt1 , depend not
only on the time lag t, but also on the initial time t1

2 Notice that the variance 〈V 2〉st, being a one-time statistical feature, is a constant in the
stationary case.
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It is worth noting that, substituting Eq. (4) into Eq. (8) and using R(0) =
〈V 2〉st (Eq. (5)), we get:

D
X

= τc 〈V 2〉st , (9)

which is a general form of the Einstein–Smoluchovsky relation [2]3.

Taylor’s theorem gives in Eq. (6) the general conditions to get normal dif-15

fusion, i.e., a linear scaling in the variance: 〈X2〉 ∼ t). This result has a very
general validity, independently from the statistical features of the stochastic pro-
cess Vt. The theorem also establishes the regime of validity of normal diffusion,
given by the asymptotic condition t� τc. As a consequence, the emergence of
anomalous diffusion is strictly connected to the failure of the assumption (6).20

In particular, we get two different cases:

• Superdiffusion:

τc =∞ : 〈X2〉 ∼ tφ with 1 < φ ≤ 2 or 〈X2〉 =∞ . (10)

• Subdiffusion:

τc = 0 : 〈X2〉 ∼ tφ with 0 < φ ≤ 1 . (11)

In order to get τc = 0 and, thus, subdiffusion, velocity anti-correlations must
emerge. This means that there exist time lags t such that R(t) < 0 (e.g.,
the anti-persistent Fractional Brownian Motion, with H < 0.5). Being R(0) =
〈V 2〉st > 0, in subdiffusion the correlation function is surely positive in the short-25

time regime and (i) becomes negative in the long-time regime or (ii) oscillates
between positive and negative values4.

The failure of Taylor’s theorem and of condition (6) is the main guiding
principle exploited here to derive stochastic models for anomalous diffusion.

1.1. Application to Fractional Brownian Motion30

The Fractional Brownian Motion (FBM) BH(t) was introduced by Mandelbrot
and Van Ness in their famous 1968’s paper [3]. Since then, thousands of papers
have been devoted to both theoretical investigations and applications of FBM
(see, e.g., [4] for a review). FBM is a Gaussian process with self-similar station-
ary increments and long-range correlations. In formulas, FBM has the following35

properties:

3 Interestingly, this relation is here derived in a very general framework, i.e., for a generic
fluctuating signal Vt, with the only assumption of the existence of a stationary regime in the
long-time limit. As known, the stationary condition usually emerges in correspondence of
motion reaching an equilibrium state. However, the stationary condition is more general with
respect to equilibrium and, for this reason, we prefer to leave the notation “st” for ”stationary”
instead of “eq” for ”equilibrium”.

4 A correlation time scale, different from the above definition of τc can be sometimes
introduced for subdiffusion (e.g., the time period in a harmonic correlation function), but it
does not have the meaning of discriminating a long-time regime with normal diffusion from a
short-time regime.
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• BH(t) has stationary increments;

• BH(0) = 0; 〈BH(t)〉 = 0 for t ≥ 0;

• 〈B2
H(t)〉 = t2H for t ≥ 0;

• BH(t) has a Gaussian distribution for t > 0;40

• the correlation function is given by:

〈BH(t)BH(s)〉 =
1

2

{
t2H + s2H − |t− s|2h

}
(12)

The FBM increments are given by:

Vδt(s) = BH(s+ δt)−BH(s) .

The process Vδt(s) is also called fractional Gaussian noise5. Both BH(t) and
Vδt(s) are self-similar stocastic processes but, at variance with BH(t), the in-
crements Vδt(s) are also stationary, i.e., their statistical features do not depend
on s, but only on δt. Vδt(s) is a Gaussian process and is uniquely defined by
the mean, variance and correlation function, which are derived from the above
listed properties of FBM:

〈Vδt(s)〉 = 0 ; 〈V 2
δt(s)〉 = (δt)2H (13)

R(t) = 〈Vδt(s)Vδt(s+ t)〉 =
1

2

{
|t+ δt|2h − 2t2H + |t− δt|2H

}
(14)

Then, we can say that FBM is a Gaussian process with stationary and self-
similar increments Vs(δt), while FBM is Gaussian, self-similar but not station-
ary. Eq. (14) also shows that, with the exception of the standard Brownian
motion (H = 1/2), increments Vδt(s) are not independent each other. Frac-
tional Gaussian noise and FBM are exactly self-similar, i.e., they satisfy the45

relationship: X(at) = aHX(t), the increment V1(s) with δt = 1 is usually con-
sidered in both theoretical and experimental studies, as a generic δt can be
obtained by simply rescaling the process with the self-similarity relationship. In
Fig. 1 the increment correlation functions of a persistent (H > 0.5) and of an
antipersistent (H < 0.5) FBM are compared. It is evident that antipersistent50

FBM is associated with anticorrelations, and this is the reason why subdiffusion
emerges in this case.

