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This supplementary information accompanies the manuscript ‘Individual preventive social
distancing during an epidemic may have negative population-level outcomes’. It contains de-
tails on mathematical results, additional figures, and summary statistics for the two real-world
networks.

In Section S1 analytical results and additional figures are presented for the social distancing
model on the configuration network model. In Section S1.3 we provide a proof that the final
size can increase with increasing social distancing rate ω by considering an asymptotic lower
bound for the final size. In Section S1.4 we provide some additional simulation studies on the
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number of index cases. In Section S2 we derive the epidemic threshold parameter R∗ for the
social distancing model on the clique network, the so-called clique reproduction number. We
show that social distancing can move R∗ from below to above the threshold value of one, thereby
leading to a positive probability of a major outbreak to occur. In Section S3 some properties
of the real-world networks are presented. In Section S4 we show that negative population level
effects can occur for a range of α values large enough, where ‘large enough’ depends on the
network structure under consideration and other parameter value choices. Finally in Section S5
we describe the technicalities of the simulation studies.

Section S1 Configuration network

Section S1.1 Notation and construction

The (Newman-Strogatz-Watts version of the) configuration model is defined in the main text in
Section 2.2.1. The degree D of an individual in the network is distributed as the pre-defined
distribution {pd}. The mean and variance of D are denoted by µD and σ2

D, respectively. In the
configuration network construction a given half-edge is d times as likely to be paired with a given
individual with degree d than with a given individual with degree 1. Therefore, a neighbour has
size-biased degree D̃, where P (D̃ = d) = dpd/µD, d = 1, 2, . . . The configuration model is well
studied, e.g. [7]. It is for instance known that, as the population size n → ∞, there will be zero
connected components that have size of exact order n if µD + σ2

D/µD − 1 ≤ 1, and precisely
one connected component of exact order n if µD + σ2

D/µD − 1 > 1. Since there is at most one
component that has size of exact order n this component is often called the giant component.
Further, if the degrees are not small, then the giant often makes up close to all individuals. If
for example all individuals have the same degree d > 2, then all nodes are part of the giant
component with a probability tending to 1 as n → ∞.

Section S1.2 Epidemic threshold parameter R0

The basic reproduction number R0 for the configuration network model with rewiring and drop-
ping has been derived previously in [8]:

R0 =
β

β + ω + γ

(

µD +
σ2
D

µD
− 1

)

. (S.1)

From (S.1) we see that R0 is a monotonically decreasing function of ω, i.e. any social distancing
always reduces R0. In particular, if R0 is larger than one in the baseline setting without any
social distancing (ω = 0), then social distancing reduces R0 to below its epidemic threshold of
one if and only if ω ≥ β(µD + σ2

D/µD − 1)− γ. Therefore, social distancing is always beneficial
at the beginning of an epidemic in the configuration network.

Section S1.3 Asymptotic lower bound for the final size

Assume that the degree distribution of the population only takes on values 0 and d, so p0 = 1−pd
with d > 2. For ease of argument we consider the asymptotic lower bound first for the simpler
setting of our model where γ = 0 and α = 1, i.e. an SI infection (without recovery) and social
distancing is always through rewiring to new individuals. We indicate later how the argument
may be extended to the case when γ = 0 and α ∈ (0, 1]. By a continuity argument it follows
that, for any α ∈ (0, 1], the conclusions also hold for all sufficiently small γ > 0. The degree
of an individual may change over the course of an epidemic owing to rewiring. We say that an
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individual has ‘original degree’ 0 or d if that was the degree of the individual in the configuration-
network construction before the epidemic.

We considerR0 as a function of ω. In the setting of this section, R0 = R0(ω) = β(d−1)/(β+ω)
(in the early stages of the epidemic, all newly infected individuals have degree d). Note that
R0(0) = d − 1, i.e. in an SI epidemic without rewiring, a newly infected individual transmits
infection to all its susceptible neighbours. Note that R0(0) > 1 since we have assumed that
d > 2. Let Z̄n(ω) denote the final fraction of the population that gets infected in the model with
population size n and rewiring rate ω. If ω = 0, then only transmission can occur (recall that
we consider γ = 0), so an index case will generate an outbreak of the size equal to the size of the
connected component this index case is part of. Asymptotically, as population size n → ∞, as
mentioned earlier, all individuals with degree d will be part of the giant component of the network
so the giant component consists of a fraction pd of the entire population. Therefore, as n tends to
infinity, Z̄n(0) tends to a two-point distribution Z̄(0) with P (Z̄(0) = 0) = p0 = 1−P (Z̄(0) = pd).
That is, in the setting without recovery, the asymptotic final fraction infected is either zero (if
the index case has degree 0) or pd (if the index case has degree d).

Note that for large enough ω, R0(ω) < 1. We consider ω > 0 sufficiently small such that
R0(ω) > 1. Furthermore, we assume that a major outbreak occurs. Therefore we assume that
the index case has degree d (if the index case has degree 0, then the final fraction Z̄n(ω) tends to
zero as n tends to infinity). Then the final fraction Z̄n(ω) tends in probability to τ(ω) as n → ∞.
We show that the relative final size τ(ω) of a major outbreak can increase for ω compared to
the baseline ω = 0 model. We do so by giving a lower bound τ̃ (ω) for τ(ω). This lower bound
is obtained by considering a model with slightly different social distancing rules. Suppose that a
susceptible individual distances him/herself from its infectious neighbour. Then he/she tries to
rewire to a randomly chosen individual v in the population. If v is an individual with original
degree d, then no connection is made and the existing connection is dropped instead. On the
other hand, if v has original degree 0, then (i) a connection is made as in the original model
and (ii) v is not allowed to transmit infection to an individual with original degree d. Note that
all these modifications make infection less likely, so the final size of this modified model is less
than that of the original social distancing model. Furthermore, note that in the baseline model
without rewiring (ω = 0) the final size of the original model is equal to the lower bound obtained
from the modified model.

