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Proteins and Protein Complexes from Potts Model
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ABSTRACT The energy function is the key component of protein modeling methodology. This work presents a semianalytical
approach to the development of contact potentials for protein structure modeling. Residue-residue and atom-atom contact
energies were derived by maximizing the probability of observing native sequences in a nonredundant set of protein structures.
The optimization task was formulated as an inverse statistical mechanics problem applied to the Potts model. Its solution by
pseudolikelihood maximization provides consistent estimates of coupling constants at atomic and residue levels. The best
performance was achieved when interacting atoms were grouped according to their physicochemical properties. For individual
protein structures, the performance of the contact potentials in distinguishing near-native structures from the decoys is similar to
the top-performing scoring functions. The potentials also yielded significant improvement in the protein docking success rates.
The potentials recapitulated experimentally determined protein stability changes upon point mutations and protein-protein bind-
ing affinities. The approach offers a different perspective on knowledge-based potentials and may serve as the basis for their
further development.
INTRODUCTION
Computer simulations are essential for studying biological
macromolecules, including proteins. Along with the search
space sampling, the energy function is the key component of
modeling. The energy function can be either derived from
the general physical principles (like a number of popular
force fields (1–4)) or based on diverse sets of known protein
structures (various knowledge-based or statistical potentials
(5–8)). Statistical potentials provide the balance between
accuracy and computational efficiency. Thus, they are suc-
cessfully applied to many problems, such as discrimination
of the native structure from decoys (9,10), fold recognition
(11), structure prediction (12), protein docking (13–15) and
design (16,17), and prediction of protein stability and
affinity (18–20). Simplified energy models provide insight
into general principles of protein folding and binding
(21–24).

One of the common approaches to developing statistical
potentials is to calculate the probability of various structural
features observed in a set of experimental protein structures
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relative to a reference state (7,25). The probability is subse-
quently converted into energy using the inverse Boltzmann
relation (7). However, the choice of the reference state,
which serves as an imaginary protein model without interac-
tions, is not a well-defined problem, and a number of ap-
proximations have been proposed. Among them are
averaging (26), finite ideal-gas (10), spherical noninter-
acting (27), atom-shuffled (28), random-walk chain (29),
and quasichemical (6) approximations. A different strategy
for deriving statistical potentials is based on optimization of
the energy parameters to maximize recognition of the native
structure from a set of decoys (30–32). Despite the success
of statistical potentials in various applications, their physical
interpretation is not quite clear (33–35). Thus, derivation of
the potential that provides fundamental and transparent
insight is highly desirable.

Many problems that require describing direct (micro-
scopic) interactions of objects (atoms, particles, etc.) from
observation of microscopic configurations of the system of
these objects can be successfully tackled by inverse statisti-
cal mechanics approaches (see (36–38) and references
therein). In particular, the Ising (39) and Potts (40) models
were used to study the collective behavior of neurons
(41,42), infer gene-interaction networks from experimen-
tally observed transcription profiles (43), predict residue-
residue contacts from multiple sequence alignments
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(37,44,45), study protein fitness landscapes (46,47), and
infer epistatic effects from fitness (48). Interaction parame-
ters in these models are often recovered using the maximal
entropy principle (49), resulting in the least structured (i.e.,
most generic) model that is still consistent with the experi-
mental data. In this study, we show that inverse statistical
mechanics formalism applied to the Potts model can be
used to construct both residue-residue and atom-atom con-
tact potentials, with the latter outperforming most existing
energy functions in a number of tests. A closely related
approach has already been utilized to derive residue-residue
statistical contact potentials (50–52). However, these studies
have not gained much attention, most likely because they
were discussed from a different perspective, i.e., protein
evolution and design, and no detailed analysis of the perfor-
mance of the constructed potentials in protein structural
modeling has been reported. In this article, we bridge this
gap and show that the inverse Potts inference can be applied
to construct simple but effective residue-residue and atom-
atom contact potentials, with the latter performing on par
with the best existing statistical potentials. The effectiveness
of the potentials is attributed to 1) the consistent estimation
of the energy parameters by the pseudolikelihood maximi-
zation approach and 2) explicit treatment of one-body en-
ergies at the learning stage.
MATERIALS AND METHODS

Contact energies

Graph representation of protein structure

Noncovalent interactions in a protein can be modeled by a simple contact

potential, suggesting that if two structural elements (called here interaction

centers) are closer in space than a cutoff distance dmax, then these elements

contribute some distance-independent value to the total energy. The inter-

action center can be the center of mass of a residue (for residue-residue

potentials) or a single heavy atom (for atom-atom potentials). The number

of distinct types of interaction centers (hereafter denoted as q) can vary

depending on the level of generalization. In this study, we consider one

residue-residue (RRCE20) and three atom-atom (AACE18, AACE20,

and AACE167) contact potentials (RRCE and AACE are residue-residue

and atom-atom contact energies, respectively; the summary description

of the potentials is in Table 1). In the AACE18 potential, the atoms are

grouped according to their physicochemical properties (19), yielding

q ¼ 18 distinct atom types. For the AACE20 potential, all heavy atoms

in a residue are grouped together, resulting in q ¼ 20 atom types. In the

most detailed AACE167 potential, each heavy atom in the 20 residue

types is considered separately, yielding q ¼ 167 atom types. Hydrogen

atoms or different protonation states of titratable amino acids were not

considered.
TABLE 1 Four Types Of Contact Potentials

Potential Interaction centers Number of Interaction Center Types, q

RRCE20 residue centroids 20

AACE18 heavy atoms 18

AACE20 heavy atoms 20

AACE167 heavy atoms 167

810 Biophysical Journal 115, 809–821, September 4, 2018
For the applications discussed in this work, it is sufficient to represent a

single protein structure by an undirected graph Gp(Vp,Ep) (Fig. 1). In such

a graph, the set of nodes Vp ¼ {vi} includes all interaction centers for a

protein p. The set of edges Ep ¼ {eij} comprises connections between inter-

action centers i and j, which are 1) closer in space than a cutoff distance dmax

and 2) separated by at least kmin residues in the protein sequence (Fig. 1 A).

For a given protein, the number of nodes L is fixed, but the number of edges

may vary with the protein conformation. The only free parameters are dmax

and kmin. Their optimal values are to be determined by the benchmarking.

Besides kmin, there are no other assumptions on the protein topology (e.g., in-

formation on the intraresidue connectivity is not used).

