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1 Experimental procedure and data processing methods
In order to derive the growth rate and β-galactosidase activity, we measured the absorbance of bacterial cells at
600nm (OD600) and the absorbance of the product of β-galactosidase reaction at 405nm (OD405) with a Wallac
Victor3 1420 Multilabel Counter (PerkinElmer Life Sciences). The detailed experimental procedure, modified from
the literature (1–3), are as follows. First, seed cultures were incubated in the M9 minimal growth medium with
0.2% (w/v) casamino acids and 0.5% (w/v) glucose (M9+cAA+Gluc) at 37◦C (the same temperature was used for
below cultivations). After ∼9 hours growth, the cultures were pelleted, washed at least once by centrifugation and
resuspension with appropriate growth media and then inoculated in the media at initial OD600 ≈ 0.004 for pre-
cultures. After overnight growth, pre-cultures were pelleted, washed, and then inoculated in the experimental media
with several concentrations of the growth inhibitor (chloramphenicol, paraquat or acetic acid), which were distributed
to a 48-well plate (Corning Costar) in advance. The total volume of experimental culture per well was 1 mL. OD600 of
the culture was measured no less than four times at an interval 30-50 minutes during the exponential phase (typically
at OD600 between 0.03 and 0.18). During the late exponential phase (typically at OD600 between 0.12 and 0.18),
removed 200µL culture per well to one 96-well plate (culture plate) and measured OD600 again. Added 160 µL
permeabilization solution (0.8 mg/mL hexadecyltrimethylammonium bromide, 0.4 mg/mL sodium deoxycholate, 200
mM Na2HPO4, 20 mM KCl, 2 mM MgSO4, and 5.4 µL/ml β-mercaptoethanol) per well to another 96-well plate
(permeabilization plate), and removed 40 µL culture, which was in advance diluted fourfold with M9 salts solution (1L:
17.096g Na2HPO4·12H2O, 3g KH2PO4, 0.5g NaCl, 1g NH4Cl, dissolved in ddH2O), per well from the culture plate
into the permeabilization solution. The permeabilization plate was kept at 4◦C until all permeabilized samples were
collected. To reduce the waiting time, the culture with more growth inhibitor was inoculated earlier with a larger initial
OD600 (not exceeding 0.004). Next, added 190µL substrate solution (60mM Na2HPO4, 40 mM NaH2PO4, 10 mM
KCl, 20 µg/mL hexadecyltrimethylammonium bromide, 10 µg/mL sodium deoxycholate, 1 mg/mL o-nitrophenyl-β-
D-galactopyranoside, and 2.7 µL/mL β-mercaptoethanol) per well to another 96-well plate (reaction plate). Stored
both the permeabilization and reaction plates at 30◦C for ∼30 minutes. Then added 10µL permeabilized sample per
well into the substrate solution and mixed them fully with a multichannel pipette. Immediately, the multilabel counter
(PerkinElmer Life Sciences) was used to measure OD405 of the sample once per 1-3 minutes for 90 to 120 minutes at
30◦C.

We obtained the growth rate by deriving the slope of the plot of the logarithm of OD600 during exponential phase
versus the time. In earlier work (e.g (2, 3)), β-galactosidase activity was determined by deriving the slope of the plot
of the product absorbance (at a wavelength of around 420nm) versus time. In our measurement, however, OD405

has a little concave-down tendency in the change with the time, which should result from that the product of the
β-galactosidase reaction, i.e. o-nitrophenol (ONP), is steam volatile (4). We also observed that the color (yellow)
of the product, unsealed and stored in the fume hood, turned much lighter after a few days, whereas that packaged
hermetically lasted for several months. For simplicity, we assume that the detectable ONP decays slowly with a rate
that is proportional to the concentration of ONP. We use x and y to denote concentrations of β-galactosidase and ONP,
respectively. Then the change of y follows the differential equation

dy/dt = vx− γy, (1)

where v and γ denote the reaction rate per enzyme and decay constant, respectively. The solution can be derived as

y = vx(1− e−γt)/γ. (2)

where vx and γ can be fixed by fitting the data of OD405 as a function of time with this equation (see examples in
Figure S6 in the Supporting Material). Since vx represents the enzyme reaction rate per unit volume, β-galactosidase
activity can be defined by

β − gal activity(Miller units) , 1000 · vx · 1

0.01
× 20× 1

OD600
= 2× 106 × vx

OD600
(3)
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2 Analytically solving the optimization problem of protein allocation

2.1 Ignoring the toxicity of protein aggregates and without overexpression of the unneces-
sary protein

The optimization problem of protein allocation can be mapped into a two-dimensional space (ϕR, ϕP2). For simplicity,
we define ϕP0 = ϕR − ϕ0 and ϕ∗∗ = ϕ∗ − ϕ0. Then the constraints (Eqs. 15-18 in the main text) become

(bϕP0 + ϕP2 − ϕ∗∗)(k1 − k3) ≥ 0, (4)
(aϕP0 + ϕP2 − ϕ∗∗)(k3 − k1) ≥ 0, (5)

ϕP0ϕm/(ϕm + ϕP2)− (a− b)−1(aϕP0 + ϕP2 − ϕ∗∗) ≥ 0, (6)
ϕP0, ϕP2 ≥ 0, (7)

where a = 1 + k0/k1 and b = 1 + k0/k3. The objective is to maximize

µ = k0ϕP0ϕP2/(ϕm + ϕP2). (8)

This two-dimensional nonlinear programming problem can be solved analytically and strictly. Obviously, the optimum
(maximum) is not at ϕP0 = 0 or ϕP2 = 0. When ϕP0, ϕP1 > 0, we have ∂µ/∂ϕP0 > 0 and ∂µ/∂ϕP2 > 0. So
the optimum should be located at the boundary of the region defined by Eqs. 4-7. With the boundary condition, the
optimum can be derived directly. Thus we obtain the optimal allocation solution ϕoptP0 (ϕoptR ), ϕoptP2 and the maximized
growth rate µmax. Then ϕoptP1 and ϕoptP3 can be derived from Eqs. 15 and 17 in the main text. Furthermore, we can
formalize the relationship of the optimal allocation fractions and growth rate under the stress that reduces flux capacity
k1,k0 or 1/ϕm.