5 This can be considered as a kind of velocity for the FBM, even if it must be kept in
mind that FBM, such as standard Brownian motion, does not have a smooth velocity. In any
case, the above considerations about velocity and position and their statistical relationship
can here be applied by substituting velocity with the fractional Gaussian noise, i.e., the FBM
increments over a finite time step δt.
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Figure 1: Autocorrelation function of FBM increments V1(t): R(t) = 〈V1(s)V1(s + t)〉:
persistent (H = 0.7) vs. antipersistent (H = 0.3) case.

The asymptotics of the correlation function are easily obtained by rewriting it
in the following way (see [4], pages 6-7):

R(t) =
1

2
t2hhH

(
δt

t

)
, (15)

being, for x = δt/t < 1:

hH (x) = (1 + x)2H − 2 + (1− x)2H . (16)

The limit t → ∞ corresponds to x → 0 and the Taylor expansion of hH (x)
gives:

hH(x) = 2H(2H − 1)x2 +O(x4) , (17)

so that [3, 4]:
R(t) ' H(2H − 1)(δt)2t2H−2 . (18)

Regarding the correlation time τc defined in Eq. (5), we can exploit the same
asymptotic expansion used for R(t). Firstly, we apply Eq. (5) to a finite time
t:

τc(t) =

∫ t

0

R(s)

R(0)
ds , R(0) = 〈V 2〉st , (19)

so that: τc = limt→∞ τc(t). Then, for the fractional Gaussian noise we get:

τc(t) =
δt

4H + 2

{(
1 +

t

δt

)2H+1

− 2

(
t

δt

)2H+1

+

∣∣∣∣ tδt − 1

∣∣∣∣2H+1
}

. (20)

Analogously to R(t), this can be written as:

τc(t) =
δt

4H + 2

(
t

δt

)2H+1

hH+1/2(x) ; x = δt/t , (21)
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and, for x < 1, hH+1/2(x) is again given by Eq. (16), but with H+ 1/2 instead
of H. Then, an asymptotic formula similar to Eq. (17) can be derived:

hH+1/2(x) = 2H(2H + 1)x2 +O(x4) , (22)

and, finally:
τc(t) = H(δt)2−2Ht2H−1 for t→∞ . (23)

Clearly, the mathematical limit t → ∞ corresponds to the physical regime
t � δt. Exploiting the asymptotic behavior of τc(t) given in Eq. (23), we can
now derive the values of the correlation time scale τc = τc(∞):

τc = lim
t→∞

τc(t) =


+∞ ; 1/2 < H ≤ 1 ;

δt/2 <∞ ; H = 1/2 ;

0 ; 0 < H < 1/2 .

(24)

The three cases correspond to persistent (superdiffusive) FBM, normal Brown-
ian motion and antipersistent (subdiffusive) FBM, respectively.
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Box 2. Properties of R(t) and g(τ)
The use of Laplace transform, defined by the expression:

ũ(s) = Lt→s[u(t)](s) =

∫ ∞
0

e−stu(t)dt ,

gives important information about the normalization and moments of distributions.
The stationary correlation function R(t) and the distribution g(τ) are related by Eq.
(8,MT). For any choice of the distribution g(τ), the correlation function R(t) and g(τ)
must satisfy the following properties:

(i) The distribution g(τ) must be a PDF normalized to 1:

g̃(0) = 1 ,

which determines a constrain on the behavior of the first derivative of the cor-
relation function:

lim
s→+∞

s · L
[
−dR(t)

dt

]
(s) = −dR

dt
(0+) = 〈ν〉 .

(ii) The MSD is a power-law of time with superdiffusive scaling 1 < φ < 2 in the
asymptotic long-time limit:

lim
t→∞

σ2
X(t)

tφ
= C1 ; lim

s→0
s1+φ · σ̃2

X(s) = C2 . (25)

where C1 and C2 are proper constants and the second asymptotic limit follows
from the Tauberian theorem [5]. From Eq. (3) or Eq. (4) it results:

d2σ2
X(t)

dt2
= 2R(t) ; σ̃2

X(s) =
2

s2
R̃(s) ,

we get equivalently the following expression for the stationary correlation func-
tion:

lim
t→∞

R(t)

tφ−2
= C3 ; lim

s→0
s1−η · R̃(s) = C4 (26)

with η = 2 − φ, 0 < η < 1. Note that the above limits can be equivalently
written as asymptotic behaviors, e.g.: R(t) ∼ tφ−2 for t → ∞, which means
that the function R(t) is approximated by C3t

φ−2 in the long time range.