Energy of protein

Each node in the graph Gp(Vp,Ep) can adopt one of q possible states (q is

determined solely by the type of the potential; in this study, q ¼ 18, 20,

or 167; see Table 1). For clarity, a state of graph Gp(Vp,Ep) is denoted by

the same letters as the graph vertices {vi}, giving a vector

~v ¼ ðv1;.; vi;.; vLÞ; (1)

which is composed of integer numbers vi ˛ (1,...,k,...,q), associated with

atom (residue) types of the graph nodes. To derive the contact potentials,

we introduce one- and two-body energy terms to account for self-energies

and energies of contacting atom (residue) pairs within the protein. Thus,

each graph node i of type vi can be associated with one of q possible

numbers hvi from vector

~h ¼ �
h1;.; hk;.; hq

�
: (2)

In turn, each edge, eij, can be attributed to one of q� q values Jvi ;vj from a

symmetric matrix

J ¼

0
BBBB@

J11 / J1k / J1q
« 1 « 0 «
Jk1 / Jkk / Jkq
« 0 « 1 «
Jq1 / Jqk / Jqq

1
CCCCA
; (3)

depending on types vi and vj of nodes i and j, respectively. For every type of

potential, there are unique sets of ~h and J parameters shared by all nodes

and edges of the graph. However, each protein has a unique graphGp(Vp,Ep)

and atom (residue) type assignment vector~v, which are solely determined

by the conformation and amino acid composition of that protein.

Summation over the nodes and edges of the graph Gp(Vp,Ep) yields an

expression for the energy of the protein

Uð~vÞ ¼
X
fvig

hvi þ
X
feijg

Jvi ;vj: (4)

It is similar to the expression for the energy (Hamiltonian) of the q-state

generalized Potts model in statistical physics (40), in which pairwise inter-

actions depend on the states of the interacting sites and the local fields (or

self-energies) act on the single sites of the system.
Description of Types Number of Parameters

20 standard amino acids 230

18 atom types from (19) 189

20 standard amino acids 230

all heavy atoms in 20 standard amino acids 14,195



FIGURE 1 Graphical model of protein 3D structure. (A) A cartoon

representation of the 58-residue bovine pancreatic trypsin inhibitor

mutant 1G6X is shown. Residue centroids are shown by small spheres.

Blue parts are an example of residue neighborhood, showing all residues

with centroids within dmax ¼ 7 Å from Phe22 (in red). Residues in

yellow are within kmin ¼ 3 positions in sequence from Phe22 and are

not included in its neighborhood when calculating the parameters of

the potential. (B) The graph Gp(Vp,Ep) is a simplified representation

of the BPTI mutant structure at dmax ¼ 7 Å and kmin ¼ 3. Phe22

and its neighbors have red and blue borders, respectively. Nodes of

the graph are color-coded according to the amino acid type to indicate

their state.

Contact Potential for Structure Modeling
For a fixed graph Gp(Vp,Ep) (i.e., fixed protein conformation), the prob-

ability of state~v is given by the Boltzmann (Gibbs) distribution

Pð~vÞ ¼ 1

Z
expð � bUð~vÞÞ; (5)

where b is a scaling factor (which, in statistical physics, means the inverse

energy of thermal fluctuations at temperature T, b ¼ 1/RT), and Z is the

statistical sum over the set of all possible system states f~vg:
Z ¼
X
f~vg

expð � bUð~vÞÞ: (6)

Parameters~h and J (Eqs. 2 and 3) are not known a priori but can be in-

ferred from a large set of known protein structures (see below). Probability

distribution in Eq. 5 is also known as Markov random field (53) on graph

Gp(Vp,Ep).

Pseudolikelihood approximation

Because native protein sequences are close to optimal for their three-dimen-

sional structures (54), for a given structure of a protein, an accurate energy

model should assign highest probability to the native sequence compared to

any non-native one. This concept, for example, helps in protein design

when one tries to find a sequence that best fits a given protein fold (55).

In terms of the energy function (Eq. 4), the task can be formulated as an

optimization problem of finding values of ~h (Eq. 2) and J (Eq. 3) that

maximize the probability of observing the native state

Pð~vnatÞ ¼ max
f~vg

ðPð~vÞÞ: (7)

However, the optimization problem (Eq. 7) cannot be solved directly

because of the combinatorial complexity of the partition function (Eq. 6).

To make the problem tractable, the probability function (Eqs. 5 and 6)

for the native state (sequence) is approximated by a product of local condi-

tional probabilities (pseudolikelihoods)

Pð~vnatÞz
Y
i

expð � bUðvi;natÞÞ
Pq
k¼ 1

expð � bUðvi;kÞÞ
; (8)

where multiplication is performed over all atoms (residues) and summation in

the denominator is over all possibleq states of a single interaction center.U(vi,k)

is the ‘‘energy’’ of a single interaction center, or Gp(Vp,Ep) node, in state k

Uðvi;kÞ ¼ hk þ
X
feijg

Jkk0 ; (9)

where summation is performed over all other nodes in Gp(Vp,Ep) connected

to node i by an edge. The temperature factor b ¼ 1 is used throughout the

work. In the pseudolikelihood approximation, all nodes are in the native

states, and only the state of a current node varies to calculate the

‘‘pseudo’’-statistical sum (denominator in Eq. 8). The pseudolikelihoods

are known to provide asymptotically consistent estimates of parameters
~h and J (56) and are successfully applied to large sample size problems

in physics and biology (37,51,57).

In the above formalism, the optimization problem (Eq. 7) is reduced to

solving the system of differential equations

8>>>>>>><
>>>>>>>:

vð � logPð~vnatÞÞ
vhk

¼ 0; k ¼ 1;.; q

«

vð � logPð~vnatÞÞ
vJkk0

¼ 0; k ¼ 1;.; q and k
0 ¼ 1;.; q

:

(10)

For convenience, in the analytical deduction of the derivatives in Eq. 10,

we used negative pseudo-log-likelihoods. More details of the pseudolikeli-

hood optimization are in the Supporting Materials and Methods.
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The solution to system of equations (Eq. 10) within the graph

Gp(Vp,Ep) would provide ~h and J specific only for one protein. To obtain

generic potentials, we solved the system of equations (Eq. 10) for a com-

posite graph G(V,E) constructed by joining graphs Gp(Vp,Ep) for all

individual proteins in a large set of protein structures (details on this

‘‘training’’ set are in Materials and Methods). The product in Eq. 8

runs over all nodes in that composite graph, whereas all other consider-

ations remain the same.

Once ~h and J values are obtained for the training set, only the J

matrix, which constitutes the contact potential, is applied to several

problems in protein modeling (see Results). The role of self-energies
~h is to provide an accurate estimation of J (also discussed in the

Results).