Mean final size

The n → ∞ limiting final fraction of the population with original degree d that becomes infected
in the epidemic in the event of a major outbreak, which we denote by ρ, can be determined
using a susceptibility set argument (cf. [1, Section 2.1.2]). Let θ = ω/(β + ω) be the probability
that social distancing occurs before transmission for any given connection between a susceptible
and an infectious individual. An individual, i∗ say, having original degree d has d neighbours,
each of whom, if they were to become infected, infects i∗ independently with probability 1 − θ.
Further, any such neighbour of i∗, say j∗, has d − 1 neighbours excluding i∗, who would infect
j∗ independently with probability 1 − θ if they were to become infected. It follows that the
susceptibility set of i∗ can be approximated by a branching process having offspring distribution
Bin(d, 1−θ) in the initial generation and offspring distribution Bin(d−1, 1−θ) in all subsequent
generations. The above limiting final fraction ρ is given by the probability that this branching
process does not go extinct. Thus, by standard branching process theory,

ρ = 1− [θ + (1− θ)ξ]d,
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where ξ ∈ (0, 1) is the unique solution to

ξ = [θ + (1 − θ)ξ]d−1. (S.2)

Let z = θ + (1 − θ)ξ. Then ρ = 1− zd. Further, ξ = (z − θ)/(1 − θ) and substitution into (S.2)
shows that z is the unique solution in (0, 1) of

(β + ω)z − ω − βzd−1 = 0 (S.3)

Any original degree d individual that is exposed to at least one infectious individual will rewire
at least once with probability θ, so the fraction of the original degree d population that rewires
at least once is at least ρθ. These will include individuals that are not subsequently infected.
However, since the fraction of the original degree d population that avoid infection is 1− ρ, the
fraction of that population which rewire at least once and are subsequently infected is at least
ρθ− (1− ρ). The probability that such a rewiring is to an original degree 0 individual is p0 and,
given it is to an original degree 0 individual, the probability that individual itself rewires before
he/she is infected is 1− θ. Thus the fraction of the original degree d population that rewires and
transmits infection to an original degree 0 individual is at least

φ =
(

ρθ − (1− ρ)
)

p0(1− θ). (S.4)

Asymptotically, the probability that an individual of degree 0 escapes infection is at most
(1 − 1/(np0)

φnpd) → e−φpd/p0 as n → ∞, since approximately at least nφpd individuals re-
wire and transmit infection to an original degree 0 individual, and for each such rewiring event
the individual rewired to is chosen uniformly at random from the np0 original degree 0 individu-
als. Therefore, a lower bound for the fraction of the population that originally had degree 0 and
get infected is p0(1 − e−φpd/p0). Hence, the total fraction of the population that eventually get
infected is, in the limit as n → ∞, at least

τ̃(ω) = pdρ+ p0(1− e−φpd/p0). (S.5)

The latter yields an asymptotic lower bound for the final fraction infected in the SI epidemic
on the configuration network with rewiring rate ω (i.e. where γ = 0, α = 1). We consider
the first order approximation of (S.5) in ω to show that the lower bound for the relative final
size is exact when ω = 0 and increasing for small ω, thus the final size of the original model
also increases for small ω. We approximate ρ by considering (S.3). Denote the left-hand side
of (S.3) by F (z(ω), ω), so F (z(ω), ω) = 0. Then ∂F/∂z · z′(ω) + ∂F/∂ω = 0, which yields
z′(ω) = −(z − 1)/(β + ω − β(d − 1)zd−2). Hence z(ω) = z(0) + z′(0)ω + o(ω) = ω/β + o(ω),
and we can approximate ρ = 1 − (ω/β)d + o(ωd) for ω > 0 small enough. Next, recalling that
θ = ω/(β + ω) we make the approximation

φ =
[(

1− (ω/β)d
)

θ − (ω/β)d + o(ωd)
]

p0(1− θ)

= p0ω/β + o(ω)

as ω ↓ 0. The first order approximation of (S.5) is therefore

τ̃(ω) = pd(1 + p0ω/β) + o(ω).

Recall that the limiting mean fraction infected in the event of a large outbreak in the model
with no rewiring (ω = 0) is pd, i.e. this approximation is exact when ω = 0. Thus, since
pd (1 + p0ω/β) ≥ pd for all p0, ω > 0, we find that the final fraction infected in case of a major
outbreak is increased for all sufficiently small but strictly positive rewiring rates ω > 0 for the
modified model. In other words, the asymptotic lower bound for the relative final size given a
major outbreak is increasing in ω for small ω > 0.
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Mean final size of a major outbreak

For the expected relative final size we have

E(Z̄(ω)) = τ(ω)Pω(major outbreak) ≥ pd(1 +
p0
β
ω)Pω(major outbreak) + o(ω).

since the expected relative final size of a minor epidemic is 0. In order to show that also
E(Z̄(ω)) has a lower bound that is increasing in ω for sufficiently small ω, it suffices to show
that Pω(major outbreak) does not decrease too fast. We show that 1 − Pω(major outbreak) =
Pω(minor outbreak) ≤ p0 + pdω

d−1 + o(ωd−1) or equivalently that

Pθ(minor outbreak) ≤ p0 + pdθ
d−1 + o(θd−1). (S.6)