(iii) The MSD at time zero is zero:

lim
t→∞

σ2
X(t) = 0 ; lim

s→+∞
s · σ̃2

X(s) = 0

(iv) Furthermore being 0 < R(0) < ∞, from Eq.(9,MT) the distribution g(τ) must
have non-zero, finite mean:

lim
s→+∞

s · R̃(s) = R(0) ∝ 〈τ〉 .

55
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2. Derivation of the PDF g(τ )

The properties that must be satisfied by the stationary correlation function
R(t) and by the PDF g(τ) are listed in the above Box 1.

We now prove the following

Theorem (PDF g(τ))60

Given Eq. (8,MT) defining the stationary correlation function of the Langevin
equation with random parameters, Eq. (4,MT), the PDF g(τ) given in Eq.
(14,MT) satisfies all the required constrains (i-iv) listed in Box 1.

Proof:

(i) normalization and (iv) finite mean:65

Let us write:

g(τ) =
C

τ
L−ηη

(
τ

τ∗

)
,

where τ∗ must be introduced to get an adimensional parameter as argument of
L−ηη . The mean correlation time is given by:

〈τ〉 =

∫ ∞
0

τg(τ)dτ = C

∫ ∞
0

L−ηη

(
τ

τ∗

)
dτ = Cτ∗ , (27)

so that we have:

g(τ) =
C

τ
L−ηη

(
C
τ

〈τ〉

)
. (28)

The normalization constant C can be obtained by imposing L[g(τ)](0) = 1. Ex-
ploiting the relationship

∫∞
s

exp(−ξτ)dξ = exp(−ξτ)/τ and making the change
of variables τ = (〈τ〉/C)τ ′, we get:

L[g(τ)](s) = C ·
∫ ∞
s〈τ〉/C

L[L−ηη (τ)](ξ)dξ

= C ·
∫ ∞
s〈τ〉/C

e−ξ
η

dξ =

(x = ξη)

= C
1

η

∫ ∞
s〈τ〉/C

1

η
e−xx1/η−1dx ,

(29)

and:

L[g(τ)](0) = C ·
∫ ∞

0

1

η
e−xx1/η−1dx

= C · Γ(1/η)

η
= 1 .

(30)
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Substituting this relationship into Eq. (28) we finally get Eq. (14,MT), which
is a properly normalized PDF.

(ii) superdiffusive scaling:
We now prove that R(t) ∼ t−η, with 0 < η < 1, a condition leading to the

superdiffusive scaling for the position variance: σ2
X(t) ∼ tφ, 1 < φ = 2− η < 2.

This can be proven thanks to the integral representation of the extremal Lévy
density:

L−ηη (x) =
1

ηx

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/η)

Γ(s)
xsds, 0 < η < 1 . (31)

Hence, we have:

R(t) = 〈ν〉 η

Γ(1/η)

∫ ∞
0

e−t/τL−ηη

(
τ

τ∗

)
dτ

= 〈ν〉 η

Γ(1/η)

∫ ∞
0

e−t/τ

[
1

η

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/η)

Γ(s)

(
τ

τ∗

)(s−1)

ds

]
dτ

= 〈ν〉 η

Γ(1/η)

1

η

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/η)

Γ(s)

[∫ ∞
0

e−t/τ
(
τ

τ∗

)s−1

dτ

]
ds =

(ξ = t/τ)

= 〈ν〉〈τ〉1
η

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/η)

Γ(s)

[∫ ∞
0

e−ξξ−1−s
(
t

τ∗

)s
dξ

]
ds

= 〈ν〉〈τ〉1
η

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/η)Γ(−s)
Γ(s)

(
t

τ∗

)s
ds ,

(32)

where τ∗ = 〈τ〉Γ(1/η)/η. It is useful to rewrite the expression as:

R(t) = 〈ν〉〈τ〉1
η

1

2πi

∫ γ+i∞

γ−i∞

(η/s)Γ(s/η + 1)Γ(−s)
(1/s)Γ(s+ 1)

(
t

τ∗

)s
ds

= 〈ν〉〈τ〉 1

2πi

∫ γ+i∞

γ−i∞

Γ(s/η + 1)Γ(−s)
Γ(s+ 1)

(
t

τ∗

)s
ds ,

(33)

which can be solved through the residues theorem considering the poles s/η+1 =
−n or s = n, with n = 0, 1, 2..∞.70

In the first case we have:

R(t) =〈ν〉〈τ〉
∞∑
n=0

η
(−1)n

n!

