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1. Supplementary Figures
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Supplementary Figure 1. Landscape of genetic lesions in myeloid neoplasms with myelodysplasia
WHO subtypes, sources of RNA, and types of genetic lesions identified by targeted deep sequencing and
RNA sequencing. Splicing variants indicate variants that disrupt splicing. Biallelic alterations are
inactivating mutations concomitant with uniparental disomy, those with heterozygous deletions in the
same clone, or biallelic deletions. MDS-SLD, MDS with single lineage dysplasia; MDS-RS-SLD, MDS
with ring sideroblasts with single lineage dysplasia; MDS/MPN-RS-T, MDS/MPN with ring sideroblasts
and thrombocytosis; MDS-MLD, MDS with multilineage dysplasia; MDS-RS-MLD, MDS with ring
sideroblasts with multilineage dysplasia; CMML, chronic myelomonocytic leukemia; MDS-EB, MDS
with excess blasts; AML-MDS, AML with myelodysplasia-related changes; MDS/MPN-U, MDS/MPN,
unclassifiable.; ITD, internal tandem duplication; PTD, partial tandem duplication; LOH, loss of

heterozygosity.
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Supplementary Figure 2. Number of RNA sequencing reads

A barplot shows number of sequence reads after removal of PCR duplicates (unique reads), reads mapped
to the human reference genome (hg19), and reads mapped to exonic regions. Each bar represents one

sample. Bone marrow CD34+ cells and BMMNCs are separately shown.



HD repeat 14, 10-22 © Missense mutation

HD repeat 5-9 ¥ In-frame deletion

SF3B1 (1,304 amino acids)

i

8 o
\ CTT T T T T T T T T I ITT]
0 200 400 600 800 1,000 1,200
P
0" 4—64/ % e o!
&, o 1. 6. A 000
SN 85 G QN TG ) Or2g 8, %
< Gy P %, e %0876 0%
A - ]

¥

b El

CREE YL TR

X
0G5 S CRRTANRR O OO < &

F

{1k

Alternative 3' splice sites associated with SF3B7 mutation
[]

b FHY I P T A S W T R P PRI

e ARl R TP T AL [ R PRI

= e —= _ =
== 3
= Sl tay
e E —
aord e e 3
== -
= -l -
e -
=R R
= =
=t =
== i -

Samples sorted by the position of SF3B7 mutation

PSI value
>50

Supplementary Figure 3. Relative expression of mutant SF3BI-associated alternative 3" splice sites

The upper panel shows positions of SF3B] mutations. Mutations were clustered at several amino acids in

5-9th heat domains (HDs). A circle and a triangle indicate missense mutation and in-frame deletion,

respectively. Two in-frame deletions involving K700 were found in our cohort. The lower heatmap shows

PSI values of alternative 3" splice sites that were associated with SF3B/ mutation both in bone marrow



CD34 + cells and BMMNCs. Each row represents one alternative splicing event and each column
represents one sample. Samples are sorted according to the position of SF38/ mutation. The left four
columns indicate mean PSI values in four control groups: 1) bone marrow CD34+ cell samples of
myelodysplasia patients without splicing factor mutations, 2) BMMNC samples of myelodysplasia
patients without splicing factor mutations, 3) bone marrow CD34+ cell samples obtained from healthy

adults, and 4) BMMNC samples obtained from healthy adults.
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Supplementary Figure 4. Features of differentially spliced introns in SF3BI-mutated samples

Boxplots show distribution of intron length (A) and GC content (B) in differentially spliced introns in

SF3B1-mutated samples and constitutively spliced introns. ***: P<0.001.
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Supplementary Figure 5. Sequence motifs of differentially spliced introns in SF3B/-mutated

samples

Consensus sequences around 5" and 3 splice sites of constitutively spliced introns (A) and differentially
spliced introns (B). Horizontal axis denotes genomic coordinates defined with respect to the 5" and 3’

splice sites. Vertical axis indicates information content in bits.
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Supplementary Figure 6. Proportion of sequencing reads mapped to intronic regions

Boxplots show percent of sequencing reads mapped to intronic regions in bone marrow CD34+ cell

samples (A) and BMMNCs (B). Boxes are drawn for SF3B/-mutated patients, those with other splicing

factor (SF) mutations, and those without SF mutations. *: adjusted P<0.05; **: adjusted P<0.01.
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Supplementary Figure 7. Fraction of tumor cells in cases with both SF3B1 and SRSF2 mutations.