It is worth noting that in terms of the graph representation, the

development of ‘‘classical’’ statistical potentials is usually limited to col-

lecting information on the number of nodes in the composite graph in state

k and the number of edges connecting nodes in states k and k0 without
solving Eq. 10.
Training set of protein structures

To calculate the Potts parameters ~h and J, a nonredundant training set of

6338 protein chains was collected by the Protein Sequence Culling Server

(58). Only x-ray structures with resolution %2.0 Å, R-factor %0.25,

and R40 residues per chain were selected. Redundancy was removed at

25% sequence identity cutoff. Individual chains were extracted from Pro-

tein Data Bank (PDB) asymmetric units, and missing heavy atoms were

restored by the PDB2PQR software (59) using CHARMM topology pa-

rameters (1). Alternative residue conformations, if present in the original

PDB structure, were removed by the same PDB2PQR program. Nineteen

chains from the initial pool of 6338 structures could not be processed

either because of multiple models in the original PDB file or a large num-

ber of missing heavy atoms (>10%). These structures were left out from

the consideration, yielding the final set of 6319 chains from 6092 different

PDB entries.
Parameters of the contact potential

At each value of the distance cutoff dmax (from 4 to 15 Å, with 0.1 Å step)

and sequence separation kmin (from 1 to 10, with step 1), we built the

graph G(V,E) for 6319 single protein structures from the training set. Mini-

mization of the objective function (Eq. 8) with derivatives (Eq. 10) was

performed by the in-house C program specifically designed for this pur-

pose. The GNU Scientific Library (http://www.gnu.org/software/gsl/) im-

plementation of the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno

method (60) (bgfs2 module of the GNU Scientific Library) was used.

Minimization started with all the target parameters set to zero and pro-

ceeded iteratively until the norm of the gradient achieved the absolute

tolerance of 10�3.
CASP decoys

Decoys for near-native structure detection were compiled from all tertiary

structure predictions submitted to Critical Assessment of Structure Predic-

tion (CASP) rounds X and XI (61,62). Following the CASP practice, the

models were analyzed at the level of evaluation units, or domains, as-

signed by the assessors. To make the energy estimates consistent, partial

models with incomplete chains were removed from the pool of decoys.

Overall, 224 domains from 172 protein chains were selected for

testing. PDB files of models and the tables with models’ parameters and

ranking according to global distance test, total score (GDT_TS) (63)

were downloaded from the CASP repository (http://predictioncenter.org/

download_area/).
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Scoring of CASP decoys

Performance of different energy functions on the CASP decoys were as-

sessed in terms of the Z-score, defined as the distance (measured in standard

deviations) between the energy of the best (highest GDT_TS score) model

Ub (or the native structure) calculated by the tested function and the mean

energy of all decoy structures hUi

Z-score ¼ Ub � hUi
s

; (11)

where s is the standard deviation of energy U (given by the tested function)

for all decoys in the set. In addition to the Z-score (Eq. 11), we also used the

Pearson correlation coefficient between energies and GDT_TS scores of the

models, as well as the normalized rank of the best-energy model

1� R ¼ 1� RGDT_TS

Ntot

; (12)

where RGDT_TS is the rank by the GDT_TS score of the best-energy model,

and Ntot is the total number of the models in the set. The form 1 � R was

used to transform the normalized rank to the increasing function of the

scoring method effectiveness.

For the assessment of the potentials, the energy of a protein model was

calculated by simple summation of the inferred couplings J over all

pairs (i,j) of interaction centers that are consistent with distance cutoff

dmax used to derive the potential

Up ¼
X
ði;jÞ

Jvi ;vj: (13)

The sum over the self-energies (local fields) ~h was omitted in Eq. 13

because it does not depend on the protein conformation and thus does not

affect ranking of the model structures. Subscripts vi, vj enumerate types

of atoms (residues) i and j, respectively (vi ˛ 1,2,...,q, where q ¼ 18, 20,

or 167 depending on the contact potential type; see Table 1).
Data set of point mutations

To evaluate applicability of the contact potentials to prediction of the

change in the folding free energy DDG upon mutations, we used a data

set of 2648 point mutations for 131 globular proteins with experimentally

resolved x-ray or NMR structure, for which mutation-induced change in

protein stability was determined experimentally (64). The set is derived

from the ProTherm database (65). 235 mutations in the set originate from

NMR structures (12 distinct PDB IDs) with the number of models from 5

to 46. Because the data set contains experimentally resolved structures

for the wild-type proteins (those deposited in the PDB) only, the structure

of a mutant was obtained by manual replacement of the corresponding

side chain. The replacement was followed by the SCWRL4 (66) repacking

of the residues within 6 Å distance to the mutated residue (the residue-res-

idue distance defined as any atom to any atom of the two residues). To

compensate for possible biases introduced by SCWRL4, the same relaxa-

tion procedure was applied to the same residues of the wild-type structure.

For each mutated residue X, relative solvent exposure was calculated as the

ratio between the absolute solvent-accessible surface area (SASA) of this

residue in the wild-type structure and the reference SASA for this type of

residue in the Gly-X-Gly tripeptide (67). A residue was considered to be

at the surface if >20% of its SASA was exposed.

Assuming that the folding free energy of a protein is proportional to its

internal energy in the folded state, DDGcalc was approximated by the differ-

ence in internal energies (Eq. 13) of the mutant and the wild-type:

DDGcalc ¼ Umut � UWT: (14)

http://www.gnu.org/software/gsl/
http://predictioncenter.org/download_area/
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Docking decoys

The initial set of 1020 binary protein-protein complexes, for which the

structures of the complex (in PDB biological assembly) and the structure

of both unbound components are available, was generated by the ProPairs

tool (68) run locally on a PDB snapshot with the default parameters. The set

was postprocessed to retain only pairs with a high similarity of bound and

unbound partners (sequence identity >96% and coverage >80% (69)),

which reduced the set size to 427. Additional purging of structurally similar

(template modeling-score (70) >0.8) and large (>2500 residues per inter-

actor) complexes yielded the final set of 396 complexes (DOCKGROUND

Benchmark 4.0 (71) http://dockground.compbio.ku.edu). For comparison,

we also used 230 protein-protein complexes in the docking Benchmark

5.0 from Weng’s group (69).

The unbound proteins from both benchmarks were docked by the fast

Fourier transform rigid-body docking program GRAMM (72,73) at low res-

olution, with 3.5 Å grid step and 10� angular interval. The top 100,000

matches per complex, ranked solely by the shape complementarity, were

compared to the reference complex obtained by structural superposition

of the unbound monomers onto corresponding proteins in the co-crystal-

lized complex. The quality of the docking models was assessed by the Crit-

ical Assessment of Predicted Interactions (CAPRI) criteria (74) (Table S1).