As below, we give the analytic solution in two cases, from which we represent the proteome fraction of each class
proteins as a function of growth rate. (i) If k1 > k3, we have J3 = 0 and J0 = J1. Then the optimal allocation is

ϕoptR =
k1

k0 + k1
(ϕm + ϕ∗∗)1/2

[
(ϕm + ϕ∗∗)1/2 − ϕ1/2m

]
+ ϕ0, (9)

ϕoptP1 =
k0

k0 + k1
(ϕm + ϕ∗∗)1/2

[
(ϕm + ϕ∗∗)1/2 − ϕ1/2m

]
, (10)

ϕoptP2 = ϕ1/2m

[
(ϕm + ϕ∗∗)1/2 − ϕ1/2m

]
, (11)

ϕoptP3 = 0, (12)

and the maximized growth rate is

µmax =
k0k1
k0 + k1

[
(ϕm + ϕ∗∗)1/2 − ϕ1/2m

]2
. (13)

Next, we present the correlation of allocation fractions and bacterial growth rate under three limitations. (1) Under AA
supply limitation (k1 declining), ϕoptP2 and ϕoptP3 are constant, while ϕoptR and ϕoptP1 can be expressed as linear functions
of growth rate by

ϕoptR = Aµmax/(k0B) + ϕ0, (14)

ϕoptP1 = −Aµmax/(k0B) +AB, (15)

whereA = (ϕm+ϕ∗∗)1/2 andB = (ϕm+ϕ∗∗)1/2−ϕ1/2m . As can be seen from Eqs. 14-15, ϕoptR positively correlates
with growth rate, whereas ϕoptP1 negatively correlates with growth rate. (2) Under translation limitation (k0 decreasing),
ϕoptP2 and ϕoptP3 are still constant, while ϕoptR and ϕoptP1 can be expressed as linear functions of growth rate by

ϕoptR = −Aµmax/(k1B) +AB + ϕ0, (16)

ϕoptP1 = Aµmax/(k1B). (17)

2



From Eqs. 16-17, ϕoptR negatively depends on growth rate, whereas ϕoptP1 positively depends on growth rate. (3) Under
UP maturation limitation (ϕm increasing), ϕoptP3 are still constant, and ϕoptR , ϕoptP1 and ϕoptP2 can be expressed as linear
functions of growth rate by

ϕoptR = 0.5µmax/k1 + 0.5ϕ∗∗k0/(k0 + k1) + ϕ0, (18)

ϕoptP1 = 0.5µmax/k0 + 0.5ϕ∗∗k1/(k0 + k1), (19)

ϕoptP2 = −0.5(1/k0 + 1/k1)µmax + 0.5ϕ∗∗. (20)

From Eqs. 18-20, as the growth rate increases, ϕoptR and ϕoptP1 increase, whereas ϕoptP2 decreases.
(ii) If k1 < k3, we have J5 = 0, J4 = J3 and J2 = J1. Then the optimal allocation is

ϕoptR =
k1

k0 + k1

[
(cϕm + ϕ∗∗)1/2 − (cϕm)1/2

] [
(cϕm + ϕ∗∗)1/2 − (cϕm)1/2 + (ϕm/c)

1/2
]
+ ϕ0, (21)

ϕoptP1 =
k0

k0 + k1

[
(cϕm + ϕ∗∗)1/2 − (cϕm)1/2

]2
, (22)

ϕoptP2 = (cϕm)1/2
[
(cϕm + ϕ∗∗)1/2 − (cϕm)1/2

]
, (23)

ϕoptP3 =
k0

k0 + k3
(cϕm)1/2

[
(cϕm + ϕ∗∗)1/2 − (cϕm)1/2

]
, (24)

and the maximized growth rate is

µmax =
k0k1
k0 + k1

[
(cϕm + ϕ∗∗)1/2 − (cϕm)1/2

]2
, (25)

where c(= b/a) = (1 + k0/k3) / (1 + k0/k1). In the following we study the dependence of the allocation fractions
on growth rate under three limitations. (1) Under AA supply limitation (k1 declining), ϕoptR , ϕoptP1 , ϕoptP2 and ϕoptP3 can
be expressed as functions of growth rate by

ϕoptR = µmax/k0 + [k3ϕm/(k0(k0 + k3))]
1/2

µ1/2
max + ϕ0, (26)

ϕoptP1 = −µmax/k0 − 2[(k0 + k3)ϕm/(k0k3)]
1/2µ1/2

max + ϕ∗∗, (27)

ϕoptP2 = [(k0 + k3)ϕm/(k0k3)]
1/2

µ1/2
max, (28)

ϕoptP3 = [k0ϕm/((k0 + k3)k3)]
1/2

µ1/2
max. (29)

From Eqs. 26-29, ϕoptR and ϕoptP1 are quadratic functions of µ1/2
max, while ϕoptP2 and ϕoptP3 are linear functions of µ1/2

max. (2)
Under translation limitation (k0 decreasing), ϕoptR , ϕoptP1 , ϕoptP2 and ϕoptP3 can be expressed as functions of growth rate by

ϕoptR = (f(µmax)
2 − µmax/k3)(1 + ϕ1/2m /f(µmax)) + ϕ0, (30)

ϕoptP1 = µmax/k1, (31)

ϕoptP2 = ϕ1/2m f(µmax), (32)

ϕoptP3 = ϕ1/2m µmax/(k3f(µmax)). (33)

where f(µmax) = [(1/k3 − 1/k1)µmax + ϕm + ϕ∗∗]
1/2−ϕ1/2m . From Eqs. 30-33, ϕoptR and ϕoptP2 negatively correlate

with growth rate, ϕoptP1 linearly and positively correlates with growth rate, while ϕoptP3 positively correlates with growth
rate. (3) Under UP maturation limitation (ϕm increasing), ϕoptR , ϕoptP1 , ϕoptP2 and ϕoptP3 can be expressed as linear functions
of growth rate by

ϕoptR = µmax/k0 − k3(k0 + k1)µmax/[2k0k1(k0 + k3)] + 0.5k3ϕ
∗∗/(k0 + k3) + ϕ0, (34)

ϕoptP1 = µmax/k1, (35)

ϕoptP2 = −(k0 + k1)µmax/(2k0k1) + 0.5ϕ∗∗, (36)

ϕoptP3 = −(k0 + k1)µmax/[2(k0 + k3)k1] + 0.5k0ϕ
∗∗/(k0 + k3). (37)