Dotplots show fraction of tumor cells with various mutations in two patients with both SF3B1 and SRSF?2
mutations. Tumor fraction was estimated from variant allele frequencies adjusted for genomic copy
numbers. Because SF3B1 and SRSF2 mutations are present in >50% of tumor cells in either case, at least

some clones must contain both mutations.
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Supplementary Figure 8. PSI values of mutant SF3B1- and SRSF2-associated alternative splicing

events

A heatmap shows PSI values of mutant SF3B/- and SRSF2-associated alternative splicing events.
Columns and rows correspond to samples and splice alterations, respectively. Variant allele frequencies
(VAFs) of SF3B1 and SRSF2 mutations are shown below the heatmap. Three samples from two patients

had both SF3B1 and SRSF2 mutations.
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Supplementary Figure 9. PSI values of mutant U2A4 FI-associated alternative splicing events

A heatmap shows PSI values of mutant U24F[-associated alternative splicing events: those associated
with U2AF'1 S34 mutation (n = 39), those with U2AF1 Q157 mutation (n = 84), and those with both
mutations (n = 3). Columns and rows correspond to samples and splice alterations, respectively. Samples

are sorted according to the mutation status of U24F].
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Supplementary Figure 10. Association between alternative splicing events and TET2 co-mutation

Volcano plots comparing PSI values between each SF-mutated samples with and without co-mutations in

TET2: SF3BI-mutated bone marrow CD34+ cells (A), SRSF2-mutated bone marrow CD34+ cells (B),

SF3B1-mutated BMMNCs (C), and SRSF2-mutated BMMNCs (D). Alternative splicing events were

separately plotted for SF3B1- or SRSF2-mutated bone marrow CD34+ cells and BMMNCs. X-axis

indicates fold changes in PSI values on a log, scale. Y-axis indicates P values on a negative logo scale.

No event reached statistical significance of g-value <0.1.
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Supplementary Figure 11. Distance of mutant SF3BI-associated alternative 3" splice sites from

canonical ones

A histogram shows distribution of alternative 3" splice sites relative to their corresponding canonical 3°

splice sites. X-axis indicates a distance on a log scale. Positive and negative values denote a shift

upstream and downstream from canonical sites, respectively. Enlarged view shows the number of

alternative 3 splice sites located at 0—50 bp upstream of the canonical 3" splice sites.
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Supplementary Figure 12. Differential gene expression analysis of SF3BI-mutated CD34+ cells
Volcano plots compare gene expression levels between the SF3B/-mutated CD34+ cells and those
without known splicing factor mutation. X-axis indicates fold changes in gene expression on a log; scale.
Y-axis indicates g-values on a negative log scale. The expression level of transcripts without truncating
splicing alterations was estimated for the target genes of SF3B/ mutation-associated splicing alterations.
The plots are depicted for the non-target genes and the target ones of alternative 3" splice sites (A),

alternative 5" splice sites (B), cassette exon (C), and intron retention (D).
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Supplementary Figure 13. Differential gene expression analysis of SRSF2-mutated CD34+ cells
Volcano plots compare gene expression levels between the SRSF2-mutated CD34+ cells and those
without known splicing factor mutation. X-axis indicates fold changes in gene expression on a log; scale.
Y-axis indicates g-values on a negative log scale. The expression level of transcripts without truncating
splicing alterations was estimated for the target genes of SRSF2 mutation-associated splicing alterations.
The plots are depicted for the non-target genes and the target ones of alternative 3" splice sites (A),

alternative 5" splice sites (B), cassette exon (C), and intron retention (D).
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Supplementary Figure 14. Increased expression of physiological targets of nonsense-mediated

decay after cycloheximide treatment

Barplots show the levels of GASS5, and UHG in bone marrow CD34+ cells from MDS patients, each with
and without cycloheximide (CHX) treatment. Error bars are standard deviation. *: P<0.05 by paired

t-test.
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Supplementary Figure 15. Nonsense-mediated decay of mutant SF3BI-associated aberrant
transcripts