Docking success rate was defined as the fraction of complexes for which at

least one successful prediction (defined at different accuracy categories)

was in the top n predictions. The docking predictions were further reranked

by the energy of the proteins A and B interfaceUAB, calculated (similarly as

for individual proteins; see Eq. 13) by summing up the couplings J over all

pairs (i ˛ A, j ˛ B) of the interchain contacts closer in space than dmax:

UAB ¼
X

ði˛A;j˛BÞ
Jvi;vj: (15)

The predicted matches were clustered to identify the most probable hit

within each putative docking funnel. Only one lowest energy prediction

from each cluster was selected.
Affinity benchmark

To access how UAB (Eq. 15) correlates with the protein-protein binding af-

finities, the set of 92 protein-protein complexes with known co-crystallized

structures and experimentally determined binding affinities DGexp was

selected from the Affinity Benchmark version 2.0 (69). We considered

only the rigid-body cases—those without significant conformational

changes upon binding. Such cases were defined as bound/unbound interface

root mean-square distance < 1.5 Å and fraction of non-native contacts (the

number of non-native residue-residue contacts in the predicted complex

divided by the total number of contacts in that complex (74)) < 0.4.
FIGURE 2 Performance of residue-residue and atom-atom contact po-

tentials in best-model structure recognition from CASP decoys. Statistical

potentials derived at different values of sequence separation kmin and dis-

tance cutoff dmax were used to score models of 224 protein domains submit-

ted to CASP rounds X and XI. Performance is measured as Z-score of the

highest GDT_TS score model averaged over all 224 evaluation units. The

solid line shows distance dependence of the Z-scores (bottom horizontal

axis) at the optimal sequence separation kmin ¼ 3. Performance of the po-

tentials derived without local fields h
!

is shown by the dashed lines. Thin

gray lines with circles show the Z-score dependence on the sequence

separation kmin (top horizontal axis) at dmax ¼ 8.0 Å (RRCE20,

AACE20) and dmax¼ 6.9 Å (AACE167, AACE18). The plots are cross-sec-

tions of the heat maps in Fig. S1 at specific values of sequence separation

kmin and distance cutoff dmax.
Energy functions

For comparison, we tested the following knowledge-based energy func-

tions: discrete optimized protein energy (DOPE) (27), distance-scaled,

finite ideal-gas reference (DFIRE) (10), dipolar DFIRE (dDFIRE)

(75,76), random walk (RW) and RWplus (29), generalized orientation-

dependent all-atom potential (GOAP) (77), OPUS-PSP (78), RF-HA-SRS

(28), and RF-CB-SRS-OD (79). DOPE, DFIRE, RW, and RF-HA-SRS

are all-heavy-atom distance-dependent potentials, whereas RWplus,

dDFIRE, and GOAP have an additional orientation-dependent term.

OPUS-PSP is an orientation-dependent contact potential defined for

blocks of side-chain atoms. RF-CB-SRS-OD is a residue-level distance-

and orientation-dependent energy function. In addition, a simple resi-

due-residue contact potential by Miyazawa and Jernigan MJ3h (80) was

also tested because of its best performance in scoring of protein docking

decoys (81,82).
RESULTS AND DISCUSSION

Parameters of the contact potentials

Different distance cutoffs dmax and sequence separations
kmin may result in a different graph model for the protein
structure (Fig. 1) and thus in different sets of local fields ~h
and couplings J that maximize the likelihood function
(Eq. 8). To find the optimal dmax and kmin values, we derived
our four potentials RRCE20, AACE20, AACE167, and
AACE18 (Table 1) using 1110 various dmax and kmin combi-
nations (see Materials and Methods). The performance of
the potentials was evaluated by discriminating best models
from the CASP decoys (Figs. 2 and S1).

All four potentials performed poorly when contacts be-
tween residues adjacent in the sequence ðkminT1Þ were
considered in the derivation of the contact energies. Resi-
dues that are close in sequence are close in space primarily
because of the covalent bonds. Thus, taking such contacts
into account obscures the treatment of nonbonded interac-
tions, especially at smaller dmax (83). As dmax increases,
more interacting pairs contribute to the potentials, and the
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relative contribution of sequence-adjacent residues declines
rapidly. However, with complete exclusion of the sequence-
adjacent residues, some portion of the nonbonded interac-
tion energy remains unaccounted for, causing a drop, albeit
slight, in the performance. The optimal performance was
observed at kmin ¼ 3. Thus, the potentials derived at this
kmin value were used in the further analysis unless stated
otherwise. Despite high correlation of the RRCE20 contact
energies and the well-known Miyazawa-Jernigan matrix
MJ3h (80) (R ¼ 0.90), the former still shows better decoy
discrimination by all three measures (Fig. 4).

The RRCE20 and AACE20 potentials showed very
similar trends with varying dmax. This suggested that if all
atoms within one residue are assigned to one type, the
way of calculating contacts (either between residue
centroids or between residue heavy atoms) has a negligible
effect on the energy function. The optimal performance for
these potentials was achieved within a broad dmax interval
(6–11 Å). If the protein heavy atoms were split into 167
different types, the trend remained similar. However, the
best performance is observed at lower dmax ¼ 5 O 8 Å;
Z-score increases significantly from 0.89 to 0.88 for
RRCE20 and AACE20, respectively, to 1.09 for AACE167.

The distinct feature of the AACE18 potential is the two
sharp peaks of enhanced performance (in terms of Z-score,
quantitatively similar to the performance of the much more
complex AACE167) at dmax � 6.9 and �12.6 Å (Fig. 2 D).
The exact reason for the two-peak distribution is not clear
because the statistical potential parameters are derived
from a self-consistent solution of the system of equations
(10), in which elucidating the effect of a particular factor
is nontrivial if possible at all. However, the peaks do not
appear when the potential is derived using a reduced model
(leaving out hvi terms in Eqs. 4 and 9; dashed lines in
Fig. 2 D). This points to an important interconnectivity
between one- and two-body energies, which substantially
elevates the efficiency of the potential at certain dmax.
Generally, the reduced model yields significantly less effec-
tive contact potentials (the dashed lines in Fig. 2 are
all below the solid lines). AACE18 correlates poorly
(R ¼ 0.43) with the original atomic contact energies
from (19).

The convergence analysis of the inferred energy parame-
ters showed that they are already close to optimal. Thus,
further increase in the number of structures deposited to
PDB can only marginally improve the potentials (Figs. S2
and S3).
Local fields

After the local fields~h and couplings J are learned by solv-
ing the system of equations (Eq. 10), one-body terms (or
self-energies) can be omitted in protein structure energy
estimates and scoring applications (Eqs. 13, 14, and 15).
Nevertheless, the local fields are essential internal parame-
814 Biophysical Journal 115, 809–821, September 4, 2018
ters of the model at the learning stage (Eqs. 7, 8, and 9),
boosting the effectiveness of the resulting two-body
energies J (dashed and solid lines in Fig. 2). Below, we
provide a detailed analysis of how the trained hk parameters
are related to the basic features of individual interaction
center types.

Empirically, we found that the one-body energies ~h can
be described by a linear combination of two interaction
centers features (Fig. 3 B, rightmost panel)

hk ¼ a � pk þ b � nk þ c; (16)

where pk and nk are the propensity (frequency of occur-
rence) and the average coordination number (in graph termi-
nology, the average number of node neighbors in the graph
G(V,E) connected by an edge) for the interaction centers of
type k in the training set, respectively. The coordination
number is inversely related to the exposure of the interaction
center to the solvent because the interface atoms or residues
have less contact with other interaction centers than those in
the protein core.