We know from Eqs. 34-37, as the growth rate increases, ϕoptP1 linearly increases, ϕoptP2 and ϕoptP3 linearly decrease, while
ϕoptR linearly increases when k1 > k0k3/(2k0 + k3) but linearly decreases when k1 < k0k3/(2k0 + k3).
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2.2 Considering the toxicity of protein aggregates
By considering the toxicity of protein aggregate in the model, we can investigate how protein aggregates affect protein
allocation. Protein aggregates probably interfere with many cellular processes, but the main mechanism resulting in
their toxicity is still unclear. One plausible mechanism works by protein aggregates interfering with the maturation
of proteins. Thus we can add the interference of protein aggregates with the maturation of proteins in the model. We
redefine the aberrant maturation flux J4 in Eq. 7 in the main text as

J4 = k4ψUPKm/(Km + ψP2) + k6ψPAψUP , (38)

where the new term k6ψPAψUP indicates the interference effect, and k6 is constant. Then Eq. 12 in the main text
becomes

µ = J2 = k0(ϕR − ϕ0)ϕP2/ [(1 + γ1ϕPA)ϕP2 + (1 + γ2ϕPA)ϕm] (39)

where γ1 , k6ψNP /k2 and γ2 , k6ψNP /k4.
We can analytically solve this optimization problem by mapping it into a two-dimensional space(ϕP0, ϕP2). For

the sake of convenience, we take k2 = k4, so γ1 = γ2 , γ. If γ ≥ ϕ∗∗/(ϕ∗∗ + ϕm), the constraints and objective
function are the same as shown by formulas 4-8, and the results are shown by Eqs. 21-25. If γ < ϕ∗∗/(ϕ∗∗ + ϕm),
the constraints can be described by formulas 4, 5, 7 and

ϕP0ϕm/(ϕm + ϕP2) ≤ (a− b)−1[aϕP0 + ϕP2 − ϕ∗∗]; (40)

and the objective function can be expressed as

µ = (1− γ)−1k0
[
ϕP0ϕP2/(ϕm + ϕP2)− γ(b− a)−1(bϕP0 + ϕP2 − ϕ∗∗)

]
(41)

where a = 1+k0/k1 and b = 1+k0/k3. DefineA = (ϕm+ϕ∗∗)1/2−ϕ1/2m (1−γ)−1/2 andB = (ϕ∗∗/A−A)
2
/4ϕm (>

1). When c(= b/a) < B, the results are the same as shown by Eqs. 21-25. When c > B, the optimal allocation is

ϕoptR =
k1

k1 + k0
(ϕm + ϕ∗∗)1/2

[
(ϕm + ϕ∗∗)1/2 − ϕ1/2m (1− γ)−1/2

]
+ ϕ0, (42)

ϕoptP1 =
k0

k0 + k1
(ϕm + ϕ∗∗)1/2

[
(ϕm + ϕ∗∗)1/2 − ϕ1/2m (1− γ)−1/2

]
, (43)

ϕoptP2 = ϕ1/2m

[
(ϕm + ϕ∗∗)1/2(1− γ)−1/2 − ϕ1/2m

]
, (44)

ϕoptP3 = 0, (45)

and the maximized growth rate is

µmax =
k0k1
k0 + k1

[
(ϕm + ϕ∗∗)1/2 − ϕ1/2m (1− γ)−1/2

]2
. (46)

The above analytical solutions show that if the toxicity of protein aggregates is large enough (γ > (ϕ∗−ϕ0)/(ϕ∗−
ϕ0 + ϕm)), bacteria will degrade all the aberrant proteins without the jump taking place in the relation of protein al-
location and growth rate. Otherwise (γ < (ϕ∗ − ϕ0)/(ϕ

∗ − ϕ0 + ϕm)), the bacteria will either degrade all aberrant
proteins or allow all of them to aggregate, and which way to choose is determined by physiological conditions. More-
over, the jump point will change, and when AA supply capacity is larger than the jump point, the toxicity will make
mass fractions of ribosome-affiliated proteins and AA supply-required proteins (ϕoptR and ϕoptP1 ) and the growth rate
µmax decrease while the mass fraction of chaperones (ϕoptP2 ) increase.

2.3 Overexpression of unnecessary protein
Overexpression of the unnecessary protein directly affects three fluxes: translation flux (J0), maturation flux (J2) and
the aberrant maturation flux J4. In order to consider the effects in our model, we partition these three fluxes into two
groups of sub-fluxes: one group for the unnecessary protein (JU

0 , JU
2 and JU

4 ) while another for the needed proteins
(JN

0 , JN
2 and JN

4 ). This is helpful to address the optimization problem of protein allocation when the maturation
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frustration levels of the unnecessary protein (ϕUm) and the useful proteins (ϕNm) are not the same. Referring to Eqs. 10,
12 and 14 in the main text, these sub-fluxes can be represented by

JN
0 = k0ϕ

N
P0, (47)

JN
2 = k0ϕ

N
P0ϕP2/(ϕ

N
m + ϕP2), (48)

JN
4 = k0ϕ

N
P0ϕ

N
m/(ϕ

N
m + ϕP2), (49)

and

JU
0 = k0ϕ

U
P0, (50)

JU
2 = k0ϕ

U
P0ϕP2/(ϕ

U
m + ϕP2), (51)

JU
4 = k0ϕ

U
P0ϕ

U
m/(ϕ

U
m + ϕP2), (52)

where the variables labeled with N are for native proteins, while those labeled with U are for unnecessary proteins.
ϕNP0 and ϕUP0 indicate mass fractions of active R-sector proteins (ribosome-affiliated proteins) for needed proteins and
unnecessary protein, respectively and ϕNP0 + ϕUP0 = ϕR − ϕ0. Accordingly, the constraints on the fluxes become

J1 + J3 = JN
0 + JU

0 (53)
JN
0 = JN

2 + JN
4 (54)

JU
0 = JU

2 + JU
4 (55)

JN
4 + JU

4 = J3 + J5 (56)
JN
2 = µ(1− ϕU ) (57)
JU
2 = µϕU (58)

The normalization condition is

ϕNP0 + ϕUP0 + ϕP1 + ϕP2 + ϕP3 = ϕmax
R − ϕ0 − ϕU , ϕ∗∗∗ (59)

Based on the upregulation of many chaperones in response to overexpression of unnecessary protein (5, 6), we assign
the mass fraction of all chaperones (ϕP2) to an unoptimizable part (proportional to ϕU ) and an optimizable part (ϕ̃P2),
represented by (see the main text)

ϕP2 = ϕ̃P2 + αϕU (60)

where ϕ̃P2 ≥ 0 and α is constant. Notice that here ϕP2 ≥ αϕU , i.e. chaperones has a minimal mass fraction αϕU .
When α = 0 and ϕm ≈ 0, our model is equivalent to that of Scott et al. (3).