Γ(η(n+ 1))

Γ(1− η(n+ 1))

(
t

τ∗

)−η(n+1)

=〈ν〉〈τ〉
∞∑
n=1

(−1)n

n!

Γ(ηn)

Γ(−ηn)

(
t

τ∗

)−ηn (34)
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where each term of the series is obtained by the limit:

lim
s→−η(n+1)

(s+ η(n+ 1))
Γ(s/η + 1)Γ(−s)

Γ(s+ 1)

(
t

τ∗

)s
lim

s→−η(n+1)
η((s/η + 1) + n)

Γ(s/η + 1)Γ(−s)
Γ(s+ 1)

(
t

τ∗

)s
lim

s→−η(n+1)

η((s/η + 1) + n)

(s/η + 1)n+1

Γ(s/η + n+ 2)Γ(−s)
Γ(s+ 1)

(
t

τ∗

)s
lim

s→−η(n+1)

η(−1)n

n!

Γ(η(n+ 1))

Γ(1− η(n+ 1))

(
t

τ∗

)−η(n+1)

(35)

When t→∞ only the first term survives and we find:

R(t) = 〈ν〉〈τ〉Γ(η + 1)

Γ(1− η)

(
t

τ∗

)−η
. (36)

Substituting τ∗ = 〈τ〉Γ(1/η)/η, we finally get Eq. (15,MT), from which we
obtain the superdiffusive scaling of the position variance σ2

X(t) ∝ tφ, with φ =
2− η.

Considering the poles in the other semi-plane, s = n with n = 0, 1, 2..∞, we
find that:

R(t) = 〈ν〉〈τ〉1
η

∞∑
n=0

(−1)n

n!

Γ(n/η)

Γ(n)

(
t

τ∗

)n
(37)

converges to R(0) = 〈ν〉〈τ〉, as already shown before.

(iii) MSD at time zero is zero:75

The condition σ2
X(t = 0) = 0 is clearly verified.

Example:
In the special case η = 1/2, the extremal Lévy function corresponds to the
Lévy–Smirnov distribution, the whole exercise can be solved analitycally and

we may consider for simplicity 〈τ〉Γ(1/η)
η = 1 :

g(τ) =
1√

4πτ5
e−1/(4τ) (38)

Solving the integral the analytical form of the correlation function turns to be:

R(t) =
Γ(1/2)√

4π

(
t+

1

4

)−1/2

(39)

which leads to the following exact formula for the position variance:

σ2
X(t) =

Γ(1/2)√
π

[
4

3

(
t+

1

4

)3/2

− t− 1

6

]
, (40)
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satisfying both superdiffusive long-time scaling and σ2
X(0) = 0 conditions.

NOTE: The Einstein–Smoluchovsky relation
By substituting Eq. (12,MT) into Eq. (5) it is easy to see that τc = τ . Using

the following equation (see the last equation in Box 1 of the Main Text):

R(0|V0, τ, ν) = 〈V 2|V0, τ, ν〉st = ντ ,

and substituting Eq. (12,MT) into the definition of D
X

, Eq. (8), we get the
Einstein–Smoluchowsky relation:

D
X

= ντ2 = τ 〈V 2|V0, τ, ν〉st , (41)

which, apart from the conditional statistics, is essentially the same as Eq. (9).
For a standard OU process with fixed ν and τ , 〈V 2|V0, τ, ν〉st = 〈V 2〉eq and
Eq. (41) relates the diffusion (D

X
) and relaxation (τ) properties through the

equilibrium distribution (〈V 2〉eq). In his 1905 paper [2], Einstein studied the
Brownian motion in a gas at equilibrium, where velocity distribution is given by
the Maxwell–Boltzmann law. In this case, the Einstein–Smoluchowsky relation
becomes:

D
X

= τ 〈V 2〉st = τ
kT

m
, (42)

being T , m and k the gas temperature, the Brownian particle mass and the
Boltzmann constant, respectively.80

3. Numerical scheme for the Langevin equation

In order to avoid stability problems, the numerical algorithm for the simulation
of Eqs. (1) and 4,MT) was implemented using an implicit scheme with order of
strong convergence 1.5 [6]. This is given by the following expression:

Vn+1 = Vn + b∆Wn +
1

2
{a(Vn+1) + a(Vn)}+ (43)

+
1

2
√

∆t
{a(V +)− a(V −)}

(
∆Zn −

1

2
∆Wn∆t

)
,

being Vn = V (n∆t), ∆t the time step, ∆Wn = W (tn + ∆t)−W (tn) the incre-
ments of the Wiener process, a(V ) = −V/τ and b =

√
2ν the drift and noise

terms, respectively. Further, we have:

V ± = Vn + a(Vn)∆t± b
√

∆t ,

∆Zn =
1

2
(∆t)3/2

(
u1(n) +

1√
3
u2(n)

)
,

(44)

being u1(n) and u2(n) two independent random numbers with uniform distri-
butions in [0, 1]. A suitable time step ∆t, also depending on the time scale τ , is
necessary to maintain the accuracy of the numerical scheme. To take into ac-
count both the ensemble variability of the relaxation time τ , which is different
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for different trajectories, and the time variability of drift and noise terms along
the same trajectory, we applied a variable time step according to the scheme
given in Ref. [7]:

∆t = min

{
0.05

b
,

0.1

|a|

}
. (45)

This adaptive time step allows to avoid any problem of convergence and accuracy
in the numerical scheme, Eqs. (43) and (44). At the same time, in the range
of short τ , this algorithm can give very short time steps, thus determining very
long simulation times for a consistent number of trajectories. To overcome this85

problem we note that the short time regime τ � 〈τ〉 of the PDF g(τ) does not
significantly affect the anomalous scaling of diffusion, which mostly depends on
the asymptotic tail of the distribution g(τ). A cut-off was then introduced in
the short-time regime. By comparing the numerical simulations with theoretical
results we chose the cut-off value τmin = 0.004, much smaller that 〈τ〉, which is90

always of the order 0.5− 1 for all sampled sets of τ .

4. Numerical algorithm for the random generator of τ

Here we describe a method to generate random variables τ distributed according
to the law of Eq. (14,MT),

g(τ) = A(η)L−ηη (τ)/τ, (46)

where A(η) is the normalization coefficient, and τ is already dimensionless.
For this, we use a well-known inverse transform sampling method (see,

e.g. [8]), so the procedure is straightforward.95

First, we generate a set of extremal Lévy density random numbers L−ηη (τ)
by using the generator described in Refs. [9, 10], see Eq. (3.2) of the latter
paper, and extract its histogram. Since the beginning of the histogram has
much statistical noise (red curve in Fig. 2a), it is a good solution to replace
these values with analytical asymptote at small arguments [11] (blue curve in
Fig. 2a). Moreover, we also expand the histogram with another asymptote, at
large τs (green curve in Fig. 2a):

L−ηη (τ) ∼ A1τ
−a1 exp(−b1τ c1), τ → 0+, (47)

L−ηη (τ) ∼ C1(η)

|τ |1+η
, τ →∞, (48)

where

A1 =
{

[2π(1− η)]
−1
η1/(1−η)

}1/2

, (49)

a1 =
2− η

2(1− η)
, b1 = (1− η)ηη/(1−η), c1 =

η

1− η
(50)

C1(η) ≈ 1

π
sin
(
π
η

2

)
Γ(1 + η). (51)

12



10-6 10-4 10-2 100 102 104 106 108

τ

10-15

10-12

10-9

10-6

10-3

100
L
−
η

η
(τ

)
a

simulated PDF
asymptote x→0

asymptote x→∞

10-6 10-4 10-2 100 102 104 106 108

τ

0.0

0.2

0.4

0.6

0.8

1.0

F
(τ

)

b

simulated cdf

Figure 2: (color online) (a) Simulated Lévy extremal density (red) together with asymptotics
at small arguments (blue) and large ones (green). (b) Cumulative distribution function of
g(τ).

Then, we divide the obtained histogram by argument and find the normal-
ization coefficient numerically in order that the resulting PDF is normalized to
unity. Finally, we calculate the semi-analytical cumulative distribution function
(CDF) (see Fig. 2):

F (τk) =

k∑
i=0

g(τi)δτi, τk ≤ τn; (52)

F (τ) =

n∑
i=0

g(τi)δτi +

τ∫
τn

A(η)

τ ′2+η
dτ ′, τ > τn, (53)

where δτi is the ith histogram’s bin width, i = 0, 1, 2..n.
Now, we draw a random variable τ obeying the target pdf (46) with

τ = F−1(u), (54)

where u ∈ [0, 1) is a uniformly distributed random variable: F−1 is a numerically
(or if u > F (xn), semi-analytically) inverted CDF.