The two parameters pk and nk contribute R90% to the
fields ~h for all potentials and dmax (Fig. 3, A–D). For the
RRCE20 and AACE20 potentials (Fig. 3, A and B), the pro-
pensities contribute significantly more at smaller distances,
whereas at larger dmax, the coordination numbers become
more important. The AACE167 potential showed qualita-
tively similar behavior. The main difference was that contri-
bution of the propensities became larger at significantly
smaller dmax (a steep dark-gray peak on the left-hand side
of Fig. 3 A). The AACE18 potential showed distinctly
different patterns (Fig. 3 A, rightmost panel). For this poten-
tial, the relative importance of pk and nk weakly depends on
dmax, and the propensities generally have a higher contribu-
tion to local fields than the coordination numbers (e.g., at
optimal dmax ¼ 6.9 Å, nk-values contribute �65 and 36%
to the local fields for the AACE167 and AACE18 potentials,
respectively).
Discrimination of protein near-native structures

The quality of knowledge-based energy functions is often
assessed by their ability to recognize the native structure
or the best model in a set of decoys (9,84,85). Models sub-
mitted to the CASP competition (86) are believed to be the
most challenging (87) and have been recently used by others
to benchmark their statistical potentials (79,88). Thus, we
tested our four potentials on the CASP decoys from rounds
X and XI of the competition (61,62). Identifying the best
model from the decoys (that also corresponds to the
real-case modeling scenario, when the native structure is
not known) is generally more challenging than identifying
the native structure (79,87). This is also the case for our
potentials: Z-scores for the best model are on average in
the 0.9–1.1 range, whereas corresponding numbers for the



FIGURE 3 Properties of the local fields h
!
. (A)

The contribution (relative importance) of atom

propensities pk and average coordination numbers

nk to local fields h
!

for the least-squares linear

model (Eq. 16) with varying cutoff distance dmax

is shown, calculated for RRCE20, AACE20,

AACE167, and AACE18 potentials, respectively.

The data was obtained by the averaging-over-or-

derings method by Lindeman et al. (94) as imple-

mented in the relaimpo package (95) for R

statistical computing language. (B) As an example,

hk correlations with atom propensities pk and coor-

dination numbers nk and their linear combination

(Eq. 16) are shown for the AACE167 potential

derived at dmax ¼ 6.9 Å and kmin ¼ 3.
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native structure are 0.6–0.8 Z-score units higher (Fig. S4).
Although discrimination of the best model is significantly
harder than that of the native structure (which also substan-
tially complicates comparison of different scoring func-
tions), it is more relevant to the real-case scenario when
only the models, but not the native structure, are available.
Thus, unlike a number of other studies on scoring functions,
we focused our analysis on the ability of the potentials to
discriminate the best model and compared their perfor-
mance to 10 state-of-the-art knowledge-based energy func-
tions (Fig. 4).

In terms of the Z-score (Eq. 11), the AACE18 and
AACE167 potentials are among the top ones, only
behind GOAP (77). Assessment by the normalized rank
(Eq. 12) also puts AACE18 and AACE167 on top of the
list (1 � R ¼ 0.809 and 0.808, respectively), only slightly
behind GOAP (1 � R ¼ 0.821). High correlation of energy
and structural accuracy scores of the decoys indicates good
scoring (77). In this respect, AACE18 shows the best perfor-
mance (the average correlation coefficient 0.606), followed
by GOAP (0.587) and AACE167 (0.585) (Fig. 4). These
values are similar to correlations reported elsewhere
(e.g., (77)). Statistical analysis reveals, however, that the
differences between AACE18, AACE167, and GOAP are
marginal and all three potentials have comparable perfor-
mance, significantly better than the other tested energy
functions (Table S2). The other two assessment scores
(Z-score and normalized rank) are not as discriminative
(see corresponding p-values in Table S2). However, they
still place AACE18 and AACE167 among the top ones,
only slightly behind GOAP. The way to establish exact
ranking for the 14 potentials is not obvious. However, con-
sistency between the three assessment scores should indi-
cate that GOAP, AACE18, and AACE167 are the three
best-performing energy functions in the best-model discrim-
ination test. In discrimination of the native structure test
(Fig. 4 D), the performance order is slightly different,
with OPUS-PSP and RF-HA-SRS on top of the list by the
Z-score, followed by GOAP and AACE167. This suggests
that some energy functions are more tuned for high-resolu-
tion decoys but are less successful in discriminating models
of moderate accuracy. In this respect, AACE167 is more
sensitive in selecting the native structure compared to
AACE18 (Fig. 4 D).

The residue-level RRCE20 and AACE20 potentials
perform poorly by all measures, suggesting the need for
atomic details for effective contact potentials. On the other
hand, our contact potentials AACE18 and AACE167, which
are quite simple (e.g., no distance or orientation depen-
dency), are sufficient for capturing most structural details
of the protein models, which usually is achieved by much
more complex energy functions.
Protein stability changes upon point mutations

The top-performing AACE18 and AACE167 potentials
were further tested for their ability to predict the change
in protein stability DDG upon single mutation (see Mate-
rials and Methods). The testing was done on the benchmark
set of 2648 point mutations (64) in terms of Pearson’s r for
correlation of the calculated DDGcalc (Eq. 14) and experi-
mental DDGexp, separately for the buried and the exposed
Biophysical Journal 115, 809–821, September 4, 2018 815



FIGURE 5 Prediction of protein stability changes upon point mutations

by the AACE167 and AACE18 potentials. Experimentally determined

DDG values for 2648 point mutations from 131 proteins are correlated

with the ones calculated by AACE167 (A) and AACE18 (B) potentials at

different cutoff distances dmax. As an example, correlations for the

AACE18 potential at dmax ¼ 6.9 Å and kmin ¼ 3 are shown separately for

(C) buried (relative SASA % 0.2, 1429 residues) and (D) exposed residues

(relative SASA> 0.2, 1219 residues), respectively. Light gray circles corre-

spond to the x-ray structures. Dark gray squares are based on multimodel

NMR structures and show calculated DDG values averaged over all states,

with the error bars showing standard deviations. All points with deviations

from the least-squares linear fit (solid black lines) not falling into (0.025,

0.975) percentile range were treated as outliers, shown by open circles/

squares.

FIGURE 4 Performance of various energy functions in the best-model

structure recognition from CASP decoys. The best model’s Z-score, its

normalized rank 1� R, and Pearson’s correlation coefficient r of the energy

score and GDT_TS score of models, all averaged over 224 CASP decoy

sets, are shown for different scoring functions on scatter plots (A)–(C)

(one plot per each combination of the above three assessment scores).

For comparison, average Z-scores and normalized ranks for the native

structure are shown on plot (D).
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residues at various distance cutoffs dmax (Fig. 5). Correlations
were calculated after removal of outliers, which include all
pointswith deviations from the least-squares linear fit outside
a 2.5–97.5% range. Surface residues are generally more sus-
ceptible to structural variations because their side chains are
less constrained by the neighbors. In addition, there is a sig-
nificant solvent contribution to their energetics. These effects
are especially hard to account for by any energy function.
Indeed, both potentials had a significant drop in performance
(by�50% in terms of r) for the surface residues compared to
the performance for the buried residues (Fig. 5, A and B).
Overall, the AACE167 performance almost saturates at
r�0.45 for dmax> 5 Å. However, the predictions for the sur-
face residues are much less accurate compared to the predic-
tions for the buried ones (r �0.2 and 0.5, respectively). For
dmax< 5 Å, the performance drops almost to zero regardless
of the residue exposure to solvent.