Note that there is a minor outbreak if either the index case has degree 0 (with probability p0),
or the index case has degree d (with probability pd = 1− p0) but the outbreak that takes place
amongst the individuals with degree d is a minor outbreak. Consider the configuration model
without the degree 0 individuals. We modify the model by letting the index case have degree d−1
and all other individuals have degree d. Consequently, all individuals, including the index case,
have d − 1 susceptible neighbours when newly infected in the beginning of the epidemic. This
modified model has a probability of a minor outbreak that is larger than the original model (and
is exact in the case θ = 0), i.e. Pθ(minor outbreak) ≤ Pθ(minor outbreak of the modified model).
Let π(θ) denote the probability of a minor outbreak for the modified model, given that the index
case is of degree d−1 (with probability pd = 1−p0). By conditioning on the number of neighbours
that avoid infection in the first generation, i.e. the number of neighbours that rewire away before
infection, we find the consistency equation

π(θ) =

d−1
∑

j=0

π(θ)d−1−j

(

d− 1

j

)

θj(1− θ)d−1−j =
(

θ + π(θ)(1 − θ)
)d−1

.

Note that π(0) = 0 since a major outbreak will occur without any rewiring. By the Taylor
expansion of π(θ) about θ = 0, we find that π(θ) = θd−1 + o(θd−1), proving (S.6). Since
E(Z̄(0)) = pd, we have a lower bound for the expected relative final size that is increasing for
sufficiently small ω > 0, and is exact for the baseline model ω > 0 without rewiring.

Allowing dropping

Suppose that α ∈ (0, 1). Then since in the model with modified social distancing all attempted
rewirings to an original degree d individual results in the edge being dropped, the only change
in the argument leading to (S.5) is that the expression for φ in (S.4) becomes

φ =
(

ρθ − (1− ρ)
)

p0(1− θ)α.

It follows that φ = p0αω/β + o(ω) as ω ↓ 0 and, since α > 0, the asymptotic lower bound for
the relative final size given a major outbreak is again increasing in ω for small ω > 0. Finally,
note that the probability of a major outbreak is independent of α, so the above argument shows
that the expected relative final size is also increasing in ω for small ω > 0. These results are
illustrated with simulation studies in Fig. S4

Section S1.4 The number of index cases

We consider the social distancing model on the configuration network with degree distribution
{pd}10d=0 where pd = c/(d + 1), d = 0, 1, . . . , 10, with c = 0.331 the normalization constant. In
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the main text, each epidemic is initiated with ten initially infected individuals that are randomly
chosen from the population. The rationale behind this choice is to ensure sufficiently many
epidemics result in major outbreaks. Owing to the degree distribution of the population, a
large fraction of the population has degree 0 or degree 1. An individual with degree 0 has no
connections and is therefore unable to transmit infection in the population. Also an individual
with degree 1 is unlikely to generate a major outbreak. In Fig. S1 we compare the final epidemic
size for the case that each epidemic starts with 10 randomly chosen infectives to the case that
each epidemic starts with only 1 randomly chosen infective (all other parameters are the same
as in Fig. 1 of the main text).
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Figure S1: The effect of social distancing on the final size of epidemics with different numbers of
initially infected individuals. (A) Average final size compared to the average final size in the baseline
model (with 95% CI) over all outbreaks (solid line) and restricted to major outbreaks (dashed line) for
1 initial infective (green) and 10 initial infectives (blue); dotted horizontal lines are at the size of the
epidemic when ω = 0, for reference. (B) R0 and the fraction of outbreaks resulting in a major outbreak
(with 95% CI) with 10 initial infectives. (C) R0 and the fraction of outbreaks resulting in a major
outbreak (with 95% CI) with 1 initial infective. In (B) and (C) the black dashed line at R0 = 1 indicates
the threshold value. We consider the configuration network model with degree distribution {pd}
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d=0 where
pd = c/(d + 1), d = 0, 1, . . . , 10, with c = 0.331 the normalization constant. The population size is 5000
and 500 simulation runs are performed for each value of ω. Parameter values are β = 20, γ = 0.2, α = 0.9.
The index cases are randomly chosen in the entire population. The plots for 10 initial infectives (in blue)
are the plots given in Fig. 1 of the main text.

Note that the effects of the number of initial infectives as shown in Fig. S1 are not surprising.
The average final size over all outbreaks is much smaller in the setting where epidemics are
initiated by one initial infective individual. Since this individual is randomly chosen over the
entire population, it is quite likely that he/she has degree 0 or 1. In such cases, epidemics will
(most likely) die out (Fig. S1C). By considering 10 initial infectives instead, it becomes more
likely that an epidemic outbreak occurs (Fig. S1B). This is both because there are simply more
infectives to start with, making it less likely that the epidemic dies out owing to stochastic
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effects, and it being more likely that some initial infectives have higher degree, enabling further
transmission in the population. On the other hand, the average final size in the event of a major
outbreak does not depend on the initial number of infectives provided that number is o(n) as
n → ∞ (cf. Fig. S1A, blue and green dashed line).

Section S2 The clique-network model

In the main text as well as in this supplement we consider the clique-network model where all
cliques consist of exactly three individuals. The reason for this choice is that it allows us to
illustrate our point that social distancing can have a negative effect on the initial stages of an
outbreak by increasing the epidemic threshold parameter R∗. At the same time, the choice of
cliques of size three simplifies the bookkeeping in the calculations below. Moreover, it yields
an explicit expression for the clique reproduction number R∗. However, in principle similar
calculations can be done also for clique sizes larger than three, or having variable clique sizes.