Volcano plots compare PSI values of SF3B1-associated splicing alterations between samples with and
without cycloheximide (CHX) treatment. The plots are separately depicted for alternative 3" splice sites
(A), alternative 5” splice sites (B), cassette exon (C), and intron retention (D). The left and right plots
show truncating and nontruncating alterations, respectively. X-axis indicates fold changes in read
fractions after CHX treatment on a log, scale. Y-axis indicates P values on a negative log), scale.
Transcripts increased after CHX treatment with g-value<0.01 are depicted in red. Transcripts exceeding

the upper limit of Y-axis are plotted at the upper limit.
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Supplementary Figure 16. Nonsense-mediated decay of mutant SRSF2-associated aberrant
transcripts

Volcano plots compare PSI values of SRSF2-associated splicing alterations between samples with and
without cycloheximide (CHX) treatment. The plots are separately depicted for alternative 3" splice sites
(A), alternative 5” splice sites (B), cassette exon (C), and intron retention (D). The left and right plots
show truncating and nontruncating alterations, respectively. X-axis indicates fold changes in read
fractions after CHX treatment on a log, scale. Y-axis indicates P values on a negative log), scale.
Transcripts increased after CHX treatment with g-value<0.01 are depicted in red. Transcripts exceeding

the upper limit of Y-axis are plotted at the upper limit.
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Supplementary Figure 17. Confirmation of SF3B1 mutations in CRISPR clones by DNA
sequencing

Sequencing chromatograms of the sequence encoding SF3B1 K700 of HEK293T parental cells (Panel A)
and CRISPR/Cas9-modified ones (Panel B). The K700E mutation and synonymous

CRISPR/Cas9-blocking mutation are indicated.
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Supplementary Figure 18. Comparison of PSI values between primary samples and CRISPR cell
lines

Scatter plots show differences in mean PSI values between SF3B/-mutated samples and those without SF
mutations (APSI values). Plots are depicted for mutant SF3B/-associated alternative splicing events. The
plots are separately depicted for alternative 3 splice sites (A), alternative 5” splice sites (B), intron
retention (C), cassette exon (D), and other types of alternative exon usage (E). APSI values are compared

between primary samples (X-axis) and CRISPR cell lines (Y-axis).
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Supplementary Figure 19. Differential gene expression analysis comparing between the CRISPR

cell lines with and without SF3BI¥"* mutation

A volcano plot compares gene expression levels between the CRISPR cell lines with and without
SF3B1*™™ mutation. X-axis indicates fold changes in gene expression on a log, scale. Y-axis indicates
g-values on a negative logy scale. The expression level of transcripts without truncating splicing
alterations was estimated for the target genes of SF3B/ mutation-associated alternative 3" splice sites.

The plots are depicted in red for the target genes of SF'3B/ mutation-associated alternative 3" splice sites.
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Supplementary Figure 20. In vitro validation of mutant SF3BI-associated reduction of intron
retention

Scatter plots showing mean PSI values of 134 intron retention events with highly significant reduction in
SF3BI-mutated primary samples (q-value <1x10”). The left and right panels show mean PSI values in

primary bone marrow samples and in CRISPR cell lines, respectively.
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Supplementary Figure 21. Electropherogram of cytoplasmic and nuclear RNA

TapeStation® electropherogram of cytoplasmic (A) and nuclear (B) RNA. Horizontal and vertical axes

indicate migration time and sample intensity, respectively.
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Supplementary Figure 22. Relationship between gene expression levels and PSI values

Scatter plots comparing between gene expression levels and PSI values. Plots are depicted for 26 genes
with mutant SF’3B1-associated aberrant 3" splice sites that fulfilled the criteria mentioned in the main text.
X-axis indicates fold changes in gene expression levels on a log, scale with a mean set to 0. Y-axis
denotes PSI values with a mean set to 0. Primary bone marrow CD34+ cells, BMMNCs, and HEK293T

cells are depicted in light blue, dark blue, and red circles, respectively.
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Supplementary Figure 23. Usage of the SF3BI-associated abnormal 3’ splice sites in erythroid cells

