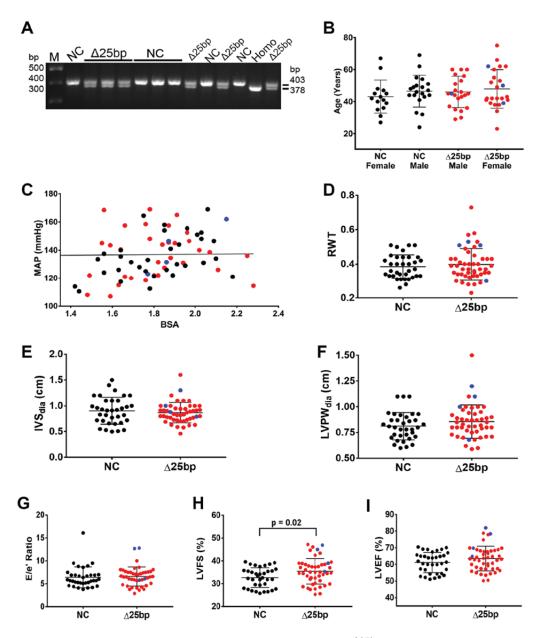
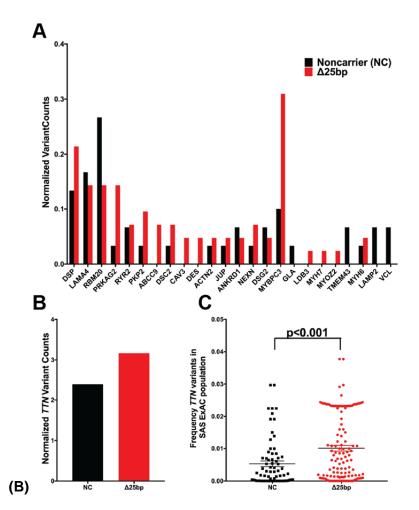
Supplementary Online Content

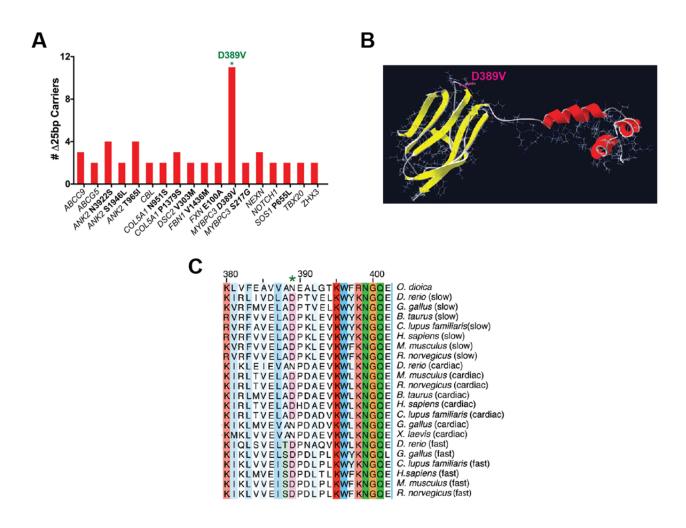

Viswanathan SK, Puckelwartz MJ, Mehta A, et al. Association of Cardiomyopathy With *MYBPC3* D389V and *MYBPC3*^{Δ25bp} Intronic Deletion in South Asian Descendants. *JAMA Cardiol*. Published online April 11, 2018. doi:10.1001/jamacardio.2018.0618

eFigure 1. Genotype-Phenotype Features of the *MYBPC3*^{Δ25bp} Variant Carriers eFigure 2. Evaluation of Rare Protein-Altering Variation in 46 Cardiomyopathy Genes in 72 US-SAs Who Were Carriers or Noncarriers of the *MYBPC3*^{Δ25bp} Variant eFigure 3. *MYBPC3*^{D389V} is Conserved and Enriched in *MYBPC3*^{Δ25bp} Gene Carriers. eFigure 4. D389V is Carried on the Same Single Allele as *MYBPC3*^{Δ25bp} and is Associated With Increased LVFS and Irregular Ca²⁺ Transients in iPSC-derived Cardiomyocytes eTable 1. Illumina TruSight Cardio Panel of 174 Cardiovascular Disease Genes eTable 2. Rare Variants in the 46-gene Cardiomyopathy Panel Found in Southeast Asian Cohort, Including *TTN* Variants eTable 3. Rare Variants in the 46-gene Cardiomyopathy Panel Found in Southeast Asian Cohort, Excluding *TTN* Variants