Based on Eqs. 47-60 and the condition k1 > k3, we can solve the optimization problem in a one-dimensional
space. First, we can obtain ϕoptP3 = 0 and derive

µ = ϕP2(ϕ
∗∗∗ − ϕP2)/[k̃(ϕP2 + ϕ̃m)] (61)

where k̃ = (k0 + k1)/(k0k1) and ϕ̃m = (1 − ϕU )ϕ
N
m + ϕUϕ

U
m. If αϕU ≤

√
(ϕ̃m + ϕ∗∗∗)ϕ̃m − ϕ̃m, the maximal

growth rate and the optimal mass fraction of P2-class proteins are

µmax =

(√
ϕ̃m + ϕ∗∗∗ −

√
ϕ̃m

)2

/k̃. (62)

ϕoptP2 =

√
(ϕ̃m + ϕ∗∗∗)ϕ̃m − ϕ̃m. (63)

If αϕU >
√
(ϕ̃m + ϕ∗∗∗)ϕ̃m − ϕ̃m, we have

µmax = αϕU (ϕ
∗∗∗ − αϕU )/[k̃(αϕU + ϕ̃m)], (64)

ϕoptP2 = αϕU . (65)
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Then with the formulas

ϕNP0 = µmax(1− ϕU )(1 + ϕNm/ϕ
opt
P2 )/k0, (66)

ϕUP0 = µmaxϕU (1 + ϕUm/ϕ
opt
P2 )/k0, (67)

ϕR = ϕNP0 + ϕUP0 + ϕ0, (68)
ϕP1 = k0ϕR/k1, (69)

we can derive ϕN,opt
P0 , ϕU,opt

P0 , ϕR and ϕoptP1 , respectively.

Finally, we list the optimal solution and the maximal growth rate as below: (i) If αϕU ≤
√

(ϕ̃m + ϕ∗∗∗)ϕ̃m− ϕ̃m,
the maximized growth rate and the optimal allocation fractions are

µmax = k0k1

(√
ϕ̃m + ϕ∗∗∗ −

√
ϕ̃m

)2

/(k0 + k1), (70)

ϕN,opt
P0 =

k1(1− ϕU )

k0 + k1

(√
1 + ϕ∗∗∗/ϕ̃m − 1

)(√
(ϕ̃m + ϕ∗∗∗)ϕ̃m + ϕU (ϕ

N
m − ϕUm)

)
, (71)

ϕU,opt
P0 =

k1ϕU
k0 + k1

(√
1 + ϕ∗∗∗/ϕ̃m − 1

)(√
(ϕ̃m + ϕ∗∗∗)ϕ̃m + (1− ϕU )(ϕ

U
m − ϕNm)

)
, (72)

ϕoptR =
k1

k0 + k1

(√
1 + ϕ∗∗∗/ϕ̃m − 1

)√
(ϕ̃m + ϕ∗∗∗)ϕ̃m + ϕ0, (73)

ϕoptP1 =
k0

k0 + k1

(√
1 + ϕ∗∗∗/ϕ̃m − 1

)√
(ϕ̃m + ϕ∗∗∗)ϕ̃m, (74)

ϕoptP2 =

√
(ϕ̃m + ϕ∗∗∗)ϕ̃m − ϕ̃m, (75)

ϕoptP3 = 0 (76)

where ϕ̃m = (1 − ϕU )ϕ
N
m + ϕUϕ

U
m. (ii) If αϕU >

√
(ϕ̃m + ϕ∗∗∗)ϕ̃m − ϕ̃m, the maximized growth rate and the

optimal allocation fractions are

µmax = αϕUk0k1(ϕ
∗∗∗ − αϕU )/[(k0 + k1)(αϕU + ϕ̃m)], (77)

ϕN,opt
P0 =

k1
k0 + k1

(1− ϕU )(ϕ
∗∗∗ − αϕU )(αϕU + ϕNm)/(αϕU + ϕ̃m), (78)

ϕU,opt
P0 =

k1
k0 + k1

ϕU (ϕ
∗∗∗ − αϕU )(αϕU + ϕUm)/(αϕU + ϕ̃m), (79)

ϕoptR =
k1

k0 + k1
(ϕ∗∗∗ − αϕU ) + ϕ0, (80)

ϕoptP1 =
k0

k0 + k1
(ϕ∗∗∗ − αϕU ), (81)

ϕoptP2 = αϕU , (82)

ϕoptP3 = 0. (83)

Here we obtain the optimal solution even when the maturation frustration levels ϕUm and ϕNm are different from each
other. We assigned different values to ϕUm (its difference from ϕNm is not too large), but the results did not change
much. So we consider the simplest case ϕUm = ϕNm , ϕm in fitting the experimental data.

When ϕUm = ϕNm, actually, we do not need to separate the translation flux and the normally and aberrantly matu-
ration fluxes as above (one for the useless protein and another for needed proteins). In this case, the model can still
be described by Eqs. 10-18 in the main text, but the normalization condition (i.e. Eq. 17 in the main text) should be
changed to

ϕR + ϕP1 + ϕP2 + ϕP3 = ϕmax
R − ϕU , ϕ∗∗∗ (84)

where ϕU > 0. We still assign the mass fraction of all chaperones (ϕP2) to an unoptimizable part (proportional to ϕU )
and an optimizable part (ϕ̃P2) as above, represented by Eq. 60. Then the analytic results under the condition k1 > k3
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are: (i) If αϕU ≤
√
(ϕm + ϕ∗∗∗)ϕm − ϕm, the maximized growth rate and the optimal allocation fractions are

µmax = k0k1

(√
ϕm + ϕ∗∗∗ −

√
ϕm

)2

/(k0 + k1), (85)

ϕoptR =
k1

k0 + k1

(√
1 + ϕ∗∗∗/ϕm − 1

)√
(ϕm + ϕ∗∗∗)ϕm + ϕ0, (86)

ϕoptP1 =
k0

k0 + k1

(√
1 + ϕ∗∗∗/ϕm − 1

)√
(ϕm + ϕ∗∗∗)ϕm, (87)

ϕoptP2 =
√
(ϕm + ϕ∗∗∗)ϕm − ϕm, (88)

ϕoptP3 = 0. (89)

(ii) If αϕU >
√

(ϕm + ϕ∗∗∗)ϕm − ϕm, the maximized growth rate and the optimal allocation fractions are

µmax = αϕUk0k1(ϕ
∗∗∗ − αϕU )/[(k0 + k1)(αϕU + ϕm)], (90)

ϕoptR =
k1

k0 + k1
(ϕ∗∗∗ − αϕU ) + ϕ0, (91)

ϕoptP1 =
k0

k0 + k1
(ϕ∗∗∗ − αϕU ), (92)

ϕoptP2 = αϕU , (93)

ϕoptP3 = 0. (94)

Clearly, when ϕUm = ϕNm , ϕm, ϕ̃m = ϕm, so Eqs. 70-83 decay to Eqs. 85-94.