Scatter plots comparing mean PSI values of SF3B/-associated alternative 3" splice sites between the

SF3B1-mutated CD34+ cell samples and those from cultured erythroid cells at day 7 (Panel A) and at day

14 (Panel B), and between the SFF3B/-mutated BMMNCs and those from cultured erythroid cells at day 7

(Panel C) and day 14 (Panel D). Genes related to heme biosynthesis are depicted as red dots.
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A The mutant SF3B17-associated Alternative 3' Splice Site in PPOX
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Supplementary Figure 24. Mutant SF3B1-associated alternative 3 splice sites in genes related to
heme biosynthesis
Panels A and B show mutant SF3B/-associated alternative 3" splice sites in PPOX, and TMEM14C,

respectively. RNA-seq coverage is shown for samples with mutated and wild-type SF3B1.
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A Schematics of the Luciferase Reporter Construct
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Supplementary Figure 25. Functional significance of the altered 5'-untranslated region of

TMEMI14C

A. Schematics of the luciferase reporter construct. Mutant SF3B/-associated usage of the TMEMI14C
alternative 3" splice site results in insertion of a 14 bp sequence in the 5 -untranslated region (UTR).
The 5 -rapid amplification of ¢cDNA end products with and without the mutant SF3BI-associated
splicing alteration were cloned into pGL3-Basic vector directly upstream of the open reading frame
(ORF) of firefly luciferase (denoted as TMEM14C-alt-luc and TMEM 14C-wt-luc, respectively).

B. Firefly luciferase activity normalized against Renilla luciferase activity in HEK293T cells transfected
with either empty construct (Empty), pGL3-Basic vector inserted with TMEM14C 5°-UTR with or

without the mutant SF3B/-associated splicing alteration.
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A The mutant SF3B7-associated Alternative 3' Splice Site in NF1
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Supplementary Figure 26. In vitro validation of mutant SF3BI-induced abnormal splicing

Panels A, B, C, and D show mutant SF3B/-associated alternative 3" splice sites in NF'1, DICERI, PML,
and PDS54, respectively. RNA-seq coverage is shown for primary MDS samples with mutated and
wild-type SF3B1, as well as for HEK293T cells with and without an SF3B1*""* allele introduced by

CRISPR/Cas9-mediated gene editing.
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A Primer Design for RT-PCR of EZH2
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Supplementary Figure 27. Mutant SRSF2-associated alternative exon usage in EZH?2

A. A schematic of mutant SRSF2-associated alternative exon usage in EZH2. Red and blue arrows
indicate alternative and constitutive splicing, respectively. Primer pairs used for RT-PCR and
isoform-specific quantitative RT-PCR are indicated as arrows.

B. RT-PCR of the alternatively spliced region of EZH2 in primary MDS samples. Mutation status of SFs
is shown. Alternative isoforms of EZH?2 and lengths of their PCR products are also depicted.

C. Quantitative RT-PCR of the normal transcripts of EZH2. Levels of the EZH2 normal transcripts in
bone marrow CD34+ cells are evaluated by isoform-specific quantitative RT-PCR using the primer

pair shown in Panel A. *: P <0.05.
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Supplementary Figure 28. Cloning of the entire coding region of EZH?2

Schematics show the entire coding region of EZH?2 cloned from a SRSF2-mutated sample (upper panel, n
= 44) and from a SRSF2 wild-type sample (lower panel, n = 43). The canonical isoform of EZH?2 is
shown at the top. Blue and red boxes indicate skipped and included regions, respectively. Mutant
SRSF2-associated alternative splicing events are inclusion of exon between exons 9 and 10 and skipping

of exon 11.
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Supplementary Figure 29. Up-regulation of the targets of polycomb repressive complex 2 in
SRSF2-mutated CD34+ cells

An enrichment plot for known target genes of polycomb repressive complex 2 comparing the

SRSF2-mutated CD34+ cell samples to those without SRSF2, EZH2, and ASXLI alterations.
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Supplementary Figure 30. Examples of mutant SRSF2-associated alternative exon usage

A, C. Schematics of mutant SRSF2-associated alternative exon usage in CASP8 (Panel A), and CDK10
(Panel C). Gray boxes indicate constitutive exons. Blue boxes denote exons with decreased usage in
the SRSF2-mutated samples. Red and blue arrows indicate alternative and constitutive splicing,
respectively. PTC indicates premature termination codon.