The clique network with variable clique sizes can be constructed as follows (see also [3, 4]
where the same model is referred to as household-network models). A clique-size distribution
{πh} is predefined that describes the sizes of cliques in the population. The population can be
divided into cliques with this distribution by drawing random sizes h1, h2, . . . independently from
{πh}, then labelling all individuals 1 up to n, and letting the first h1 individuals make up clique
1, the next h2 individuals make up clique 2, and so on. In the final network, individual 1 is then
connected to all individuals he/she is connected to from the construction of the configuration
model and individuals 2 up to h1 from the clique construction, and so on.

We denote the degree distribution for the global network connections by {pd}, and the mean
and variance by µD and σ2

D, respectively. We also use the size-biased degree distribution {p̃d}
with p̃d = dpd/µD. We let µ̃D denote the mean of the size-biased degree distribution, where
µ̃D =

∑

∞

d=1 dp̃d =
∑

∞

d=1 d
2pd/µD = µD + σ2

D/µD.

Section S2.1 Derivation of the epidemic threshold parameter R∗

We consider the clique reproduction number R∗ that can be interpreted as the expected num-
ber of secondary cliques generated by one typical newly infected clique at the beginning of an
epidemic [6, 2, 5]. So, rather than considering individuals as the units of interest we consider
cliques. The clique reproduction number R∗ satisfies the desired threshold behaviour that, as
the number of cliques tends to infinity, there is a strictly positive probability of a major outbreak
if R∗ > 1 and only minor outbreaks occur if R∗ ≤ 1.

At the start of an epidemic there are only few infected individuals and most individuals are
susceptible. Therefore, a newly infected clique at the beginning of an epidemic has most likely
only one newly infected individual that got infected by a neighbour outside his/her own clique.
In the SIR epidemic on the clique-network with social distancing, there are exactly two types of
newly infected clique: the first infected individual in the clique was infected through (1) a global
network neighbour or (2) a rewired network neighbour. Note that in case (1) the individual has
d − 1 susceptible global connections with probability p̃d while in case (2) the individual has d
susceptible global connections with probability pd (note that the probability that an individual
is rewired to more than once is negligible in the early stages). The other two clique members
have d susceptible global connections with probability pd.

The clique reproduction number R∗ is given by the dominant eigenvalue of the 2× 2 matrix
K = (Kij)i,j=1,2, where Kij is the expected number of cliques of type j generated by one newly
infected clique of type i. In the remainder of this section we derive expressions for the Kij by
considering all possible events that can occur within the clique. We denote the clique member
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that was infected from outside of the clique by u∗. The other two clique members are denoted
by u1 and u2. We let

θ1 =
β

β + ω + γ
, θ2 =

ω

β + ω + γ
, θ3 = 1− θ1 − θ2 =

γ

β + ω + γ
,

so that θ1 is the probability that transmission occurs from an infectious individual to a given
susceptible connection before recovery or social distancing, θ2 is the probability that social dis-
tancing occurs before transmission or recovery, and θ3 is the remaining probability (of recovery
before either event).

The Kij can be derived directly from the above interpretation. First of all, note that K12 =
K22, i.e. the expected number of secondary cliques of type 2 generated by a newly infected clique
does not depend on the type of that clique as the global network degree of u∗ does not play a role.
A clique member within a clique can transmit infection to individuals in another clique through a
rewired edge if (i) there is at least one clique edge that is rewired away to a new individual in the
population, (ii) the individual u1 that rewires away becomes infected by a clique member, and
(iii) u1 transmits infection along its rewired clique connection. Since we need both that clique
connections rewire to new cliques and the individuals that rewire away to become infected, the
only possibility for secondary cliques of type 2 to be generated is if there is exactly one rewired
clique connection in the index clique.

When u∗ is newly infected and the other two clique members u1 and u2 are (still) susceptible,
the following events can occur: (i) u∗ recovers (at rate γ), (ii) u∗ transmits to u1 or u2 (at rate
2β), or (iii) u1 or u2 distances itself from u∗ (at rate 2ω). So we find that the probability that
u∗ transmits to u1 is

π =
β

γ + 2β + 2ω
. (S.7)

The other probabilities in the derivations below can be derived in similar manner and we leave
out the details. We find the following two possibilities.

• u∗ transmits to u1 with probability π, then u2 rewires one of its clique connections from
either u∗ or u1 (with probability 2αω/(2β + 2ω + 2γ)), after which u2 becomes infected
through its clique connection that was not rewired away (with probability θ1). Finally, u2

transmits to a global neighbour through its rewired clique edge (with probability θ1)

• u1 rewires away from u∗ to a new individual (with probability 2αω/(2β+γ+2ω)), then u∗

transmits to u2 (with probability θ1). Next, u2 transmits infection to u1 (with probability
θ1), and u1 transmits to a global neighbour through its rewired clique edge (with probability
θ1)

Therefore,

K12 =
4αω

(2β + γ + 2ω)
θ31 = K22. (S.8)

K11 and K21 are a bit more involved as there are more possibilities to take into account.
Note that the only difference between the two Ki1 is in the degree of u∗. We note that the
expected number of newly infected cliques generated by network edges of u∗ is the probability
θ1 of transmission through a network connection (before recovery of u∗ or rewiring of network
edges) times the expected number of susceptible network neighbours of u∗. If u∗ is of type 1,
then the expected number of susceptible network neighbours is µ̃D − 1. If u∗ is of type 2, then
this expected number is µD.