The AACE18 energy function also has generally better
predictions for the buried residues than for the exposed
ones. However, the performance is not constant at dmax >
5 Å (Fig. 5 B). Similar to the best-model recognition from
the CASP decoys (Fig. 2 D), the elevated r values are
observed for the buried residues at two dmax values, 7 and
12 Å. For the surface residues, however, such peaks are
not observed, and the best recapitulation of the experimental
816 Biophysical Journal 115, 809–821, September 4, 2018
energies is achieved at dmax � 8O 11 Å (Fig. 5 B). Interest-
ingly, this dmax region coincides with the region of lower
performance on the buried residues. This distance range
roughly corresponds to the water-mediated interactions
(89), which indicates that solvent effects are better treated
by the simpler AACE18 rather than by the more compli-
cated AACE167 potential.

An example of correlation between DDGexp and DDGcalc

calculated by the AACE18 potential for buried and exposed
residues (Fig. 5, C and D) indicates that NMR structures
yield slightly more accurate DDGcalc estimates than the
x-ray structures (r ¼ 0.65 vs. 0.58 for buried and 0.38 vs.
0.34 for exposed residues, correspondingly). This might
be related to a more adequate environment of the NMR
models and to averaging over the ensemble of all models
in the PDB entry. However, a direct comparison is problem-
atic because the sets of NMR and x-ray structures consist of
different proteins.
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In comparison with other energy functions, AACE18 po-
tential is ranked sixth, with rAACE18 ¼ 0.554 compared to
rdDFIRE ¼ 0.591 of the top performing dDFIRE
(Fig. S6 A, one-sided p-value ¼ 0.023 at 95% confidence).
However, the difference in correlations between the first
five energy functions is not statistically significant
(p-value ¼ 0.189 between the first—dDFIRE—and the
fifth—DOPE). The performance of the other three poten-
tials, AACE167, AACE20, and RRCE20, is significantly
worse (Fig. S6 A).
FIGURE 6 Scoring of low-resolution docking decoys. The top 100,000

matches per complex with highest shape complementarity score from

GRAMM were evaluated by RRCE20, AACE20, AACE167, and

AACE18 contact potentials, followed by L-root-mean-square-deviation-

based clustering with 10 Å radius, for (A) DOCKGROUND Benchmark 4 and

(B) Weng’s Benchmark 5. The lowest energy model from each cluster

was further assessed by the CAPRI criteria (see Table S1). The docking suc-

cess rate for 1, 10, and 100 best scored clusters was calculated (bars).

Dashed lines are the baselines of the success rates when models are ranked

according to the raw shape complementarity. Solid lines are docking suc-

cess rates attained by the Miyazawa-Jernigan MJ3h statistical potential.
Contact potentials in protein docking

Predicting protein-protein complexes from the structures of
the individual monomers (protein docking) remains a chal-
lenging problem in computational structural biology
because of a fine balance between different factors (shape
complementarity, solvent and electrostatic effects, confor-
mational changes, etc.) that enable specific binding but are
hard to accurately account for. Thus, the protein docking
problem is often addressed by coarse-grained approaches,
at least at the initial modeling stages (90).

We tested how well our contact potentials score the low-
resolution docking predictions by GRAMM (72,73) (Figs. 6
and S5). Models of complexes were assessed according to
the CAPRI criteria (Table S1). Predictions with acceptable
and better quality were considered successful. Similar to
the CASP decoys (Fig. S1), the best discrimination of the
near-native models is achieved at the distance cutoffs
dmax ¼ 6.9 Å for AACE167 and AACE18 potentials and
dmax ¼ 8.0 Å for RRCE20 and AACE20. However, the
best performance is achieved at larger sequence separation
kmin ¼ 5. All four energy functions, in most cases, outper-
form the Miyazawa-Jernigan MJ3h statistical potential
(80), which has been recently shown to be one of the top-
performing scoring functions in protein docking (81). The
largest improvement over MJ3h is achieved by the atom
contact potentials AACE167 and AACE18. The AACE18
also proved its efficiency in discriminating near-native
docking matches in a recent joint CASP/CAPRI round of
the CASP12 competition (91).

Interestingly, the reference structure often has a higher
(worse) energy score than the top near-native docking
clusters (Fig. S7). This is likely caused by atom clashes
in the reference structure obtained by simple structural
superimposition of the unbound monomers onto corre-
sponding bound conformations. Our docking protocol,
albeit low resolution, is able to find better-scoring near-
native matches. The true native conformation is generally
scored higher in the case of AACE18 and in particular
AACE167 potentials (Fig. S7), suggesting that taking
into account protein flexibility might further improve
the ranking. However, as Fig. S7 shows, selection of
the native conformation from the docking decoys is still
difficult. Similar success rates were reported previously
for popular protein-protein docking scoring functions
ZRANK (92) and integration of residue- and atom-based
potentials for docking (93).
Correlation with protein binding affinity

Finally, we analyzed correlation of the interchain energy
UAB (Eq. 15) or DGcalc calculated by the atom AACE18
and AACE167 potentials at various distance cutoffs dmax

for the protein complexes in the affinity benchmark (69),
with the experimentally determined binding affinities DGexp

(Figs. 7 and S6 B). The experimental binding free energies
were recapitulated significantly worse by the more complex
AACE167 potential than by the simpler AACE18 (Fig. 7 A).
Even a naı̈ve DG predictor, which approximates binding
Biophysical Journal 115, 809–821, September 4, 2018 817



FIGURE 7 Prediction of proteins binding affinities by AACE167 and

AACE18 potentials. (A) Experimentally determined binding free energies

(DGexp) for 92 rigid-body complexes from affinity benchmark 2 are corre-

lated with the ones calculated (DGcalc) by the AACE167 and AACE18

potentials with varying cutoff distances dmax. Dashed line at 0.375 show

performance of a naı̈ve predictor, which approximates binding free energy

by the change in solvent-accessible surface area (DSASA) upon complex

formation. (B) The correlation of calculated binding free energies DGcalc

and DSASA values is shown.
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free energy by the change in the SASA (DSASA) upon com-
plex formation, outperformed AACE167 at almost all dmax

(except small dmax� 4 Å). At the same time, AACE18 again
performed significantly better at dmax ¼ 8 O 11 Å than at
other distances, which correlates with the data on the point
mutations for the exposed residues (Fig. 5 B). In this dmax

range, the AACE18 energies tend to be highly correlated
with DSASA (Fig. 7 B), which is not the case for the
more complex AACE167. This indicates that desolvation
effects are largely captured by the AACE18 potential, albeit
in a simple form DGdesolvation � DSASA. However,
AACE18 performance is still superior to the naı̈ve DSASA
predictor (Fig. 7 A) as well as all other energy functions
tested on the affinity benchmark (rAACE18 ¼ 0.508, followed
by the DFIRE potential with rDFIRE ¼ 0.445; Fig. S6 B). In
comparison, specialized affinity prediction algorithms
still have a better performance, with correlations up to r ¼
0.53 for the full set and r ¼ 0.75 for rigid-body cases (69).
CONCLUSIONS