3 The model predicts optimal allocation of proteins under the limitation on
flux capacity (when k1 < k3)

In the main text, we mainly show the change of protein allocation with growth rate under the limitation on one flux
capacity when AA supply capacity (k1) is larger than AP degradation capacity (k3), i.e. k1 > k3. Here we additionally
give the results under the condition k1 < k3 (see Figure S3 and S4 in the Supporting Material). Figure S3 A, obtained
by rescaling X-axis of Figure 3 A, more clearly shows that there is a jump in protein allocation at a growth rate of ∼0.15
doublings/hour. When k1 < k3, the exponential steady-state may occur in some special cases. For example, when the
bacteria are grown in the MOPS minimal medium with 0.2% glycerol+20 mM Threonine (7). Figure S3 B presents the
results under translation limitation when k1(= 0.09h−1) < k3(= 0.3h−1), some of which are significantly different
from those under the condition k1 > k3: the mass fraction of chaperones and other affiliated proteins (ϕP2) increases
(from 2.8% to 4.9%) while the mass fraction of proteases (ϕP3) decreases (from 2.7% to 0) with the growth rate
decreasing (from 0.055 dbls/h to 0 dbls/h). These are likely testable predictions.

Under the protein maturation stress (e.g. thermal, acidic or oxidative stress), the mass fraction of chaperones and
other protein factors promoting maturation (ϕP2) increase with the stress intensity (ϕm) (see Table 1 and Figures 3
C and Figures S3 C). When AA supply capacity is smaller than AP degradation capacity (k1 < k3), ϕoptR is nearly
constant and close to ϕ0, both ϕoptP2 and ϕoptP3 linearly increase, whereas ϕoptP1 linearly decreases with the growth rate
decreasing (Figure S3 C). In addition, Figure S4 shows that the aberrant maturation flux (J4) totally shifts to the
degradation flux (J3) when k1 < k3, which is in line with the above results.

4 The theoretical explanation for experimental data under translation, acidic
and oxidative stresses

The model gives the ratios of protein allocation, while what we measured is β-galactosidase activity (Z), reflecting the
concentration of β-galactosidase (ψZ). We will derive a formula to link ψZ with the allocation ratios. First, we have

Z ∝ ψZ = ϕZψNP . (95)
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Then we will represent ψNP by a function of ϕR. The bacterial cell mass (Mc) consists of protein mass (MNP ), RNA
mass (Mrna), DNA mass (Mdna) and the mass of other constituents (Mother), namely,

Mc =MNP +Mrna +Mdna +Mother. (96)

Dividing both sides by Mc, we obtain

1 = ψNP + ψrna + ψdna + ψother. (97)

Because
ψrna = ϕRψNP /ρ, (98)

where ρ =MR/Mrna = 0.76 (3), we derive

ψNP = ρ(1− ψdna − ψother)/(ρ+ ϕR). (99)

The experimental data of Basan et al. (8) shows that ψother is independent of the growth rate µ and ψdna ≪ 1, so we
approximately have

ψNP ∝ 1/(ρ+ ϕR). (100)

Equation 100 provides good fits to experimental data of Bremer and Dennis (9) and Basan et al. (8) as shown in
Figure S7 in the Supporting Material. As proposed by Scott et al. (3), the mass fraction of β-galactosidase driven by a
constitutive promoter should be proportional to that of P1-class proteins, i.e.

ϕZ ∝ ϕP1. (101)

Substituting Eqs. 100 and 101 into equation 95, we have

Z = CϕP1/(ρ+ ϕR), (102)

where C is a scaling factor independent of growth rate.
In fitting experimental data, we take the flux capacities that are limited by the stress as variables and assign proper

values to the parameters including the unaffected flux capacities (see Table S1 in the Supporting Material). Under
the chloramphenicol stress, translational flux is limited, and then we view k0 as a variable. Under the oxidative/acidic
stress, we consider that both AA supply and protein maturation fluxes are limited. Thus we take k1 and ϕm as variables
and denote their values in the absence of oxidative/acidic stress as k∗1 and ϕ∗m, respectively. We use x = ϕm/ϕ

∗
m−1 to

indicate the stress intensity, leading to ϕm = ϕ∗m(1+x). Furthermore, we assume k1 = k∗1/[1+(x/Kx)
β ], whereKx

(equilibrium constant) and β (Hill coefficient) can be inferred by fitting experimental data. Parameters k0 and k1 (or
k∗1) are chosen properly based on those used by Scott et al. (3). The stress intensity x is a function of the concentration
of the inducer (acetic acid or paraquat) and x = 0 indicates the case without the stress.

5 Molecular mechanisms adjusting protein allocation in E.coli
The sigma factor, as a subunit of RNA polymerase, recognizes the promoter to initiate the transcription. Different
sigma factors have different biases to the sequence of the promoter. In E.coli, in addition to the housekeeping sigma
factor (σD), six alternative sigma factors (σS , σN , σH , σE , σF and σFecI ) have been identified (10, 11). Stress stimuli
lead to up-regulation of some alternative sigma factors and concomitantly up-regulation of the proteins regulated
by these alternative factors whereas the housekeeping sigma factor and its regulated proteins are down-regulated in
level and activity(12, 13). Different sigma factors compete to bind the core RNAP (E) and the regulation of their
competition is an effective strategy to adjust protein allocation (12, 13). Many global factors, such as ppGpp, Rsd,
Crl, CRP, Fis, IHF, HNS, and 6S RNA, regulate the number and the activity of sigma factors and some of them
are growth rate-dependent, such as ppGpp, Rsd and 6S RNA (14, 15). In this scenario, ppGpp, as an effector of the
stringent response, represses the transcription of rRNA directly and thereby inhibits the synthesis of ribosome-affiliated
proteins (3, 16, 17). In the bacterial adaptation to the stress, it is possible that multiple growth rate-dependent global
regulators cooperatively regulate the competition between different σ factors for core RNAPs and the competition
between different mRNAs for ribosomes to achieve the reallocation of the proteome (12).

