			Experimental	Control	Time of	Treatment	Biochemical	Behavioral	Major findings
Study	Animal	SCI Model	groups	groups	study	(MT)	outcomes	outcomes	and conclusions
Shen	Female	T ₉₋₁₀	SCI + MT	1. Sham	0, 1, 3, 7,	Each day	Bax,	BBB	MT decreased SCI
et al.	Sprague–Da	Weight-drop	12.5 mg/kg,	2. SCI + vehicle	14, 21, and	for 3 d	caspase-3		through activation
(2017)	wley rats		i.p.		28 d		Bcl-2		of the Wnt/ β
	180–220 g								catenin signaling
									pathway.
Yuan	Male	T ₁₀	SCI + MT	1. Sham	24 h, 48 h,	30 min	MDA, GSH,	No	MT treatment
et al.	C57BL/B6	Weight-drop	10 mg/kg	2. SCI + vehicle	72 h, 7 d	after SCI	GSSG and		plays a role in
(2016)	mice		25 mg/kg				MPO		protecting the
	Eight-week-		50 mg/kg						testes of SCI
	old		i.p.						animals by
									preventing
									oxidative stress
									damage.
Krityakiar	Female	T ₁₂	SCI + MT	1. Sham	1, 3, 5, 7,	10 min	IL-1 β and	BMS	MT prevented scar
ana et al.	mice	Compression	(single dose)	2. SCI + vehicle	10 and 14	after	NG-2		formation through
(2016)	3 months old		SCI + MT14		d	lesion,			reducing
			(14 d'			daily for			inflammatory
			treatment)			14 d			cytokines after
			10 mg/kg						SCI.
			i.p.						
Jing et al.	Female	T ₁₀	SCI + MT	1. Sham	7 d	30 min	BSCB,	No	Improvement of
(2017)	Sprague-Da	Weight-drop	10 mg/kg	2. SCI + vehicle		after SCI	BDNF,		microcirculation
	wley rats		i.p.			for 7 d	Synapsin-I,		and decrease of
	180–220 g					twice daily	or GAP-43		neurological
									impairment may

Additional Table 1 Characteristics of the major studies.

contribute to the

									effects of
									melatonin.
Paterniti	C57BL/6N	T ₅₋₈	SCI + MT	1. Sham	1–20 d	1, 6, and	Neutrophil	BMS	The
et al.	20–22 g	Compressed	30 mg/kg	2. SCI + vehicle		12 h after	infiltration,		anti-inflammatory
(2017)	4-5 weeks		i.p.			SCI	NF-κB,		activity of MT is
	old						iNOS		related to PPAR- α
									in SCI.
Gao et al.	Male	T ₆₋₁₀	SCI + AEC	1. Sham	1-42	Transplant	Differentiati	BBB	Co-treatment of
(2016)	Kunming	Weight-drop	(amniotic	2. SCI + PBS	delivery	ation	on into		MT and Wnt-4
	white mice		epithelial	3. SCI + neural	day	surgeries	neural cells		improved the
	40–45 g		cells) treated	cells	post-injury	were	Tubb3 and		recovery of SCI
	8 weeks old		by MT (0.01,			performed	GFAP		and neural cell
			0.1, 1, 10 or			at 6 d after			differentiation in
			100 µM)			surgery			bovine amniotic
									epithelial cells.
Aydemir	Wistar	L ₃	SCI + MT	1. Sham	48 h	10 min	MDA,GSH,	No	MT played a
et al.	albino rats	Clamping	50 mg/kg	2. Sham + MT		before the	caspase-3		protection role
(2016)			i.p.	3. SCI+vehicle		aorta was			after ischemia in
						clamped			rats.
Liu et al.	Male	T ₁₂	SCI + MT	1. Sham	12, 24, 48	immediate	AQP4,	No	MT may eliminate
(2015)	Sprague–Da	Compression	100 mg/kg	2. SCI + vehicle	and 72 h	ly after	GFAP		astrocytic swelling
	wley rats		i.p.			injury and			and anti-edema
	205–225 g					then daily			after acute SCI.
						for 2 d			
Haddadi	Male	C_1 - T_2	SCI + MT	1.Sham +	3 w after	100 mg/kg	TNF - α,	No	Administration of
and	Wistar rats	Irradiation	100 mg/kg, 5	vehicle	irradiation	oral	MDA		MT can inhibit
Fardid	180–220 g		mg/kg	2. Sham + MT		administra			TNF- α expression
(2015)				3. SCI + vehicle		tion. 30			and prevent
						min later			radiation-induced