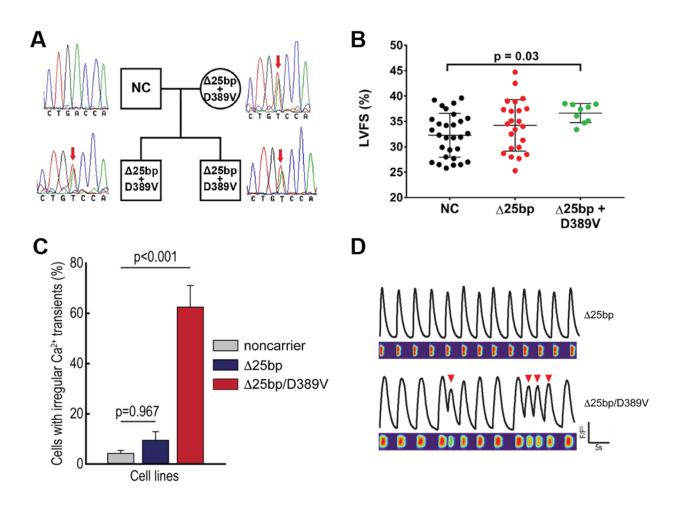
eTable 4. Fisher's Exact Test of *MYBPC3*^{Δ25bp} Carriers vs Noncarriers


eTable 5. Subjects Excluded From Analysis and Rationale

This supplementary material has been provided by the authors to give readers additional information about their work.



eFigure 1. Genotype-phenotype features of the $MYBPC3^{\Delta 25bp}$ variant carriers.


(A) PCR-based genotyping was used to detect noncarriers (NC), heterozygous (Δ25bp), and homozygous (Homo) variant carriers. The symbol Δ indicates the 25bp deletion. (B) Age distribution of the subjects who underwent echocardiographic evaluation grouped by genotype and gender (n=82). (C) Comparison of mean arterial pressure (MAP) and body surface area (BSA) showing equal distribution of carriers and noncarriers. Comparison of key cardiomyopathy-related echocardiographic parameters namely (D) relative wall thickness (RWT), (E) ventricular septal thickness during diastole (IVS_{dia}), (F) free wall thickness during diastole (LVPW_{dia}), (G) ratio of early transmitral flow (E) to left ventricular early diastolic velocity (e') (E/e' ratio), (H) left ventricular fractional shortening (LVFS %) and (I) left ventricular ejection fraction (LVEF %) among *MYBPC3*^{Δ25bp} variant carriers (n=47), including homozygous carriers and noncarriers (n=35). Blue markers represent homozygous carriers, while red markers represent heterozygous carriers. Statistical comparison between the groups performed using unpaired *t*-test.

eFigure 2. Evaluation of rare protein-altering variation in 46 cardiomyopathy genes in 72 US-SAs who were carriers or noncarriers of the *MYBPC3^{425bp}* variant. Additional cardiomyopathy genes (n=46) were fully sequenced. Rare protein-altering variants were evaluated, and an excess of rare protein-altering variation was seen in carriers compared to noncarriers. (A) The number of variants was normalized to cohort size, and the groups were compared. The genetic signature differed between MYBPC3^{Δ25bp} carriers (red) and noncarriers (NC, black). (B) MYBPC3^{Δ25bp} carriers had an excess of TTN variants with 3.2 rare TTN variants, while noncarriers had approximately 2.4 rare TTN variants per subject. (C) Rare TTN variants, as identified in MYBPC3^{Δ25bp} carriers, had a higher frequency in US-SAs compared to TTN variants identified in noncarriers, indicating a distinct genetic background in MYBPC3^{Δ25bp} carriers compared to noncarriers (p<0.001). Using Southeast Asian (SAS) population frequencies from ExAC¹⁸, population frequency differed for TTN variants in $MYBPC3^{\Delta 25bp}$ carriers compared to the noncarrier group (mean frequency 0.010±0.0009 in MYBPC3^{Δ25bp} carriers and 0.005±0.001 in noncarriers, p<0.001; TTN variants not identified in ExAC were given a population frequency of zero.). This same analysis conducted with European (Non-Finnish) population frequencies showed no difference between *MYBPC3^{Δ25bp}* carriers and noncarriers (0.001±0.0002 and 0.001±0.0003, carrier and noncarrier variants, respectively; p=0.9141). This finding was also specific to the TTN locus since analysis of non-TTN cardiomyopathy genes using SAS population data did not substantially differ between the $MYBPC3^{\Delta 25bp}$ carrier and noncarrier groups (0.006±0.001 and 0.004±0.001, carrier and noncarrier variants, respectively; p=0.48).