8



The bacterial transcript levels parallel protein levels in average (18, 19). Therefore, protein level can be roughly
determined by mRNA level (m) and translation initiation rate (l), i.e.

ϕR : ϕP1 : ϕP2 : ϕP3 = l0m0 : l1m1 : l2m2 : l3m3. (103)

The concentration of each class mRNA (mi) has an approximate linear relationship with concentrations of free RNAP
holoenzyme ([Eσj ]f )

mi =
1

βi

∑
j∈ J

αj
iN

j
i [Eσ

j ]f , (104)

where the class set of σ factors J , {D, S, N, H, E, F, FecI} for E.coli, αj
i andN j

i denote average transcriptional
strength and the number of Pi-class promoters recognized by σj , respectively and βi indicates the degradation rate of
the ith-class mRNA. We assume that [Eσj ]f and the total concentration of σj are correlated as

[Eσj ]f = λj [σ
j ], (105)

where λj is related to free E concentration, affinity of σj with E, availability of specific/nonspecific RNAP binding
sites on DNA and corresponding strength of RNAP binding to them (13). Define

rj = [σj ]/(
∑
j ′∈J

[σj ′
]), (106)

where the total concentration of sigma factors
∑
j∈J

[σj ] is basically independent of the growth rate (20). Then, we have

ϕR : ϕP1 : ϕP2 : ϕP3 =
∑
j∈ J

Aj
0rj :

∑
j∈ J

Aj
1rj :

∑
j∈ J

Aj
2rj :

∑
j∈ J

Aj
3rj (107)

where Aj
i = liα

j
iN

j
i λj/βi. There are two normalization conditions:

ϕR +
3∑

i=1

ϕPi = ϕ∗, (108)∑
j∈J

rj = 1. (109)

Then protein reallocation in some specific stress adaptation can be understood from the change of rj and Aj
i .

In E.coli stress adaptation, the regulation of the competition between sigma factors can affect the ratio rj (12, 21).
In another way, ppGpp inhibits the synthesis of rRNA and some ribosomal proteins, and moreover, ribosomal proteins
that are not assembled into ribosomes repress their own translational initiation (l0 and Aj

0 decreasing) by the mecha-
nism of “translation feedback of ribosomal proteins” (17). Based on the knowledge on specific promoters recognized
by each sigma factor in E.coli (10, 11), we consider A{S, N, E, F, FecI}

0 = 0, A{N, FecI}
2 = 0 and A{N, FecI}

3 = 0.
Then, we can estimate the variation tendency of protein allocation in three cases. (i) When carbon source is limited,
r{N, H, E, F, FecI} ≈ 0 and ϕP2 + ϕP3 ≈ 0. From Eqs. 107-109, we approximately have

ϕR : ϕP1 ≈ (AD
0 rD) : (AD

1 rD +AS
1 rS), (110)

∆(ϕR + ϕP1) ≈ 0, (111)
∆(rD + rS) ≈ 0. (112)

Limitation of carbon source induces the emergence of stringent factor ppGpp and some other regulators, which lead to
∆l0 < 0, ∆rD < 0 and ∆rS > 0 (12, 17, 21). Then we derive ∆ϕR < 0 and ∆ϕP1 > 0. (ii) Under the stress induced
by chloramphenicol, translational process will be inhibited (3). Then the concentration of spoT ppGpp synthetase
and the concentration of ppGpp will be reduced (3, 22). Thus l0(Aj

0) and rD will be larger, whereas rS will be
smaller (12, 17, 21). Further considering ∆r{N, H, E, F, FecI} ≈ 0 and Eqs. 110-112, we have that ϕR rises and ϕP1

declines. (iii) In acidic/oxidative/thermal stress adaptation, empirical data imply that ∆r{H, E, S} > 0, ∆rD < 0 and
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∆AD
0 < 0 (23–33). Moreover, we consider ∆r{N, F, FecI} = 0,AH

0 rH ≪ AD
0 rD,AS

1 rS+A
H
1 rH+AE

1 rE ≪ AD
1 rD,

AD
2 rD ≪ AH

2 rH +AE
2 rE +AS

2 rS and AD
3 rD ≪ AH

3 rH +AE
3 rE +AS

3 rS . Then according to Eqs. 107-109, we have

ϕR : ϕP1 : ϕP2 : ϕP3 ≈ (AD
0 rD) : (AD

1 rD) : (AH
2 rH +AE

2 rE +AS
2 rS) : (A

H
3 rH +AE

3 rE +AS
3 rS) (113)

Based on this equation and the above assumption, ϕP2 and ϕP3 will increase, ϕR will decrease, whereas ϕP1 will
either increase or decrease.
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Supporting Figures