neuroprotective

						exposed to radiation, 5 mg/kg of melatonin daily for 3 w			SCI.
Wu et al. (2014)	Male C57BL/B6 mice 20–25 g	T ₁₀ Weight-drop	SCI + MT 5, 10, 25, 50 100 mg/kg/day i.p.	1. Sham 2. SCI + vehicle	48 h	immediate ly after SCI	BSCB permeability MMP3, AQP4, HIF-1α, VEGF, VEGFR2	No	MT may stabilize the function of microvascular barrier and microcirculation of SCI by promoting recovery of damaged BSCB.
Tavukçu Hasan et al. (2014)	Male Wistar albino rats 250–300 g	T ₇₋₁₀ Weight-drop:	SCI + MT (10 mg/kg, i.p.), SCI + MT (10 mg/kg, i.p.) + tadalafil (10 mg/kg, p.o.)	1.Sham + vehicle 2. SCI + vehicle 3. SCI + tadalafil (10 mg/kg, p.o.)	7 d	Post-SCI for 7 d	Restored ED, caspase 3, NOS, MPO, SOD cGMP, NGF, GSH	No	The anti-oxidant effects of MT prevented the destroy of cavernosal tissues and promoted the recovery of ED.
Piao et al. (2014)	Female Sprague–Da wley rats 250–300 g 8 weeks old	T ₈₋₉ Photo-thromb otic injury	SCI + MT 50 mg/kg i.p.	1. Sham 2. SCI + vehicle	3 d after SCI and then once/week for 4 w	starting 1 h after injury and at 12 h intervals for 7 d	MMP-2, MMP-9	BBB	MT improved function by reducing the expression of MMP-9.
Lee et al. (2014)	Male Sprague–Da wley rats	T ₉₋₁₀ Weight-drop	SCI + MT 10 mg/kg SCI + MT +	1.Sham + vehicle 2. SCI + vehicle	1, 3, 7, 14, 21 d	Twice daily for 3 w	eNSPCs, MAP2, GFAP	BBB	Cotreatment with MT and exercise might promote

	250–270g		Ex						regeneration of
			s.c.						endogenous neural
									stem/progenitor
									cells after SCI.
Jing et al.	Male	T_{10}	SCI + MT	1. Sham	2, 7, 10, 14	Twice	BSCB	BMS	MT improved the
(2014)	C57BL/6	Weight-drop	10 mg/kg	2. SCI + vehicle	d	daily for 2	permeability		disruption of
	18–22 g		i.p.			W	AQP4,		BSCB and blood
							Ang1,		vessels by
							ICAM-1,		increasing of
							Bcl-2, and		pericyte coverage.
							Bax		
Akakin	Male	T ₇₋₁₀	SCI + MT	1. Sham	7 d	Once daily	MDA,GSH,	No	MT decreased
et al.	Wistar	Weight drop	10 mg/kg/day	2. SCI + vehicle		for 7 d	oxidative		oxidative stress of
(2013)	albino rats						stress in the		kidney after SCI.
	250–300 g						rat kidney		
Haddadi	Male	C_1 - T_2	SCI + MT	1.Sham +	1, 3, 8, 16,	100	VEGF	No	MT modulates the
et al.	Wistar rats	Radiation	100 mg/kg	vehicle	20 and 22	mg/kg, 5			expression of
(2013)	180–220 g		5 mg/kg	2. Sham $+$ MT	w after	mg/kg			VEGF and
			i.p.	3. SCI	radiation	daily for			promotes
					treatment.	22 w			survival of
									irradiated SCI
									animals.
Erşahin	Wistar	T ₇₋₁₀	SCI + MT	1. Sham	7 d	15 min	MDA, GSH,	Motor	MT reduced tissue
et al.	albino rats	Weight drop	10 mg/kg/day,	2. SCI + vehicle		post-injury	NGF,	function	injury and
(2012)	250–300 g		i.p.			daily for 1	caspase-3	scores	improved the
						W			bladder function
									by reducing
									oxidative stress
									and affecting the
									expression of