B, D. Dot plots of inclusion rate of mutant SRSF2-associated cassette exons in CASPS (Panel B), and

CDK10 (Panel D).
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Supplementary Figure 31. Usage of the EZH2 cryptic exon in HeLa cells transduced with U24F1

S34F mutant

A bar plot shows PSI values of the EZH?2 cryptic exon in HeLa cells transduced with
doxycycline-inducible U2AF ] constructs. PSI values were calculated from published RNA sequencing
data of cells before and after doxycycline (Dox) induction. HeLa cells had been transduced with

wild-type (WT) U2A4F1 or S34F mutant.

-45.



A Consensus 3" splice site motif of the constitutive exons

Constitutive exons 2.0 """ """
0 =10
! Ta)
T C
\\\ O 0 SI;QQ?C?C _ <
\\ /' ,,,,,,, LI
~~ - -10 5 =3 -1+1

< -

relative position (base)

B Consensus 3’ splice site motif of the differentially spliced exons
in the U2AF1 S34 mutants

Included exons 20 [ ] """

~ 0
_ 5"

~S< -

e

relative position base)%

relative position (base)

C Consensus 3  splice site motif of the differentially spliced exons
in the U2AF1 Q157 mutants

Included exons 20 e

< -

——intron w

Skipped exons 2.0
0
. 210
‘\\' 4 00 e I
Sso - -10 5 =3 141

< -

relative position (base)

_46_



Supplementary Figure 32. Mutant U2AF1-associated alterations in 3" splice site consensus

sequences
Consensus sequences around 3" splice sites of constitutively spliced introns (A) and differentially spliced
introns in U24AF1 S34 (B) and Q157 mutants (C). Horizontal axis denotes genomic coordinates defined
with respect to the 3" splice sites. Vertical axis indicates information content in bits. In the panels B and C,

more frequently included and skipped exons are drawn separately.
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Supplementary Figure 33. Uncropped gel images of RT-PCR gels of differentially spliced introns

A B

RFNG RFNG
intron 5 intron 5
RECQL4 RECQL4
intron 5 intron 5
NDOR1 NDOR1
intron 5 intron 5
AP1G2 AP1G2
intron 5 intron 5
PIEZO1 PIEZO1
intron 5 intron 5

Uncropped gel images of RT-PCR shown in Figs. 6a (panel A) and 6b (panel B). Samples are shown in
the original figures. When multiple sample sets were run in the same gel, a relevant part is indicated by a

rectangle.
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Supplementary Figure 34. Uncropped gel images of RT-PCR gels of the differentially spliced sites
of ABCB7 and PPOX

A

Uncropped gel images of RT-PCR shown in Figs. 7c (panel A) and 7d (panel B). Samples are shown in

the original figures.

-49.



Supplementary Figure 35. Uncropped images of immunoblots of CRISPR cell lines
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Uncropped images of immunoblots shown in Fig. 7e. Samples are shown in the original figures.

Non-luminescent markers were scanned under direct light, and were shown in the left half.
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2. Supplementary Tables

Supplementary Table 1. Patient characteristics

Number of cases 214
Age (median, range) 67 (30-91)
Sex (male/female) 132/82
Diagnosis
MDS 152
MDS-SLD 11
MDS-RS-SLD 34
MDS-MLD 39
MDS-RS-MLD 17
MDS with isolated del(5q) 4
MDS-EB-1 22
MDS-EB-2 25
MDS/MPN 44
CMML-1 32
CMML-2 1
MDS/MPN-RS-T 8
MDS/MPN-U 3
Acute myeloid leukemia with myelodysplasia-related changes 18
Hemoglobin (g/dL) (median, range) 9.9 (6.3-15.5)
WBC count (x 10°/L) (median, range) 4.6 (0.8-61.6)
Absolute neutrophil count (x 10°/L) (median, range) 2.1 (0.2-32.0)
Platelet count (x 10°/L) (median, range) 146 (13-939)
Bone marrow blasts (%) (median, range) 3 (0-90)
Bone marrow ring sideroblasts (%) (median, range) 5(0-95)