8



Next, we note that clique members u1 and u2 are interchangeable in the sense that they
both have network degree d with probability pd, and all three clique members u1, u2, and u∗ are
connected to each other. If individual u1 gets infected, then the expected number of susceptible
network neighbours it has is µD. The expected number of secondary cases an infectious clique
member u1 generates is then θ1µD. We derive the probability that u1 becomes infected by taking
into account all relevant events and the order in which they occur.

The following events can occur (with corresponding probabilities):

• u∗ transmits to u1 with probability π

• u∗ transmits to u2 with probability π, after which u∗ or u2 transmits to u1 with probability
2β

2γ+2β+2ω = θ1.

• u∗ transmits to u2 with probability π, then u1 distances itself from either u∗ or u2 with
probability θ2, and finally u1 becomes infected by the clique member it did not distance
itself from with probability θ1

• u∗ transmits to u2 with probability π, then u∗ or u2 recovers with probability θ3, and
finally u1 becomes infected by the clique member that is still infectious with probability θ1

• u2 distances itself from u∗ with probability ω
γ+2β+2ω after which u∗ transmits to u1 with

probability θ1

• u1 distances itself from u∗ with probability ω
γ+2β+2ω , then u∗ transmits to u2 with prob-

ability θ1, and finally u2 transmits to u1 with probability θ1

The probability that u2 becomes infected is obtained by interchanging the names u1 and u2, so
we simply multiply by a factor 2 in the expected number of infected cliques generated by u1 and
u2.

Putting these pieces together, we find that the expressions for the Kij , i, j = 1, 2, are as
follows:

K11 = θ1(µ̃D − 1) + 2θ1µD

(

β

γ + 2β + 2ω
+

β

γ + 2β + 2ω
θ1 +

β

γ + 2β + 2ω
θ1θ2

+
β

γ + 2β + 2ω
θ3θ1 +

ω

γ + 2β + 2ω
θ1 +

ω

γ + 2β + 2ω
θ21

)

= θ1(µ̃D − 1) + 2θ1µD

(

β

γ + 2β + 2ω
(1 + θ1 + θ1θ2 + θ1θ3) +

ω

γ + 2β + 2ω
θ1(1 + θ1)

)

K21 = θ1µD + 2θ1µD

(

β

γ + 2β + 2ω
(1 + θ1 + θ1θ2 + θ1θ3) +

ω

γ + 2β + 2ω
θ1(1 + θ1)

)

Note that the sum 2 ω
(γ+2β+2ω)θ

2
1 = β

γ+2β+2ωθ1θ2+
ω

γ+2β+2ω θ
2
1 of the two terms β

γ+2β+2ωθ1θ2 and
ω

γ+2β+2ωθ
2
1 in K11 and K21 is the probability of social distancing of an initially susceptible clique

member that later becomes infected.
Finally, the clique reproduction number R∗ is the dominant eigenvalue of the 2×2 matrixK =

(Kij)i,j=1,2. Therefore, we have an explicit expression of R∗ in terms of the model parameters:

R∗ =
tr +

√
tr2 − 4det

2
, (S.9)

where tr= K11+K22 and det= K11K22−K12K21 denote the trace and determinant of the matrix
K, respectively.

9



Section S2.2 Social distancing can increase R∗ but this depends on the
network structure

We consider two degree distributions for the degree D of the global network, and using (S.9)
for R∗, show that R∗ can increase for sufficiently small distancing rate ω > 0 and recovery rate
γ > 0. We consider a third choice for D to show that this need not always be the case. Assume
that γ = 0 and α = 1 and write R∗ = R∗(ω).

First, suppose that p1 = p = 1 − p0. Then µD = p and µD̃−1 = 0. Then R∗(0) = 2p and
R′

∗
(0) = (3 − 2p)/β. In particular, if p = 1/2, then R∗(0) = 1, and R′

∗
(0) > 0. Therefore, for

sufficiently small γ > 0 and sufficiently large α < 1, an increasing rewiring rate ω > 0 can push
the epidemic threshold parameter R∗ from below to above the threshold value of one as shown
numerically in Fig. 2A and Fig. 2C of the main text.

Next, suppose that D is Poisson with mean µD. Then D̃ − 1 is also Poisson with mean µD.
Then R∗(0) = 3µD, and R′

∗
(0) = (2 − 3µD)/β. In particular, if µD = 1/3, then R∗(0) = 1, and

R′

∗
(0) > 0. Thus, for sufficiently small γ > 0 and sufficiently large α < 1 and µD close to 1/3, an

increasing rewiring rate ω can push the epidemic threshold parameter R∗ from below to above
the threshold value of one as shown numerically in Fig. S2A.

Note that the derivations above do not rely on the specific choice α = 1. Indeed, we have
an analytical expression (S.9) for R∗ that is explicit in terms of the model parameters so we can
very well do the same derivations for some fixed value of α. By doing so, we can also derive a
threshold for α. For the model with p1 = p = 1 − p0, one gets sign[R′

∗
(0)] = sign[3α − 2p] so

R′

∗
(0) > 0 if α > 2p/3. In particular, if p = 1/2 then R′

∗
(0) > 0 if α > 1/3. For the Poisson

model, one gets sign[R′

∗
(0)] = sign[2α − 3µD], so R′

∗
(0) > 0 if α > 3µD/2. In particular, if

µD = 1/3 then R′

∗
(0) > 0 if α > 1/2. Note that this implies that the same conclusions hold for

R∗ for a much larger range of probabilities α than illustrated in Fig. 2 of the main manuscript.
Concretely, for the model with p1 = p = 1 − p0, R∗ can cross the threshold value of one for
the range 1/3 < α ≤ 1 and for the model with Poisson degree the range is 1/2 < α ≤ 1. We
illustrate these results in Fig. S5 for the model with degree distribution p1 = p = 1− p0.