									NGF.
Park et al.	Male	T ₉₋₁₀	SCI + MT	1. Sham	1, 3, 7, 14,	Twice	iNOS,	BBB	MT could prevent
(2012)	Sprague–Da	Weight drop	10 mg/kg	2. SCI + vehicle	21, 28 d	daily for	GFAP,		acute
	wley rats		s.c.			28 d	MAFbx,		inflammation and
	250–260 g						MuRF1		skeletal muscle
									atrophy.
Park et al.	Male	T ₁₀	SCI + Ex +	1. SCI	1, 3, 7, 14,	twice daily	iNOS,	BBB	Cotreatment with
(2010)	Sprague–Da	Weight drop	MT	2. SCI + Ex	21, 28 d	for 4 w	Beclin-1,		MT and exercise
	wley rats		10 mg/kg		after injury		LC3, p53,		decreased the
	230–270 g		s.c.				ΙΚΚα		secondary damage
	8 w old								of SCI rats.
									Combined therapy
									may reduce the
									side effects
									including fatigue
									induced by
									exercise.
Nesic	Male	T ₁₀	SCI + MT	1. Sham	1–35 d	Once daily	AQP1	BBB	MT treatment is
et al.	Sprague–Da	Weight drop	10 mg/kg	2. SCI + vehicle		for 35 d			related to the
(2008)	wley rats		i.p.						decreased AQP4
	225–250 g								level and reduced
									mechanical
									allodynia in SCI
									animals.
Genovese	Mice	T ₆₋₇	1.SCI + MT	1. SCI + vehicle	Once daily	dexametha	Bax, Bcl-2,	BBB	Cotreatment MT
et al.		Compression	2.SCI + MT +	2. SCI +	for 10 d	sone +	TNF-α,		with
(2007)			dexamethason	dexamethasone	after	melatonin	iNOS		dexamethasone
			e	3. Sham +	injury.	1 h and 4 h	Fas Ligand		decreased
			MT: 10 mg/kg	vehicle		after SCI,			secondary damage
			dexamethason	4. Sham $+$ MT		and daily			of SCI mice and

			e: 0.025 mg/kg	+		until day 9			MT reduced
			i.p.	dexamethasone					the side effects of
									steroids.
Erol et al.	Male	T_{4-5}	SCI + MT	1. Sham	1, 10 d	each day	MDA, SOD,	No	MT is more
(2008)	Wistar rats	Compression	7.5 mg/kg	2. SCI + saline		for 10 d	GSH-Px		effective than
	200–250g		i.p.	3. SCI +					octreotide in
				octreotide					preventing
									secondary damage
									of SCI animals
Cayli	Female	T_{7-10}	SCI + MT	1. Sham	1–10 d	4 h, 24 h,	MDA	Motor	MP, MT, used
et al.	albino rats	Weight drop	10 mg/kg	2. SCI + vehicle		10 d		function	either alone or in
(2004)	200–250g		i.p					scale	combination,
									exerted similar
									effects in
									promoting
									functional
									recovery.

T: Thoracic vertebrae; C: cervical spine; L: lumbar vertebrae; SCI: spinal cord injury; MT: melatonin; i.p.: intraperitoneal; s.c.: subcutaneous; Bax: Bcl-2 associated X protein; Bcl-2: B-cell lymphoma-2; MDA: malondialdehyde; GSH: glutathione; BBB: Basso: Beattie: and Bresnahan; BMS: Basso Mouse Scale ;GSSG: glutathione (oxidized form); MPO: myeloperoxidase; IL-1 β : interleukin-1 β ; NG-2: neural/glial antigen 2; BSCB: blood-spinal cord barrier; BDNF: brain-derived neurotrophic factor; NF- κ B: nuclear factor κ B; iNOS: inducible nitric oxide synthase; GAP-43: growth-associated protein-43; Tubb3 tubulin beta3 class III; GFAP: glial fibrillary acidic protein; TNF- α : tumor necrosis factor α ; AQP4: Aquaporin 4; GFAP: glial fibrillary acidic protein; MMP3: matrix metalloproteinase-3; HIF-1 α : hypoxia inducible factor α ; VEGF: vascular endothelial growth factor; VEGFR2: vascular endothelial growth factor receptor 2; eNSPCs: endogenous neural stem/progenitor cells; MAP2: microtubule-associated protein 2; MPO: myeloperoxidase; SOD: superoxide dismutase; NGF: nerve growth factor; GSH: L-glutathione; Ang1: angiopoietin 1; ICAM-1: intercellular adhesion molecule 1; MAFbx: including muscle atrophy F-box; MuRF1: muscle-specific ring-finger protein 1; IKK α : inhibitor of nuclear factor kappa-B; d day(s); h: hours; min: minutes; w: week(s).