Let us take out a verification and compare the original PDF g(τ) used for
the simulations and the histogram of the generated 107 random numbers with100

this algorithm gsim(τ). The result is shown in Fig. 3. At intermediate values of
τ the inaccuracy is about 1%, increasing due to statistical error at very small
and large τs (where g(τ) is small).

The software for the numerical simulations were written in C++ language (De-
bian gcc 4.9) and Python 2.7 and can be downloaded at the following web-site:105

https://gitlab.bcamath.org/opensource/lecm.
The codes include the algorithms described in this section and in the previ-
ous one. The simulation runs were performed on computational facilities of
BCAM-Basque Center for Applied Mathematics.
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Figure 3: (color online) (a) Comparison of the original PDF (46) (red) and the PDF histogram
of generated numbers (blue). (b) Relative error between original and simulated PDFs.

5. Schneider grey noise, gBM and ggBM110

We here provide an intuitive presentation of the Schneider grey noise, the
grey Brownian motion and the generalized grey Brownian motion. More rigouros
details can be found in [12, 13, 14, 15, 16, 17, 18, 19].

The grey noise is a generalization on the basis of the Mittag–Leffler function
of the white noise. The Mittag-Leffler function Eβ(z) is defined as

Eβ(z) =

∞∑
n=0

zn

Γ(βn+ 1)
, (55)

and it is a generalization of the exponential function that is recovered as special
case when β = 1, i.e., E1(−z) = e−z. As well as the exponential function, when
0 < β < 1, the Mittag–Leffler function is a completely monotonic function. A
useful formula for what follows is

− d2

dz2
Eβ(−z2 q)

∣∣∣∣
z=0

=
2

Γ(1 + β)
q . (56)

For any characteristic functional Φ(z) there exists a unique probability mea-
sure µ such that

Φ(z) =

∫ +∞

−∞
eizτ dµ(τ) , (57)

and if Φ(z) = Eβ(−z2), 0 < β < 1, the probability measure µ is the so-called

Schneider grey noise [12, 13, 17]. When β = 1 we have E1(−z2) = e−z
2

, and115

the Gaussian white noise follows.
Let us introduce the stochastic process X(t) driven by the noise µ and we

look for its probability density function. The characteristic function is

〈eizX(t)〉 =

∫ +∞

−∞
eizX(t) dµ(t) = Eβ(−z2 ϕ2

α(t)) , (58)

14



where function ϕα(t) takes into account what remains of parameter t after the
integration, and it is related to the scaling in time of X(t). By the inversion of
(58) we have the probability density function of X(t) as follows

p(x, t) =
1

2π

∫ +∞

−∞
e−izxEβ(−z2 ϕ2

α(t))dz =
1

2ϕα(t)
Mβ/2

(
|x|
ϕα(t)

)
, (59)

where Mβ/2 is the M-Wrigth/Mainardi function. By using (58) and (56), we
have that the variance of X(t) is

〈x2〉 = − d2

dz2
Eβ(−z2 ϕ2

α(t))

∣∣∣∣
z=0

=
2

Γ(1 + β)
ϕ2
α(t) . (60)

In the same spirit, the correlation function of the process X(t) can be com-
puted. In fact from (58) it holds

〈eiz[X(t)−X(s)]〉 =

∫ +∞

−∞
eiz[X(t)−X(s)] dµ(t, s) = Eβ(−z2 ϕ2

α(t, s)) , (61)

and by applying again formula (56) the correlation function results to be

1

Γ(1 + β)
(ϕα(t) + ϕα(s)− ϕα(t, s)) . (62)

Now we discuss how to establish function ϕα(t). Let 1[a,b] be the indicator
function such that it is equal to 1 when a < t < b and to 0 elsewhere. In analogy

with the Wiener process where the Brownian motion is B(t) =

∫ t

0

dW (τ), we

write the process X(t) as

X(t) =

∫ t

0

dµ(τ) = 1[0,t]X0(1[0,t]) , (63)

where X0 is a random variable equivalent in distribution to X(t) but indepen-
dent of t, i.e., the probability density function of X0 is p0(x) = p(x, t = 1).
From (63) we have that