Finally, to show that the result for R∗ does not hold in general, we consider the following
distribution. Suppose that pd = 1, for some fixed d > 1, so all individuals have degree d. Then
µD = d and µD̃−1 = d−1, whence R∗(0) = 3µD−1 and R′

∗
(0) = −(1−12µD+9µ2

D)/(β(3µD−1).

Note that 1− 12µD + 9µ2
D = (3µD − 2)2 > 0 as d > 1. We find that R′

∗
(0) < 0 for d > 1. This

shows that rewiring decreases the epidemic threshold parameter R∗ for sufficiently small ω > 0
(and α < 1, γ > 0) as illustrated in Fig. S2B.
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Figure S2: R∗ for the clique-network model with cliques of size 3 with mean infectious period 1/γ = 5
days, β = 200, α = 0.9 (A) Social distancing can increase the epidemic threshold parameter R∗ from
below to above its threshold value of one for clique-network models. Illustration with two-point degree
distribution with p0 = 1/2 = p1 (blue line) and Poisson degree distribution with mean µD = 0.335 (green
line) (B) Social distancing does not have to increase the epidemic threshold parameter R∗. Illustration
with degree distribution p3 = 1. Results for each value of ω are based on 500 simulations.

Section S3 Real-world networks

Section S3.1 Properties of the real-world networks

We summarize the most important characteristics of the real-world networks for our purpose,
other network summary statistics and more details are found in [12, 9, 11].

The ‘arXiv General Relativity’ collaboration network describes scientific collaborations
between authors that submitted papers to the arXiv in the General Relativity and Quantum
Cosmology category. Edges between nodes represent two co-authors that have written a paper
together. There are 5241 nodes and 14484 edges in the network. In total there are 354 connected
components that make up the network and the largest connected component covers a fraction of
0.793 nodes and 0.926 edges. The minimum and maximum degree in the population are 1 and
81, with a mean of 5.53 and a variance of 62.7. The median degree is 3. There are in total 777
nodes with degree 3, and out of these nodes, 676 are part of the largest connected component.
We choose the index case at random from these 676 nodes.

In the ‘Facebook social circles’ network, nodes are survey participants of the social network
website Facebook that were using a specific app. Edges between nodes represent the ‘circles’ or
‘friends lists’ of those participants. There are 4039 nodes and 88234 edges. The largest network
component is precisely the network itself. The minimum and maximum degree in the population
are 1 and 1045, with a mean of 43.70 and a variance of 2748.44. The median degree in the
population is 25, and there are 55 individuals with this median degree of 25. We choose an index
case at random from this set of individuals.

Finally, we consider a set of networks that has been collected over a period of 69 days, available
at [9]. In the ‘Science Gallery’ (SG) networks, nodes represent visitors of an exhibition in the
Science Gallery in Dublin. In principle, each day there is a unique set of visitors, and therefore
network. Edges represent close-range face-to-face proximity between nodes (details on data
collection are found in [9, 11]). In principle the data takes into account the duration of contacts
through weights on edges but since this is not accounted for in our social distancing model, we
neglect the weights and temporal aspects of the network. Instead we use the available (daily)
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aggregated networks of [9]. We consider two SG networks that are supposed to be representative
for the collected networks over the 69 days, namely 20 May 2009 and 14 July 2009 [11] (which
we simply refer to as SG1 and SG2, respectively).

SG1 contains 194 nodes and 958 edges. There are 5 isolated nodes that we ignore in the
network. The other 189 nodes make up a network through 5 connected components of sizes
2, 3, 5, 89, and 90. The two largest connected components of sizes 89 and 90 cover a fraction
of 0.471 and 0.476 of all nodes and 0.460 and 0.531 of all edges, respectively. The minimum
and maximum degree in the population are 1 and 35, with a mean of 10.14 and a variance of
51.5. The median degree is 9. There are in total 9 nodes with degree 9, five of which are in the
component of size 90 and the other four are in the component of size 89. We choose the index
case at random from these 9 nodes.

SG2 contains 139 nodes and 433 edges. There are 2 isolated nodes that we ignore in the
network. The other 137 nodes are all in one connected component. The minimum and maximum
degree in the population are 1 and 20, with a mean of 6.32 and a variance of 16.44. The median
degree is 6. There are in total 18 nodes with degree 6. We choose the index case at random from
these 18 nodes.

Section S4 Effects of dropping and/or rewiring

As previously noted, the setting that α = 0, i.e. all social distancing is done through dropping
of edges, is always beneficial for the population level. Therefore, only for α large enough, we
will find negative population level effects. However, whether α is large enough depends much
on the network structure at hand and the choice of other parameter values. In this section we
illustrate the analytical results of Section S1.3 and Section S2.2 that negative population level
effects can occur for a range of α-values larger than the α = 0.9 taken in the studies in the main
manuscript. At the same time we show that these negative effects do not always occur.