eFigure 3. *MYBPC3*^{D389V} **is conserved and enriched in** *MYBPC3*^{$\Delta 25bp$} *gene carriers.* **(A)** Among *MYBPC3*^{$\Delta 25bp$} carriers, D389V was overrepresented, compared to other rare variants, and was uniquely found in *MYBPC3*^{$\Delta 25bp$} carriers (Fisher's test, p=0.0017). **(B)** Ribbon diagram of C2 domain of cMyBP-C indicating the location of Asp 389, which is highly conserved part of a polymorphic protein-binding region. **(C)** ClustalW alignment of cMyBP-C amino acids showing the evolutionary conservation of Asp 389 (green asterisks) across species.

eFigure 4. D389V is carried on the same single allele as $MYBPC3^{A25bp}$ and is associated with increased LVFS and irregular Ca²⁺ transients in iPSC-derived cardiomyocytes. (A) Family segregation demonstrates that $MYBPC3^{A25bp}$ and D389V (red arrow) are located on the same allele. The parent with both $MYBPC3^{A25bp}$ and D389V has classic LV diastolic dysfunction without LVH while the oldest son has LVH with LA enlargement. PCR-based genotyping was used to detect noncarriers (NC), heterozygous ($\Delta 25bp$), and homozygous (Homo) variant carriers. The symbol Δ indicates the 25bp deletion. (B) LVFS was significantly elevated (mean ± sem) in subjects that carry $MYBPC3^{\Delta 25bp/D389V}$ compared to noncarriers and those with $MYBPC3^{A25bp}$ alone. (C) Frequency of cells with Ca²⁺ transient irregularities represented as a percentage. Cells carrying $MYBPC3^{\Delta 25bp/D389V}$ (red bar) showed significantly increased frequency (p>0.001) compared to both $MYBPC3^{\Delta 25bp}$ alone (blue bar) and noncarrier (grey bar) controls. (D) Representative line scan image showing normal spontaneous Ca²⁺ transients in $MYBPC3^{\Delta 25bp}$ cardiomyocytes (top) or arrhythmic Ca²⁺ transients in $MYBPC3^{\Delta 25bp/D389V}$ cardiomyocytes (bottom). Red arrowheads indicate arrhythmic Ca²⁺ transients. One-way ANOVA and Tukey's post hoc test were used.

ABCC9	CACNB2	DOLK	GJA5	KCNJ5	MYH11	PRDM16	SGCG	TNNC1
ABCG5	CALM1	DPP6	GLA	KCNJ8	MYH6	PRKAG2	SHOC2	TNNI3
ABCG8	CALR3	DSC2	GPD1L	KCNQ1	MYH7	PRKAR1A	SLC25A4	TNNT2
ACTA1	CASQ2	DSG2	GPIHBP1	KLF10	MYL2	PTPN11	SLC2A10	TPM1
ACTA2	CAV3	DSP	HADHA	KRAS	MYL3	RAF1	SMAD3	TRDN
ACTC1	CBL	DTNA	HCN4	LAMA2	MYLK	RANGRF	SMAD4	TRIM63
ACTN2	CBS	EFEMP2	HFE	LAMA4	MYLK2	RBM20	SNTA1	TRPM4
AKAP9	CETP	ELN	HRAS	LAMP2	MYO6	RYR1	SOS1	TTN
ALMS1	COL3A1	EMD	HSPB8	LDB3	MYOZ2	RYR2	SREBF2	TTR
ANK2	COL5A1	EYA4	ILK	LDLR	MYPN	SALL4	TAZ	TXNRD2
ANKRD1	COL5A2	FBN1	JAG1	LDLRAP1	NEXN	SCN1B	TBX20	VCL
APOA4	COX15	FBN2	JPH2	LMF1	NKX2-5	SCN2B	TBX3	ZBTB17
APOA5	CREB3L3	FHL1	JUP	LMNA	NODAL	SCN3B	TBX5	ZHX3
APOB	CRELD1	FHL2	KCNA5	LPL	NOTCH1	SCN4B	TCAP	ZIC3
APOC2	CRYAB	FKRP	KCND3	LTBP2	NPPA	SCN5A	TGFB2	
APOE	CSRP3	FKTN	KCNE1	MAP2K1	NRAS	SCO2	TGFB3	
BAG3	CTF1	FXN	KCNE2	MAP2K2	PCSK9	SDHA	TGFBR1	
BRAF	DES	GAA	KCNE3	MIB1	PDLIM3	SEPN1	TGFBR2	
CACNA1C	DMD	GATAD1	KCNH2	MURC	PKP2	SGCB	TMEM43	
CACNA2D1	DNAJC19	GCKR	KCNJ2	MYBPC3	PLN	SGCD	TMPO	