〈[X(t)]2〉 = 〈[1[0,t]]
2〉 〈[X0]2〉 , (64)

and from comparison with (60) and (62), we obtain that ϕα(t) is established
through the stochastic process 1[a,b] that meets

〈[1[0,t]]
2〉 = ϕ2

α(t) , (65)

〈1[s,t]1[0,s]〉 =
1

2
(ϕ2
α(t) + ϕ2

α(s)− ϕ2
α(t, s)) . (66)

Finally we observe that, by setting ϕ2
α(t) = tα, X(t) is the Brownian motion

when α = β = 1, and we refer to it as the grey Brownian motion and the

15



generalized grey Brownian motion when 0 < α = β < 1 and 0 < α < 2,
0 < β < 1, respectively. Moreover, in order to have a process with stationary
increments we assume ϕ2

α(t, s) = |t− s|α, the correlation function results to be

1

Γ(1 + β)
(tα + sα − |t− s|α) . (67)

The corresponding stochastic process is obtained with a randomly-scaled
Gaussian process, i.e., a Gaussian process multiplied for a non-negative inde-
pendent randon variable not dependent on time.

From integral representation formulae of the M function [20], we have that
X0 has the same density of X(1) if, for example, we state X0 =

√
ΛB(1) where

Λ is a non-negative random variable distributed according to Mβ and B(1) is a
Gaussian variable. Finally, we obtain that

X(t) =
√

Λ 1[0,t] B(1[0,t]) . (68)

Looking at (60) and (62), the process 1[0,t] B(1[0,t]) is the fractional Brownian
motion XH(t) [21] characterized by

〈[XH(t)]2〉 = t2H , (69)

〈X(t)X(s)〉 =
1

2
(t2H + s2H − |t− s|2H) . (70)

Finally, by setting H = α/2, the trajectories of the process X(t) can be gener-
ated by

X(t) =
√

ΛXH(t) . (71)

Since the fBm XH(t) is fully characterized by the variance and the correlation120

functio, the process X(t) is also fully characterized by the variance and the
correlation function.
With a somewhat forced terminology, the term ggBM can be thought to include
any randomly scaled Gaussian process, i.e., any processes defined by the product
of a Gaussian process with an independent and constant non-negative random125

variable.

6. Mainardi distribution and Lévy densities

Fractional diffusion processes are a generalization of classical Gaussian diffusion,
mainly in the direction of the time-fractional diffusion, i.e., by replacing the first
derivative in time with a time-fractional derivative, and in the direction of the130

space-fractional diffusion, i.e., by replacing the second derivative in space with a
space-fractional derivative. In the case of time-fractional diffusion the Gaussian
particle density is generalized by the so-called M -Wright/Mainardi functions
[22, 23], and in the case of the space-fractional diffusion the particle density is
generalized by the so-called Lévy stable densities [11].135
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The M-Wright/Mainardi function Mν(r), r ≥ 0, 0 < ν < 1, is defined by the
series:

Mν(r) =

∞∑
n=0

(−r)n

n!Γ[−νn+ (1− ν)]
=

1

π

∞∑
n=0

(−r)n−1

(n− 1)!
Γ(νn) sin(πνn) , (72)

and it provides a generalization of the Gaussian and Airy functions:

M1/2(r) =
1√
π

e−r
2/4 , M1/3(r) = 32/3Ai(r/31/3) . (73)

Moreover, the following limit holds:

lim
ν→1−

Mν(r) = δ(r − 1) . (74)

The M density function is related to the Mittag–Leffler function through the
Laplace transform: ∫ ∞

0

e−λrMν(r) dr = Eν(−λ) , (75)

and it has an exponential decay for r →∞, i.e.:

Mν(r) ∼ Y ν−1/2

√
2π(1− ν)νν2ν−1

e−Y , Y = (1− ν)(ννr)1/(1−ν) , (76)

which allows for finite moments that can be computed through the formula:∫ ∞
0

rqMν(r)dr =
Γ(q + 1)

Γ(νq + 1)
, q > −1 . (77)

A remarkable formula of the Mainardi density is the following integral repre-
sentation with r ≥ 0, 0 < ν , η , β < 1 [20]:

Mν(r) =

∫ ∞
0

Mη

( r
τη

)
Mβ(τ)

dτ

τη
; ν = ηβ , (78)

that, in the special case η = 1/2, provides the following link with the Gaussian
density:

Mβ/2(r) =

∫ ∞
0

e−r
2/(4τ)

√
πτ

Mβ(τ)
dτ

τη
. (79)