In summary, we presented a framework for generating semi-
empirical general-purpose contact potentials for proteins
structure modeling. The potentials are derived from the
Potts model by solving the inverse statistical physics prob-
lem. The model contains only two adjustable parameters,
interaction distance cutoff dmax and separation in the
sequence for the interacting units (residues or atoms) kmin.
No other assumptions on the protein topology or informa-
tion on intraresidue connectivity were used. Unlike many
other statistical potentials, our derivation scheme explicitly
includes one-body energy terms, which are shown to be a
significant component of the model, boosting the effective-
ness of the derived potentials.
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The potentials were derived purely from the structural
data in the PDB and are completely independent of any
reference state. The results showed that they are successful
not only in recognizing near-native models of individual
proteins but also in scoring of protein docking decoys,
recapitulating the experimental binding energies, and pre-
dicting stability changes upon point mutations. Such trans-
ferability of atomic potentials is strongly dependent on the
assignment of the atom types. Among three considered
assignment schemes, the grouping of atoms according to
their physicochemical properties yielded consistently top-
performing AACE18 potential. Interestingly, despite the
effectiveness of the most detailed AACE167 potential in
scoring of CASP decoys, it was much less effective at reca-
pitulating experimental free energies. Large number of
atom types enables fine-tuning of the AACE167 potential
to achieve high decoy discrimination rate. However, at
the same time, it affects its transferability to other
applications.

It should be also noted that even for the most effective
AACE18 potential, it is hard, if possible at all, to use one
optimal contact distance dmax for all applications. For
example, for discrimination of the structural decoys (for
both the individual proteins and the protein complexes),
the optimal dmax value was 6.9 Å. However, dmax ¼ 8.0 Å
yielded better correlation with the experimentally deter-
mined binding free energies. This discrepancy was shown
to be at least partially related to the solvent effects, which
are not explicitly taken into account by our model.

Overall, it is quite remarkable that in a wide range of pro-
tein structure modeling applications, simple contact poten-
tials with no distance or orientation dependencies are
sufficient for the same or better performance than much
more complex knowledge-based energy functions used in
the field. However, such simplicity may also pose limita-
tions to the potentials applicability, e.g., in structure refine-
ment, because of the lack of sensitivity to small changes in
atom-atom distances inherent to the contact potentials.
Complementing contact potentials with other scoring terms
(e.g., the extent of clashes, surface area, etc.) is one way to
overcome this problem, which has been explored by us in
CASP-CAPRI competition (91).

In the future, we plan further development of the statisti-
cal potentials by incorporating distance dependence and sol-
vent effects as well as exploring higher-order interactions
(e.g., including three-body terms in Eq. 4). We will also
explore different atom types, including hydrogen atoms
and different protonation states of the titratable residues.
On the learning side, more thorough selection of the training
set, as well as inclusion of the interchain contacts from bio-
logical assemblies in PDB, could also lead to better contact
energy estimates. All these questions can be addressed
within the approach presented in this work.

The potentials are available at http://vakser.compbio.ku.
edu/main/resources.php

http://vakser.compbio.ku.edu/main/resources.php
http://vakser.compbio.ku.edu/main/resources.php
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SUPPOPRTING MATERIAL 
 
Finding energy parameters by pseudo-likelihood maximization 
 

Substituting Eq. 8 into Eq. 7 in the main text gives the pseudo-likelihood function pL  of 

parameters h


 and J: 
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( ); iU k N  is the energy of a single interaction center in state k surrounded by the set of 

neighbors iN , which includes all atoms (residues) connected to site i by an edge in the graph 

(shown in blue in Fig. 1A , B of the main text), and "nat" indicates that all the neighbors are in 

their native states. Atom (residue) types nat
ix  along with the neighbors nat

iN  are from the native 

structures of the proteins in the training set and are fixed throughout the computations. For 

computational efficiency, we convert the pseudo-likelihood in Eq. A1 to the negative pseudo-

log-likelihood function, which transforms the optimization problem (Eq. 7 in the main text) to 
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The gradient of the negative pseudo-log-likelihood function has components 
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where , 1,...,a b q= , ,a bδ  is the Kronecker delta and 
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is the conditional probability of observing site i  in state a , provided all neighboring sites nat
iN  

are in their native states. We explicitly force the coupling matrix J to be symmetric by 

aggregating off-diagonal contributions from abJ  and baJ  into one derivative (3rd line in Eq. A3) 

and ommiting the lower triangular part of J (i.e. a b> ) from computations. This reduces the 

total number of unknowns to ( )1 / 2q q q+ ⋅ + . Given analytic derivatives in Eq. A3, the 

optimization problem Eq. A2 can be efficiently solved (e.g. by a Quasi-Newton method), until 

the requirement ( )log 0pL∇ −   (Eq. A3) is met. 

  



Table S1. Docking accuracy according to CAPRI criteria 

Quality category Condition 

High fnat
(1) ≥ 0.5 and (L-RMSD(2) ≤ 1.0 Å or I-RMSD(3) ≤ 1.0 Å) 

Medium fnat ≥ 0.3 and (1.0 < L-RMSD ≤ 5.0 Å or 1.0 < I-RMSD ≤ 2.0 Å) 

Acceptable fnat ≥ 0.1 and (5.0 < L-RMSD ≤ 10.0 Å or 2.0 < I-RMSD ≤ 4.0 Å) 

Incorrect fnat < 0.1 and (L-RMSD > 10.0 Å and I-RMSD > 4.0 Å) 

 

(1) Fraction of predicted native residue–residue contacts 
(2) Cα ligand RMSD when receptors are optimally aligned 
(3) Interface Cα RMSD calculated over the set of native interface residues after a structural 

superposition of these residues 
 

  



Table S2. Details of various energy functions performance in the best model recognition from 
CASP decoys. Best model’s Z-score, its normalized rank 1 – R, and Pearson’s correlation 
coefficient r of the energy score and GDT_TS score of models, all averaged over 224 CASP 
decoy sets, are shown in columns 6, 9 and 2 respectively. 95% confidence interval for the 
correlation coefficient averaged over 224 decoys is in column 3. 14 energy functions were 
ordered according to their r values, and one- and two-sided Wilcoxon signed-rank test was 
applied to compare samples of 224 correlation coefficients, Z-scores and normalized ranks 
between AACE18 and the other 13 energy functions. Corresponding p-values are in columns 
4-5, 7-8 and 10-11. P-values < 0.05 are in blue. 
 