First, in Fig. S3 we consider the scenario of Fig. 1 in the main manuscript, and compare the
effect of α = 0.9 to α = 0.5. We see that when α = 0.5, i.e. half of social distancing is through
dropping of edges, then this has a positive population level effect in the setting presented in
Fig. S3.
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Figure S3: The effect of the probability α that social distancing is through rewiring rather than
dropping on the final size of the epidemic given a major outbreak on the configuration network with
degree distribution {pd}

10

d=0 where pd = c/(d + 1), d = 0, 1, . . . , 10, with c = 0.331 the normalization
constant. Dotted horizontal line is for comparison with the size at ω = 0. Model parameters are 1/γ = 5
days, β = 20 days−1, α = 0.9 and 0.5. Compare with Fig. 1 of the main manuscript (note that the y-axis
is scaled differently for better comparison with α values). Results for each value of ω are based on 500
simulations. The epidemic is initiated with 10 index case that are chosen uniformly at random.

In Section S1.3 we proved that social distancing can have negative population level effects on
the final size of the epidemic for α ∈ (0, 1]. We illustrate this by considering an epidemic on a
configuration network with degree distribution p0 = 1/2 = p5 for different values of α in Fig. S4.
Note that generally the increase in the final size is smaller and occurs for a smaller range of social
distancing rates ω > 0 for smaller values of α.
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Figure S4: The effect of the probability α that social distancing is through rewiring rather than
dropping on the final size of the epidemic over all epidemic outbreaks (A) and given a major outbreak
(B) on the configuration network with degree distribution p0 = 1/2 = p5; dotted horizontal line is for
comparison with the size at ω = 0. Model parameters are 1/γ = 5 days, β = 200 days−1, and α = 0.9
(C), α = 0.7 (D), α = 0.5 (E). (Note that the scaling of the y-axis is different in (A) and (B).) Results
for each value of ω are based on 500 simulations. The index case is chosen uniformly at random from
degree 5 individuals.

Analysis in Section S2.2 shows that social distancing can push the epidemic threshold para-
meter R∗ across the threshold value of one in a clique network for a range of α values. We
illustrate this by considering the clique network with degree distribution p0 = 1/2 = p1 in
Fig. S5. We see in Figs. S5A and B that increasing ω can lead to R∗ crossing the threshold value
of one for both α = 0.9 and α = 0.5. Note however that parameter values are such that for
α = 0.5, R∗ remains very close to one, and therefore few epidemics result in major outbreaks.
Furthermore, the negative population level effect is generally smaller for smaller values of α.
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Figure S5: The effect of the probability α that social distancing is through rewiring rather than
dropping on the final size of the epidemic given a major outbreak on the clique network with degree
distribution p0 = 1/2 = p1; dotted hoirzontal lines are for comparison with the size at ω = 0. Model
parameters are 1/γ = 5 days, β = 4000 days−1, and (A, C) α = 0.9, (B, D) α = 0.5 (note that the
y-axis is scaled differently in Figs. C and D. Results for each value of ω are based on 500 simulations.
The index case is chosen uniformly at random.

In Fig. S6 we find that the final size given a major outbreak can increase for small enough
social distancing rates ω under different rewiring probabilities α for an epidemic on the arXiv
collaboration network. Note however that the range of social distancing rates ω for which this
occurs, and the extent to which the final size can increase depend on the value of α. In contrast,
in Fig. S7 we find that the probability α has little effect on the final size given a major outbreak
for an epidemic on the facebook social circles network.
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Figure S6: The effect of the probability α that social distancing is through rewiring rather than
dropping on the final size of the epidemic given a major outbreak on the arXiv collaboration network;
dotted hoirzontal lines are for the size of the giant component (top) and comparison with the size at
ω = 0. Model parameters are 1/γ = 5 days, β = 2 days−1, and α = 0.9, 0.7, and 0.5. Results for
each value of ω are based on 500 simulations. The index case is chosen uniformly at random from the
sub-population of individuals that has median degree and are part of the largest connected component
of the network. Compare with Fig. 3 of the main manuscript (note that the y-axis is scaled from 2000
to 5241 for better comparison between the α).
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Figure S7: The effect of the probability α that social distancing is through rewiring rather than
dropping on the final size of the epidemic given a major outbreak on the facebook social circles network;
dotted horizontal lines are for the size of the network (top) and comparison with the size at ω = 0.
Model parameters are 1/γ = 5 days, β = 2 days−1, and α = 0.9, and 0.5. Results for each value of ω
are based on 500 simulations. The index case is chosen uniformly at random from the sub-population of
individuals that has median degree. Compare with Fig. 5 of the main manuscript (note that the y-axis
is scaled from 3000 to 4500 for better comparison between the α).

Finally, we consider the effect of the transmission rate β and the probability α on the two
Science Gallery networks SG1 ad SG2 in Figs. S8 and S9 (where we adjust for the range of
ω-values while keeping the recovery rate γ fixed at 0.2/day). We find that the results are
qualitatively the same for different sets of parameter values. Only the results for the average
final size given a major outbreak are presented together with the fraction of simulations resulting
in major outbreaks. Quantitatively, we find that decreasing β and α result in smaller average
final sizes, which is in line with what is expected. Note that SG1 allows for a large range of
α-values for which the negative population-level effect on the final size can still be observed (as
compared to e.g. arXiv collaboration network in Fig. S6). A major structural difference in
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the networks SG1 and the arXiv collaboration network is that the first network has two large
connected components while the second has one main connected component. In SG1, rewiring
makes it likely that the two connected components become connected through rewiring.
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Figure S8: The effect of the transmission rate β and the probability α that social distancing is through
rewiring rather than dropping on the final size of the epidemic given a major outbreak on the SG1
network; dotted horizontal line is for comparison with the size at ω = 0. The mean infectious period is
1/γ = 5 days. Note that the range of ω-values is adjusted for each value of β. Results for each value of
ω are based on 500 simulations. The index case is chosen uniformly at random from the sub-population
of individuals that has median degree.
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Figure S9: The effect of the transmission rate β and the probability α that social distancing is through
rewiring rather than dropping on the final size of the epidemic given a major outbreak on the SG2
network; dotted horizontal line is for comparison with the size at ω = 0. The mean infectious period is
1/γ = 5 days. Note that the range of ω-values is adjusted for each value of β. Results for each value of
ω are based on 500 simulations. The index case is chosen uniformly at random from the sub-population
of individuals that has median degree.