eTable 1. Illumina TruSight Cardio panel of 174 cardiovascular disease genes

This panel sequences all exons of 174 inherited cardiac disease genes. Analysis of results was performed on the entire set and the subset of 46 cardiomyopathy genes, which are in bold.

eTable 2. Rare variants in the 46-gene cardiomyopathy panel found in Southeast Asian cohort, including *TTN* variants

	# of variants including <i>TTN</i> variants	# identified in <i>MYBPC3^{∆25bp}</i> carriers (n=42)	# identified in noncarriers (n=30)
MODERATE	298	197	101
HIGH	9	7	2

All variants with ExAC \leq 0.01 MODERATE-effect variants are missense variants and inframe indels, while HIGH-effect variants are protein-disrupting variants, such as frameshifting variants, stop- gain, stop-loss, and splice-site variants.

eTable 3. Rare variants in the 46-gene cardiomyopathy panel found in Southeast Asian cohort, excluding TTN variants

	# of variants excluding <i>TTN</i> variants	# identified in <i>MYBPC3^{∆25bp}</i> carriers (n=42)	# identified in noncarriers (n=30)
MODERATE	103	66	37
HIGH	7	6	1

All variants with ExAC \leq 0.01, excluding *TTN* variants.

Gene	Variants	p value
MYBPC3	D389V	0.0019
ABCC9	c.2238G>A	ns
ABCG5	V300I	ns
ANK2	N3922S	ns
ANK2	S1946L	ns
ANK2	T965I	ns
CBL	His36_37insHis	ns
CDC27	1240L	ns
COL5A1	N951S	ns
COL5A1	P1379S	ns
DSC2	V303M	ns
FBN1	V1436M	ns
FXN	E100A	ns
MYBPC3	S217G	ns
NEXN	E318A	ns
NOTCH1	N104S	ns
SOS1	P655L	ns
TBX20	L244F	ns
ZHX3	P258L	ns

eTable 4. Fisher's Exact test of MYBPC3^{Δ25bp} carriers versus noncarriers

Fisher's Exact test comparing the variations identified in MYBPC3^{Δ25bp} variant carriers and noncarriers

eTable 5. Subjects excluded from analysis and rationale

Subject	Reason for omitting	Possible Genetic Variant
SS44 (Noncarrier)	EF is 2 STD Dev from mean	
SS69 (Noncarrier)	EF = 38.3; LVIDd=5.5; IVSd=1.1; LVPWd=1.1; LA Vol=59.2	DSP, R1509K, PP2=0.956, GERP=5.74, ExAC_SAS=0.001
SS43 (Noncarrier)	EF=62.9; LVIDd=5.7; LVIDs=3.7; IVSd=0.58; LA Vol=63.8	
SS65 (<i>MYBPC3^{Δ25bp}</i>)	EF=78.8; age=75; 1 st degree AV block; septal and inferior infarct; LA Vol=54.6	SCN5A, C1004R, PP2=0.999, GERP=5.38, ExAC_SAS=0.002
SS26 (<i>MYBPC3</i> ^{Δ25bp})	EF=74.8; Mitral E to A ratio = 2.4 (highest)	MYH7, D1798N, PP2=1, GERP=5.12, ExAC_SAS=0 GAA, G123E, PP2=0.998, GERP=4.85,
SS28 <i>MYBPC3^{∆25bp/D389V}</i>)	EF=60.4; T wave abn, possible anterolateral ischemia (ECG); LVIDd=5.3; LVIDs=3.6	ExAC_SAS=0.0001; GAA, S448T, PP2=0.8, GERP=4.18, ExAC_SAS=0.008
SS37 <i>MYBPC3^{∆25bp/D389V}</i>)	EF=57.2; LVIDd=5.1; IVS/PW=0.53; LA Vol=62.4	DSP, FBN1, FBN2, FKTN (all rare, potentially deleterious)

Rationale for exclusion of subjects from analysis: determined to have presence of mutations in genes known to cause cardiomyopathy, determined to have abnormally deviated echocardiographic parameters, or determined to have known prior cardiovascular disease.