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Abstract

S1: Oxygen diffusion in ellipsoidal tumor spheroids - Mathematical appendices.

Ellipsoidal oxygen tension derivations

Prolate spheroids

In a prolate spherical geometry, we employ a prolate spherical coordinate system where
curves of constant σ are prolate spheroids, whilst curves of constant τ correspond to
hyperboloids of revolution [1]. One can imagine this co-ordinate system as a series of
concentric ellipses, akin to how one would envision the spherical co-ordinate system as
concentric spheres. The parameter σ defines an ellipsoidal surface in this co-ordinate
system. Under azimuthal symmetry, the Laplacian in these coordinates is given by

∇2P =
1

f2(σ2 − τ2)

{
∂

∂σ

[(
σ2 − 1

) ∂P
∂σ

]
+

∂

∂τ

[
(1− τ2)

∂P

∂τ

]}
(1)

where f is the distance between the ellipse focal length and centre. We need to solve a
reaction-diffusion equation for oxygen partial pressure P , subject to appropriate
boundary conditions. This is analogous to the spherical case, where oxygen diffusion
occurs so rapidly we work under a steady-state assumption (∂P∂t = 0) [2, 3]. Under this
schema, oxygen diffuses through tissue, consumed at a rate aΩ, and the reaction
diffusion equation to be solved can be re-written as ∇2P = aΩ

D , where D is the oxygen

diffusion constant in water. Letting aΩ
D = k, the resultant nonhomogenous partial

differential equation can be solved by separation of variables. Formally the solution
should be a summation over an infinite series of products of functions, in τ and σ. For
brevity we only consider one such pair of functions and note that all other terms in the
summation are zero due to the boundary conditions. Hence we write P (τ, σ) as a
separable pair of functions P = F (τ)G(σ). One can very directly proceed to the
solution by noticing that the boundary conditions on the outer surface of the spheroid
implies that F (τ) must be a constant. Hence direct substitution of P = G(σ) into
equation 1 allows us to directly proceed to the solution given in 10. Alternatively one
can proceed more formally as we do below. Rearranging 1 and substituting for k gives

f2(σ2 − τ2)k =
∂

∂σ

(
(σ2 − 1)

∂P

∂σ

)
+

∂

∂τ

(
(1− τ2)

∂P

∂τ

)
. (2)
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Extracting the homogeneous parts in τ and σ and using the usual constant of
separation gives

∂

∂τ

(
(1− τ2)

∂F

∂τ

)
− λF = 0, (3)

∂

∂σ

(
(σ2 − 1)

∂G

∂σ

)
+ λG = 0. (4)

Equation 3 has the general solution

c1P 1
2 (−1+

√
1+4λ)(τ) + c2Q 1

2 (−1+
√

1+4λ)(τ). (5)

where P and Q are notations for associated Legendre functions of the first and second
kind respectively. Q 1

2 (−1+
√

1+4λ)(τ) gives rise to unphysical behaviours and can be

rejected, i.e. c2 = 0. Furthermore, boundary conditions require the Legendre
polynomial P 1

2 (−1+
√

1+4λ)(τ) to have an index of 0, i.e.

1

2

(
−1 +

√
1 + 4λ

)
= 0, (6)

or λ = 0. Hence the solution takes the form P = P0(τ)G(σ) with the constant c1 being
absorbed into G(σ). Substituting this into 2 then gives (using primes to denote
differentiation with respect to σ)

f2(σ2 − τ2)k = 2σG′P0 −G′′P0 + λGP0. (7)

We exploit
∫ 1

−1
P0f

2(σ2 − τ2)kdτ =
∫ 1

−1
P0(2σG′P0 −G′′P0 + λGP0)dτ and explicitly

making use of P0 = 1, we arrive at

kf2(σ2 − 1/3) = 2σG′ −G′′ + λG, (8)

which yields a general solution of the form

P =
kf2

6

[(
σ2 + log(σ2 − 1) +

C1

2
log

(
1− σ
1 + σ

))
−

(
τ2 + log(τ2 − 1) +

C1

2
log

(
1− τ
1 + τ

))]
+C3, (9)

where C1, C2 and C3 are constants. To find the specific solution, we need to apply
appropriate boundary conditions. On the innermost elliptical surface, σn, there is a
no-flux condition so that ∂P