The Lévy stable density Lθα(z), −∞ < z < +∞, 0 < α < 2, |θ| = min{α, 2−α},
is defined through the Fourier transform:∫ +∞

−∞
eiκzLθα(z)dκ = e−Ψ(κ) , Ψ(κ) = |κ|αei(sgnκ)θπ/2 . (80)

In the case θ = −α, 0 < α < 1, the Lévy density reduces to a one-side density on
the positive semi-axis (when θ = α on the negative semi-axis) and it is defined
through the Laplace transform:∫ ∞

0

eszL−αα (z)dz = e−s
α

. (81)
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The asymptotic behaviour for |z| → ∞ is the power-law

Lθα(z) = O(|z|−(α+1) , (82)

and, for extremal densities, the following exponential decay holds for z → 0:

L−αα (z) ∼ z−(2−α)/(2(1−α))√
2π(1− α)α1/(α−1)

e−Y , Y = (1− α)αα/(1−α)zα/(1−α) . (83)

Important special cases are the Gaussian, the Cauchy and the Lévy–Smirnov
density, i.e.:

L0
2(z) =

e−z
2/4

2
√
π
, L0

1(z) =
1

π

1

1 + z2
, L

−1/2
1/2 (z) =

z−3/2

2
√
π

e−1/(4z) . (84)

Moreover, the following limit holds:

lim
α→1

L−αα (z) = δ(z − 1) . (85)

A remarkable formula of the Lévy density is the following integral representation
for z ≥ 0, 0 < β < 1:

Lθpαp(z) =

∫ ∞
0

Lθqαq

( z

τ1/θq

)
L−ββ (τ)

dτ

τ1/αq
, αp = βαq , θp = βθq , (86)

that, in the special case αq = 2, θq = 0, provides the following link with the
Gaussian density [20, 24]:

L0
α(z) =

∫ ∞
0

e−z
2/(4τ)

√
πτ

L
−α/2
α/2 (τ)dτ . (87)

The Mν(r) function, r ≥ 0, 0 < ν < 1, and the extremal Lévy density L−νν (r)
are related by the formula:

1

c1/ν
L−νν

( r

c1/ν

)
=

c ν

rν+1
Mν

( c
rν

)
, c > 0 . (88)

In the present paper we consider such special densities in order to highlight
the relation of the proposed formulation with the fractional diffusion. How-
ever, the asympototic behaviour of the modeled diffusion can be achieved by
using the asymptotic behaviour of the involved densities. This means, by using
exponential and power-law functions rather than special functions.140

7. Space-Time Fractional Diffusion

For the particular choice of parameters: φ = 2β/α ; 1 < φ < 2, Eq. (20,MT)
reduces to the fundamental solution of the following Space-Time Fractional
Diffusion equation:

tD
β
∗ p(x; t) = Aα xD

α
0 p(x; t) , −∞ < x < +∞ , t ≥ 0 , (89)
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with:
Aα = (Cν)

α/2
. (90)

The nonlocal operators tD
β
∗ and xD

α
0 are the Caputo fractional time derivative

and the Riesz-Feller space derivative, respectively (see [11] for the definition of
these operators). This is the same equation discussed in Refs. [11, 25], but with
a generalized fractional diffusivity Aα different from 1.145

The solution reads:

Kθ
α,β(x, t) =

1

(Aα)
1/α

tβ/α
Kθ
α,β

(
x

(Aα)
1/α

tβ/α

)
,

with θ = 0 in this case. 6. The superdiffusive regime determines the following
constrain on α and β: α/2 < β < α.

Given the solutions of the Time Fractional Diffusion equation and of the
Space Fractional Diffusion equation with diffusivity 1 and Aα, respectively
[11, 26]:
Mβ(x, t) = 1/tβMβ(x/tβ) (Mainardi probability density) and

Lθα(x, t) = 1/ (Aαt)
1/α

Lθα

(
x/ (Aαt)

1/α
)

(Lévy probability density),

the general solution Kθ
α,β can be written as a combination of these same solu-

tions:

Kθ
α,β(x, t) =

∫ ∞
0

Lθα(x, τ)Mβ (τ, t) dτ , (91)

then the general solution emerges as a linear combination of the temporal
(Mainardi) and spatial (Lévy) solutions. The Mainardi density is related to
the extremal Lévy density by the following relationship (see Section 6 for de-
tails):

t

βτ

1

τ1/β
L−ββ

(
t

τ1/β

)
=

1

tβ
Mβ

( τ
tβ

)
, 0 < β ≤ 1 , τ, t ≥ 0 , (92)
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