Section S5 Simulation algorithm

We are interested in the epidemic final size and the probability of a major outbreak for the social
distancing model applied to (i) the configuration network model, (ii) the clique network model,
and (iii) two real-world networks. The social distancing model is mathematically challenging to
analyse. Although we have some analytical results (presented in Sections Section S1 and Sec-
tion S2), e.g. for the threshold parameter R0 for the configuration network model and R∗ for the
clique network model, other quantities of interest, i.e. the final size and the probability of a major
outbreak we have not managed to characterize mathematically. Moreover, on large real-world
networks it is impractical to exactly compute the quantities we are interested in. The results in
this text are obtained through simulation methods.

Given the structure of the networks it is fairly straightforward (since the epidemic process is a
continuous-time Markov chain) to write code to simulate realisations of the final size of stochastic
SIR epidemic process described in section Model description of the main article. By inspecting
histograms of these simulated final sizes we find that the cut-off of 10% of population size (as
stated in section Model description of the main text) is satisfactory for the networks we consider.
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The simulation program is set up such that it keeps track of the network structure through (i) a
unique labelling of all the nodes in the population and (ii) a list of edges between corresponding
nodes at each time step (additionally we track the degree of each node). The epidemic dynamics
are tracked through (i) a list of the disease states of all nodes and (ii) a list of edges between
susceptible and infectious nodes (additionally we track the number of edges between susceptible
and infectious nodes and the number of infectious nodes). The events that may occur are (i)
recovery of an infectious node (update the list of disease states and the list of edges between
susceptible and infectious nodes), (ii) transmission from an infectious to susceptible neighbour
(update the list of disease states and the list of edges between susceptible and infectious nodes),
(iii) dropping of an edge from a susceptible to an infectious neighbour (update the list of existing
edges in the network and the list of edges between susceptible and infectious nodes), and (iv)
rewiring of an edge from a susceptible to an infectious neighbour (update the list of existing edges
in the network and the list of edges between susceptible and infectious nodes). The epidemic
stops when there are no more infectious nodes in the population.

We use the Gillespie algorithm to determine the next event and the time to the next event.
The program additionally keeps track of the event times and number of infectious nodes at each
time step, but these quantities are not used in the analysis in the manuscript. A simulation run is
performed for a given network, either generated through a model network or a real-world network.
In both cases the network information required is the total population size, the degrees of each
node, and the list of edges between nodes. An epidemic can be initiated by a random number
of index cases or by choosing a specific node satisfying specific properties. The initialization
of the epidemic determines the list of diseases states and the list of edges between susceptible
and infectious nodes. The final size of an epidemic is the number of recovered nodes at the
end of the simulation that is found through the list of disease states of all nodes. The main
simulation program is found in an additional SI file to the main manuscript where also more
details on the key variables can be found and an explanation of how the real-world networks
are extracted to use in the simulations (code for extracting the real-world networks is available
as separate SI files). The file rewire sim.py contains functions to generate random graphs and
simulate epidemics upon them, extract networks.py contains code to import the empirical graphs
from a text file to an appropriate format for use with the simulation code, extractPos.py contains
helper functions for extracting the networks.

In plots depicting the results of simulations we present point estimates, for example the
proportion of simulations that result in a final size greater than 10% of population size as an
estimate of major outbreak probability, the mean final size amongst outbreaks with a final size
greater than 10% of population size as an estimate of the relative final size of a major outbreak.
We also present confidence intervals (CI) around these estimates in cases where those intervals
are large enough to be visible on the scales used in the plots.

In simulations that are based on the configuration network construction imperfections of the
network such as self-loops and multiple edges may arise. However, there are generally only a
small number of such imperfections. The theory (see [10, Thm. 3.1.2]) predicts that the number
of self-loops and pairs of parallel edges should be asymptotically independent Poisson variables
with mean µ =

∑

k k(k − 1)pk/2µD and µ2, respectively. Table 1 shows good agreement, as the
population size increases, with this prediction of an average of µ+ 2µ2 ≈ 14.4 edges involved in
imperfections for the configuration network with degree distribution pd = c/(d+1), d = 0, . . . , 10
and c = 0.331 the normalization constant.
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Population size Number of edges Number of imperfections Fraction of imperfections
100 134 13.51 0.10
500 663 14.73 0.022
1000 1318 14.56 0.011
5000 6612 14.21 0.0021

Table 1: The average number of self-loops and multiple edges for different population sizes for the con-
figuration network with degree distribution {pd}

10

d=0 with pd = c/(d+1), and c = 0.331 the normalization
constant. Imperfections are counted as 1 for self-loops and 2 for each pair of multiple edges, so the last
column of the table gives the fraction of edges involved in such imperfections.
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