∂σ = 0 on this surface. Applying this to equation 9, we can
ascertain that C1 = −2σ3

n. We can further state that on the outer boundary σo, P = po
and on the inner surface σn, P (σn) = 0. When this is solved for C3, all τ terms cancel,
leaving an expression entirely in terms of σ for the oxygen partial pressure on confocal
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Fig 1. Re-production of geometry figure from main text

prolate elliptical surfaces of

PP (σ) =
aΩf2

6D

(
σ2 − σ2

n + log

(
σ2 − 1

σ2
n − 1

)
+ σ3

n log

(
(1 + σ)(1− σn)

(1− σ)(1 + σn)

))
. (10)

It can be readily shown that this form satisfies the boundary conditions, and is the
solution to the desired steady state reaction-diffusion equation (∇2P = aΩ

D ). To arrive
at the more intuitive form shown in the main text, we need to convert from this
co-ordinate system to spherical co-ordinates. Consider the geometry figure from the
main text, re-produced above in figure 1. A point p on the ellipsoid is a distance r and
angle θ from the centroid. It lies on some confocal ellipse with semi-major axis re. We
know from the confocality condition that this ellipse will also have focal length f . The
parametric form for the point p is (re cos θ,

√
r2
e − f2 sin θ). From trigonometric

arguments, we can write

r2 = r2
e cos2 θ + r2

e sin2 θ − f2 sin2 θ (11)

∴ re =

√
r2 + f2 sin2 θ (12)

In prolate spheroidal co-ordinates, σ is the co-ordinate variable corresponding to
confocal ellipsoidal shells. In this co-ordinate system, σ has a simple relation to the foci
of an ellipse of semi-major axis re, namely that the sum of distance from any point on
the ellipse to the two foci is a constant, 2fσ = d1 + d2, where d1 and d2 are foci
distances to a point. Through simple trigonometric manipulation one can easily show
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that σ = re
f , and hence

σ =

√
r2 + f2 sin2 θ

f
. (13)

By similar argument, we can state that

σn =
rn
f
. (14)

These can be substituted for σ and σn into equation 10, and after simplification this
yields the spherical co-ordinate form presented in the main text. If preferred, an
alternative form specified on the exterior boundary is also possible, given by

PP (r, θ) = po +
aΩ

6D

(
r2 − r2

o + f2 sin2 θ + f2 log

(
r2 − f2 cos2 θ

r2
o − f2

)
+(

r3
n

f

)
log

(
(f +

√
r2 + f2 sin2 θ)(f − ro)

(f −
√
r2 + f2 sin2 θ)(f + ro)

))
. (15)

Oblate spheroids

We solve for the oblate case in oblate spherical coordinates [4], and employ similar
methods to the prolate case. Assuming azimuthal symmetry, the Laplacian in this
coordinate system is

∇2P =
1

a2 (σ2 − τ2)

{√
σ2 − 1

σ

∂

∂σ

[(
σ
√
σ2 − 1

) ∂P
∂σ

]
+

√
1− τ2

τ

∂

∂τ

[(
τ
√

1− τ2
) ∂P
∂τ

]}
.

(16)

An approach analogous to the prolate case can be taken, with the same boundary
conditions. Again all τ terms cancel, yielding

PO(σ) =
aΩf2

6D

(
σ2 − σ2

n + 4 log

(
σ

σn

)
+

2(σ2
n + 2)(

√
σ2
n − 1)

(
arctan

(
1√

σ2 − 1

)
− arctan

(
1√

σ2
n − 1

)))
(17)

which as in the prolate case satisfies the boundary conditions and is a solution to the
reaction-diffusion equation to be solved. Following the same conversion to spherical
co-ordinates as described in the prolate case yields the equation in the main
text.Alternatively, one may prefer an alternative definition of

PO(r, θ) = po +
aΩ

6D

(
r2 − r2

o + f2 sin2 θ + 2f2 log

(
r2 + f2 sin2 θ

r2
o

)
+

2(r2
n + 2f2)(

√
r2
n − f2)

f

(
arctan

(
f√

r2 − f2 cos2 θ

)
− arctan

(
f√

r2
o − f2

)))
. (18)
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Fig 2. A plane cut (represented in 2D as a line L) going through confocal ellipsoidal
spheroids. The z-axis is along the horizontal, and x-axis along vertical. This does not
pass through the ellipsoid common centers.