Figure S1: An schematic diagram for the main processes of protein self-production. Squares denote main biochemical
reaction pathways during protein producing. Circles indicate substrates, intermediate products or final products. The
normally matured proteins are partitioned into three classes: Q (housekeeping and growth rate-independent proteins),
R (ribosome-affiliated proteins) and P (others). The allocations of P , Q and R classes of proteins are indicated by
dashed lines. R-class proteins are devoted to the translation process. P -class proteins are devoted to the processes of
amino acid supply (chemotaxis, nutrient uptake, catabolism and biosynthesis), nascent polypeptides maturation and
aberrant proteins degradation. Q-class proteins are devoted to the biosynthesis process and many other processes.
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Figure S2: The concentration of normal proteins, i.e. the fraction of cell mass occupied by normal protein mass
(ψNP ), slightly depends on the growth rate under the stresses considered in this study. The cell mass here does not
include the mass of protein aggregates. Protein aggregates as wastes from protein production contribute little to the
normal physiological processes inside the cell, and they usually occupy the isolated space (e.g. in the form of inclusion
body). Therefore, it is reasonable to refer to the concentration in the remaining connected space. Moreover, Eq .99,
i.e. ψNP = (1− ψdna − ψother)/(1 + ϕR/ρ), was used, where ρ = 0.76 (3) and ψdna + ψother = 0.12 (8).
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Figure S3: The model predicts the relation of protein allocation fractions and the growth rate when one flux ca-
pacity (k1, k0 or 1/ϕm) is reduced by the stress. The plots mainly show the results when k1 < k3. Insets present the
decrease of growth rate with flux capacity limitation, in which units of µ, k1, k0, and ϕm are doublings/hour (dbls/h),
h−1, h−1, and 1 respectively. ϕR, ϕP1, ϕP2, and ϕP3 indicate proteome fractions of ribosome-affiliated proteins
(R-class), AA supply-required proteins (P1-class), chaperone-like proteins (P2-class), and protease-like proteins (P3-
class), respectively. The experimental data for ϕP2 (circles) and ϕP3 (triangles) are obtained with the classification of
Proteomaps (34) and those in (A) are based on the proteomic data of ref. (33, 35–37), and those in (B) based on ref.
(37). Common parameters: ϕ∗ = 0.55, ϕ0 = 0.066, k3 = 0.3h−1. (A) AA supply stress shown by k1 decreasing.
Parameters: k0 = 6h−1 and ϕm = 0.0061. (B)Translational stress displayed by k0 decreasing (k1 < k3). Parameters:
k1 = 0.09h−1 and ϕm = 0.0061 (C) Protein maturation stress reflected by ϕm increasing (k1 < k3). Parameters:
k0 = 6h−1 and k1 = 0.09h−1.
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Figure S4: Translation flux shifts from the normal maturation flux to the aberrant maturation flux under pro-
tein maturation stress (ϕm increasing). J0: translation flux; J2: normal maturation flux; J4: aberrant maturation
flux; J3: degradation flux; J5: aggregation flux. J2/J0 and J4/J0 indicate fractions of nascent polypeptides matured
normally and abnormally, respectively. J3/J4 and J5/J4 indicate fractions of aberrant proteins degraded and aggre-
gating, respectively. Notice that J2/J0 + J4/J0 = 1 and J3/J4 + J5/J4 = 1. The plot shows that J2/J0 decreases
with the maturation stress (minimum=0), whereas J4/J0 increases with the maturation stress (maximum=1). When
AA supply capacity is smaller than the degradation capacity (k1 < k3), AP degradation flux is switched on and all the
aberrantly matured proteins are degraded. Parameters are the same as that used in Fig. S3.
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Figure S5: Consideration of growth rate-dependence of translational capacity k0 does not affect the theoretical
relationship of protein allocation fractions and growth rate much when one flux capacity (k1, k0 or 1/ϕm) is
reduced by the stress. Insets present the decrease of growth rate with flux capacity limitation, in which units of
µ, k1, k0, and ϕm are dbls/h, h−1, h−1, and 1 respectively. ϕR, ϕP1, ϕP2 and ϕP3 indicate proteome fractions of
ribosome-affiliated proteins (R-class), AA supply-required proteins (P1-class), chaperone-like proteins (P2-class) and
protease-like proteins (P3-class), respectively. Experimental data for ϕP2 (circles) and ϕP3 (triangles) are obtained
with the classification of Proteomaps (34) and those in (A) are based on the proteomic data of ref. (33, 35–37), and
those in (B) based on ref. (37). Parameters are the same as those in Fig. 3 and Fig.S3: (A)-Fig. 3 A, (B)-Fig. 3 B,
(C)-Fig. S3 B, (D)-Fig. 3 C, (E)-Fig. S3 C. 17



Figure S6: Examples for fitting the data of OD405 as a function of time from β-galactosidase assay. Blue dots denote
experimental data. Red lines indicate the theoretical fits with Eq. 2. Decay constant γ = 0.006 (for every line).
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Figure S7: Equation 100 well fits the experimental relationship between the ratio of total protein mass to cell mass
and growth rate. Blue triangles denote experimental data with various nutrient. Red circles denote experimental data
with different chloramphenicol (Cm) levels. Lines indicate corresponding fits with Eq. 100. For simplicity, the linear
relations ϕR = ϕ0 + µ/5.92 (for various nutrient) and ϕR = ϕmax

R − µ/5.5 (for glucose with Cm) were used (based
on (3)). (A) Fitting experimental data of Bremer and Dennis (9). The fitted scaling factor is 5.53 ×1017AA/OD460.
(B) Fitting experimental data of Basan et al. (8). The fitted scaling factor is 362 µg/OD600.
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Figure S8: Relationship between β-galactosidase activity (A) or proteome fraction of P1-class protein (B) and growth
rate under translational inhibition induced by chloramphenicol (Cm). Circles, diamonds, triangles, and squares denote
experimental results for bacteria cultivated in four different growth media (M9+Glyc, M9+Gluc, M9+cAA+Glyc and
M9+cAA+Gluc) with different sublethal levels of chloramphenicol. Corresponding experimental data are shown in
Table S4. Blue, green, red, and cyan lines indicate theoretical results under translational stress, whereas the yellow
lines under AA supply stress. Theoretical parameters are ϕ∗ = 0.55, ϕ0 = 0.066, k0 = 6h−1 (Yellow line), k1=
1.3h−1 (Blue line), 2h−1 (Green line), 2.6h−1 (Red line) or 3.34h−1 (Cyan line), ϕm= 0.0061, k3 = 0.3h−1, C =
5× 105 Miller units.
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Figure S9: The model predicts the relation of the proteome fraction of each class proteins and growth rate under
overexpression of unnecessary protein. Parameters: ϕ∗ = 0.55, ϕ0 = 0.066, k0 = 6, ϕm = 0.0061, k3 = 0.3h−1,
α = 0.5, k1=4.2h−1.
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Supporting Tables

Table S1: Assumptions and parameters in the model for all the stresses studied here.

specific stress major assumptions parameters
common specific chosen based on lit-

erature (3)
fixed by fitting data
†

AA supply stress J2 and J4 are
proportional to the
concentration of
unfolded
polypeptides (ψUP )
and
Michaelis-Menten
functions of the
concentration of
chaperones (ψP2).

k1 is decreased. ϕ∗, ϕ0, k0 ϕm, k3, C
translation inhibi-
tion

k0 is decreased. ϕ∗, ϕ0, k1 ϕm, k3, C

acidic/oxidative
stress

k1 and 1/ϕm are de-
creased as Hill func-
tions of stress inten-
sity.

ϕ∗, ϕ0, k0, k∗1 ϕ∗m, k3, Kx, β, C

overexpression of
unnecessary protein

The mass fraction
of unoptimized
chaperones is
proportional to
that of expressed
unnecessary protein

ϕ∗, ϕ0, k0, k1 ϕm, k3, α.