potential r 95% confidence 
interval 

p-value for r 
Z-score 

p-value for Z-score 
rank 

p-value for rank 

2-sided 1-sided 2-sided 1-sided 2-sided 1-sided 

1 2 3 4 5 6 7 8 9 10 11 

AACE18 0.606 (0.533;0.670) - - 1.09 - - 0.809 - - 

GOAP 0.587 (0.511;0.654) 8.61E-02 4.31E-02 1.13 3.10E-01 8.45E-01 0.821 2.10E-01 8.95E-01 

AACE167 0.585 (0.504;0.647) 7.99E-02 4.00E-02 1.08 9.82E-01 4.91E-01 0.808 9.26E-01 4.63E-01 

DFIRE 0.562 (0.483;0.632) 3.62E-03 1.81E-03 0.90 1.28E-02 6.40E-03 0.796 7.46E-01 3.73E-01 

dDFIRE 0.547 (0.468;0.617) 2.24E-03 1.12E-03 0.87 2.97E-03 1.49E-03 0.790 3.92E-01 1.96E-01 

AACE20 0.540 (0.460;0.610) 5.01E-04 2.51E-04 0.88 1.43E-03 7.17E-04 0.755 2.44E-03 1.22E-03 

RF-CB-SRS-OD 0.533 (0.451;0.606) 7.62E-06 3.81E-06 0.99 1.38E-01 6.88E-02 0.791 1.89E-01 9.44E-02 

RRCE20 0.531 (0.450;0.603) 3.24E-05 1.62E-05 0.88 1.52E-03 7.58E-04 0.751 7.04E-04 3.52E-04 

RW 0.524 (0.441;0.599) 1.05E-05 5.27E-06 0.83 1.62E-03 8.11E-04 0.769 1.64E-01 8.21E-02 

RWplus 0.518 (0.434;0.594) 2.25E-06 1.12E-06 0.83 2.86E-03 1.43E-03 0.770 3.62E-01 1.81E-01 

OPUS-PSP 0.515 (0.430;0.590) 3.68E-07 1.84E-07 1.04 6.79E-01 3.39E-01 0.796 6.99E-01 3.50E-01 

DOPE 0.508 (0.422;0.584) 6.74E-09 3.37E-09 0.89 5.16E-02 2.58E-02 0.787 7.50E-01 3.75E-01 

MJ3h 0.493 (0.407;0.571) 1.06E-10 5.31E-11 0.74 4.64E-07 2.32E-07 0.710 8.94E-08 4.47E-08 

RF-HA-SRS 0.424 (0.331;0.510) 8.87E-21 4.44E-21 1.04 2.23E-02 1.12E-02 0.796 3.41E-02 1.71E-02 

 

  



 

 

Figure S1: Performance of the residue-residue and atom-atom contact potentials in best 

model recognition from CASP decoys. The potentials derived at different values of sequence 

separation kmin and distance cut-off dmax were used to score models of 224 protein domains 

submitted to CASP rounds X and XI. The performance, measured as Z-score of the best 

model (the one with the highest GDT_TS score) averaged over all 224 evaluation units, is 

shown as heat map for RRCE20, AACE20, AACE167 and AACE18 potentials. 

 



 

 

Figure S2: Accuracy of the contact potentials parameters at different distance cut-offs. The 

initial training set of 6,319 proteins was randomly split into halves. Each of the resulting 

subsets was used to train the statistical potentials at different distance cut-off dmax = 4 – 15Å 

with 0.5Å step, yielding in each case two sets of parameter estimates ( )1h


, ( )1J  and ( )2h


, ( )2J . 

Relative error was then calculated separately for (A) local fields h


 and (B) couplings J using 

equation ( ) ( ) ( ) ( )2121 rrrrrelative


+−=δ , where   ⋅  is the l2 vector norm. In the case of local 

fields, vector r  is identical to vector h


. For the coupling constants, r  is composed of the 

upper triangle of matrix J  plus the diagonal elements ( J  is symmetric, so the lower triangle 

was omitted). Relative errors relativeδ  were calculated for five different random splits of the 

initial training set, and only the average values are shown on the plots. 

  



 

Figure S3: Accuracy of the contact potentials parameters with varying sizes of the training 

set. Using the procedure described in Figure S1, relative errors relativeδ  for (A) local fields and 

(B) coupling constants were calculated for the randomly selected training subsets of different 

sizes ranging from 22 to 3159. The computed errors were fit by an empirically matched 

dependence Nrelative 1~δ , where N  is the number of proteins used for training. Slight 

deviation of the AACE167 potential from this dependence (blue squares on the right-hand 

panel) is potentially caused by a very large number of parameters (~15,000), so that the 

system of equations (8) is underdetermined at small training set sizes N . 

  



 

 

Figure S4: Z-scores of the native structure (gray) and the highest accuracy model (black) in 

the CASP decoys depending on the decoys quality. The GDT_TS score of the highest 

accuracy model (the best model according to CASP) was used as the measure of the decoys 

quality. For each of the 224 CASP decoy sets, the energy was calculated by the four contact 

potentials (see Methods in the main text),  

 

 

  



 

 

 

Figure S5: Performance of the residue-residue and atom-atom contact potentials in near-

native complex discrimination from low-resolution docking decoys. Statistical potentials 

derived at different values of sequence separation kmin and distance cut-off dmax were used to 

score 100,000 unclustered matches for each of the 394 protein-protein complexes from 

DOCKGROUND Benchmark 4.0. Performance is measured in terms of the top-10 docking 

success rate (the fraction of complexes that have at least one near-native solution - 

acceptable or better quality according to CAPRI - among 10 best-scored models). 

  



 

 

Figure S6: Correlation of experimentally determined and calculated free energies. (A) 

Pearson’s correlation coefficient r between experimentally measured ( expG∆∆ ) and calculated 

( calcG∆∆ ) changes in folding free energies caused by point mutations over a set of 2,684 

mutations for different knowledge-based energy functions. (B) The same scoring functions 

tested on their ability to recapitulate experimentally measured binding free energies ( expG∆ ) of 

92 rigid-body complexes from Affinity Benchmark 2.0. The plot shows correlation coefficient r 

between expG∆  and calcG∆  (see Methods). The RRCE20, AACE20, AACE167 and AACE18 

potentials were derived at dmax = 8.0 Å and kmin = 3. Scoring functions on both panels are 

sorted by their performance according to r. 

  



 

Figure S7: Ranking of the native and reference structures in low-resolution docking decoys. 

After scoring and clustering of top 100,000 matches from GRAMM (see Methods and caption 

to Fig. 6 in the main text for details), we checked whether the native (bound conformation, 

blue bars) and reference (unbound superimposed onto bound, green bars) is scored higher 

than any of the top 1,10 and 100 docking clusters. The fraction of such cases is plotted for (A) 

DOCKGROUND Benchmark 4 and (B) Weng's Benchmark 5. For comparison, docking success 

rates from Fig. 6 are shown by horizontal red lines. The top100 plots also show the maximal 

achievable docking success rates: black lines show the fraction of cases for which at least 

one docking cluster is of acceptable or better quality (see Table 1), regardless of its score. 
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