Proof: Planes through an ellipsoid can only produce
confocal inner/ outer ellipses if the plane passes
through the common centre with slope m = 0.

Any plane through an ellipsoid produces an ellipse [5]. Here we will show that for two
confocal enclosed ellipsoids, a cut that does not go through their common centre cannot
produce confocal ellipses. Consider the two dimensional projection of an ellipsoid in
figure 2 for simplicity. The plane is represented by the line L of slope m, which goes
through a point (zo, 0) where zo 6= 0.The equation of this line is given by

x = m(z − zo) (19)

and the equations of the outer ellipse (semi-major axis ao semi-minor axis bo), and inner
ellipse (semi-major axis ai semi-minor axis bi) projections are given by

z2

a2
o

+
x2

b2o
= 1 (20)

z2

a2
i

+
x2

b2i
= 1. (21)

L intersects the outer ellipse at two points, which can be found by substituting equation
8 into equation 9 and solving the quadratic expression. The midpoint of these two
points is given by
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Fig 3. A plane cut (represented in 2D as a line L) going through confocal ellipsoidal
spheroids. The z-axis is along the horizontal, and x-axis along vertical. L passes
through the common center of the ellipsoids.

(zoMid
, xoMid

) =

 m2zo
b2o
a2o

+m2
,mzo

 m2

b2o
a2o

+m2
− 1

 (22)

and similarly, the midpoint of the intersections on the inner ellipsoid are given by

(ziMid
, xiMid

) =

 m2zo
b2i
a2i

+m2
,mzo

 m2

b2i
a2i

+m2
− 1

 . (23)

If zo 6= 0, then for these points to coincide, both conditions ziMid
= zoMid

and
xiMid

= xoMid
must be satisfied. Taking the latter condition, we can re-arrange and

rewrite this condition as being equivalent to

bo
ao

=
bi
ai
. (24)

We can re-write ao in terms of ai by some scaling factor s1 and bo in terms of bi by some
scaling factor s2, and apply it to the above equation. After re-arrangement, this can be
shown to hold if and only if s1 = s2. But by definition, were this true then both the
inner and outer ellipses would have the same eccentricity, e. And if this were true, then

eao 6= eai (25)

and thus the resultant ellipses cannot ever be confocal, either having differing centers
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(zoMid
, xoMid

) 6= (ziMid
, xiMid

) or being non-confocal even if they share a center. A
similar argument can be applied even for planes through the center, as illustrated in
figure 3. In this instance, the inner and outer ellipsoids share a common center at the
origin. As zo = 0, we can establish the intersection points between the line and the
outer ellipsoid, and show the semi-major axis length is given by

aos =

√
m2 + 1
1
a2o

+ m2

b2o

(26)

where the other axis length by symmetry arguments for spheroids is simply bo. A
similar argument gives the axis length for the inner ellipsoid cut by

ais =

√√√√ m2 + 1
1
a2i

+ m2

b2i

. (27)

From the condition of confocality, we can state that

√
a2
os − b2o =

√
a2
is
− b2i (28)

which becomes after re-arrangement

m2 + 1
1
a2o

+ m2

b2o

− b2o =
m2 + 1
1
a2i

+ m2

b2i

− b2i . (29)

From inspection, it can be shown that the only value of m that will satisfy the
restrictions on this equation is m = 0, which is a cut through the centre along the
semi-major axis of the ellipsoid. Thus, we can conclude that if the outer and inner
ellipses are confocal, the plane section has crossed through the centre and is alone the
ellipsoid semi-major axis.
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Error analysis / Variance formula

In the main text, the error from equation 15 can be explicitly generated by the variance
formula shown in equation 16. After the requisite calculus, this would yield

∆aΩW =
12Dpo

(ro − rn)3(ro + 2rn)2

√
(r2
o + rorn + r2

n)2(∆ro)2 − 9(rorn)2(∆rn)2. (30)

This is the uncertainty estimate for a spherical assumption of ellipsoidal OCR. It is
encoded in the Mathematica files in S2 alongside the other error metrics discussed in
the paper.
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