† Notice that the same parameters, i.e. ϕm (ϕ∗m), k3 and C, under different stresses were assigned the same values in
the fitting.
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Table S2: Experimental data and error estimates for Fig. 5 A.
Mediuma Growth rate β-gal activity

(dbls/h)b (105 Miller units)
M9+Glyc 0.54±0.02 2.03±0.07
+0.25µL/mL GAAc 0.57±0.01 2.02±0.06
+0.50µL/mL GAA 0.51±0.01 2.00±0.03
+0.75µL/mL GAA 0.41±0.01 2.02±0.07
+1.00µL/mL GAA 0.31±0.01 2.19±0.01
M9+Gluc 0.81±0.02 1.56±0.20
+0.25µL/mL GAA 0.81±0.03 1.42±0.20
+0.50µL/mL GAA 0.76±0.02 1.51±0.30
+0.75µL/mL GAA 0.62±0.01 1.51±0.40
+1.00µL/mL GAA 0.51±0.03 1.78±0.06
+1.25µL/mL GAA 0.33±0.03 2.01±0.20
M9+cAA+Glyc 0.86±0.02 1.32±0.01
+0.25µL/mL GAA 0.80±0.02 1.30±0.04
+0.50µL/mL GAA 0.69±0.01 1.31±0.04
+0.75µL/mL GAA 0.60±0.01 1.34±0.05
+1.00µL/mL GAA 0.50±0.01 1.38±0.05
+1.25µL/mL GAA 0.40±0.01 1.48±0.10
M9+cAA+Gluc 1.15±0.01 1.36±0.05
+0.25µL/mL GAA 1.08±0.02 1.30±0.05
+0.50µL/mL GAA 0.98±0.02 1.30±0.10
+0.75µL/mL GAA 0.80±0.02 1.21±0.06
+1.00µL/mL GAA 0.70±0.03 1.17±0.01
+1.25µL/mL GAA 0.50±0.03 1.24±0.04

a.Abbreviations: M9+Glyc - M9+0.5% (v/v) glycerol; M9+Gluc - M9+0.5% (w/v) glucose; M9+cAA+Glyc -
M9+0.2% (w/v) casamino acids+0.5% (v/v) glycerol; M9+cAA+Gluc - M9+0.2% (w/v) casamino acids+0.5% (w/v)
glucose.
b. The value behind ± indicates standard deviation among three or more replicates in one measurement. (Repeated
measurements done on different days show similar patterns in the relation of β-gal activity and growth rate).
c.GAA-Glacial acetic acid.
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Table S3: Experimental data and error estimates for Fig. 5 B.
Mediuma Growth rate β-gal activity

(dbls/h)b (105 Miller units)
M9+Glyc 0.55±0.01 1.82±0.05
+0.20µM Pdc 0.50±0.01 1.85±0.06
+0.25µM Pd 0.22±0.03 1.79±0.14
+0.30µM Pd 0.12±0.01 1.99±0.22
M9+Gluc 0.79±0.02 1.60±0.04
+0.20µM Pd 0.65±0.02 1.71±0.13
+0.25µM Pd 0.56±0.03 1.64±0.10
+0.30µM Pd 0.40±0.09 1.60±0.11
M9+cAA+Glyc 0.89±0.03 1.68±0.14
+1 µM Pdd 0.79±0.02 1.76±0.11
+5 µM Pd 0.65±0.01 1.73±0.13
+20µM Pd 0.54±0.01 1.85±0.09
+30µM Pd 0.42±0.02 2.21±0.18
+35µM Pd 0.35±0.01 2.25±0.19
M9+cAA+Gluc 1.19±0.04 1.46±0.06
+1 µM Pd 0.90±0.03 1.19±0.05
+5 µM Pd 0.82±0.01 1.18±0.05
+20µM Pd 0.78±0.02 1.18±0.08
+40µM Pd 0.66±0.03 1.34±0.03

a.Abbreviations: M9+Glyc - M9+0.5% (v/v) glycerol; M9+Gluc - M9+0.5% (w/v) glucose; M9+cAA+Glyc -
M9+0.2% (w/v) casamino acids+0.5% (v/v) glycerol; M9+cAA+Gluc - M9+0.2% (w/v) casamino acids+0.5% (w/v)
glucose.
b.The value behind ± indicates standard deviation among three or more replicates in one measurement. (Repeated
measurements done on different days show similar patterns in the relation of β-gal activity and growth rate.)
c.Pd - Paraquat dichloride.
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Table S4: Experimental data and error estimates for Fig. S8 A.
Mediuma Growth rate β-gal activity

(dbls/h)b (105 Miller units)
M9+Glyc 0.54±0.01 1.84±0.10
+1µM Cmc 0.58±0.01 1.57±0.05
+2µM Cm 0.56±0.01 1.35±0.05
+4µM Cm 0.43±0.01 1.16±0.06
+6µM Cm 0.37±0.01 0.98±0.06
+8µM Cm 0.31±0.01 0.86±0.05
M9+Gluc 0.83±0.02 1.48±0.04
+1µM Cm 0.82±0.02 1.48±0.08
+2µM Cm 0.75±0.01 1.44±0.11
+4µM Cm 0.63±0.01 1.15±0.07
+6µM Cm 0.52±0.01 1.13±0.05
+8µM Cm 0.45±0.01 0.98±0.07
M9+cAA+Glyc 0.88±0.03 1.49±0.04
+1µM Cm 0.87±0.02 1.24±0.03
+2µM Cm 0.76±0.01 1.06±0.04
+4µM Cm 0.54±0.02 0.84±0.09
+6µM Cm 0.43±0.02 0.64±0.03
+8µM Cm 0.34±0.01 0.69±0.04
M9+cAA+Gluc 1.21±0.03 1.36±0.06
+1µM Cm 1.15±0.03 1.23±0.05
+2µM Cm 1.00±0.01 1.08±0.02
+4µM Cm 0.74±0.02 1.00±0.05
+6µM Cm 0.60±0.01 0.72±0.03
+8µM Cm 0.48±0.01 0.66±0.03

a.Abbreviations: M9+Glyc - M9+0.5% (v/v) glycerol; M9+Gluc - M9+0.5% (w/v) glucose; M9+cAA+Glyc -
M9+0.2% (w/v) casamino acids+0.5% (v/v) glycerol; M9+cAA+Gluc - M9+0.2% (w/v) casamino acids+0.5% (w/v)
glucose.
b. The value behind ± indicates standard deviation among three or more replicates in one measurement. (Repeated
measurements with not exactly same protocols show similar patterns in the relation of β-gal activity and growth rate.)
c.Cm-chloramphenicol.
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