MDS indicates Myelodysplastic syndromes; MDS-SLD, MDS with single lineage dysplasia;
MDS-RS-SLD, MDS with ring sideroblasts with single lineage dysplasia; MDS-MLD, MDS with
multilineage dysplasia; MDS-RS-MLD, MDS with ring sideroblasts with multilineage dysplasia;
MDS-EB, MDS with excess of blasts; MDS/MPN, Myelodysplastic/myeloproliferative neoplasm;

CMML, chronic myelomonocytic leukemia; MDS/MPN-RS-T, myelodysplastic/myeloproliferative
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neoplasm with ring sideroblasts and thrombocytosis; MDS/MPN-U, myelodysplastic/myeloproliferative

neoplasm, unclassifiable; WBC, white blood cell.
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Supplementary Table 2. Gene list for targeted deep sequencing

ACSM24 EZH2 PIGA
ALDHIBI FANCA PIGT
ARID2 FANCM PPMID
ASXLI FLT3 PRPF§
ASXL2 GATA?2 PTPNI1
ATM GIGYFI PXDNL
ATRX GNAS RAD21
BCOR GNBI RITI
BCORLI IDH1 RUNXI
BODILI IDH? SETBPI
BRCC3 IRFI SETD2
CALR JAK?2 SF1
CBL JARID2 SF3A41
CDH23 KDM6A4 SF3B1
CDKN24 KIT SH2B3
CEBPA KMT2D SMCI4
CHEK? KRAS SMC3
CLCN6 LTNI SRSF2
CREBBP LUC7L2 STAGI
CSF3R MPL STAG2
CTCF MREIIA STAT3
CUXI NEURL TERT
DCLREIC NF1 TET2
DDX41 NFE2 TP53
DNMT3A4 NPM1 U24F1
DST NRAS U24F2
DYNC2H]I NRIPI USPIX
EP300 NXF1 WTI
ETNKI PDS5B ZRSR?2
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Supplementary Table 3. Number of SF-mutated patients with or without mutations in epigenetic

regulators
Epigenetic Bone marrow CD34+ cells BMMNCs

- regulator Double mutant SF single mutant ~ Double mutant SF single mutant

SF3B1 TET? 14 18 15 39
DNMT34 2 30 5 49
IDHI1/IDH2 0 32 0 54
ASXLI 6 26 9 45
EZH2 3 29 2 52

SRSF2 TET? 13 10 13 19
DNMT34 0 23 0 32
IDHI1/IDH2 4 19 6 26
ASXL1 7 16 11 21
EZH2 0 23 0 32
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Supplementary Table 4. Off-targets and primer sequences

Locus

Forward primer sequence

Reverse primer sequence

chr11:27679873
chr8:74970580
chr1:226589938
chr13:111589339
chr21:17967356
chr4:166649304
chr21:22930086
chrl:172797724
chr6:77602520
chr22:25515699

CCCATGGGATTGCACTTGG
TGCCTGGGAGACTCCTATGA
AGTCCAGGAGGTGTTGCTG
TGGAGTACACCAAGAGCGG
ATGCTAAAGCCCAGCCTGG
AGGAGAATGCCCTTCCATAGG
GCGTTATGAATCTGGGTGCCAC
ACATTTTCAGAGCCATGCTGC
TCTGCATACTCTCCATGTGTGT
TCATAGGAGCAGGGAGACACA

CTCCCTACAGTTCCACCAGG
AGATTGCGCCACTGCCTT
AGGTCAAGGTCTAGTGGGTCT
TTGGATAGGCGCATCTGGC
GCACTAGGTGGCCCTCACTA
AGCTGGACCATGCATTCTTCA
ACAAGAGGTCCTTCAGGTAGCC
AGGTGAATGCACTTCGGCA
TGACCTTAGGCAAGCTGCT
ATCAGAATCCCCCTCCCTGG
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Supplementary Table 6. Inmunoblots primary antibodies, dilutions used in experiments, company,

and catalogue information.

Epitope  Company Catalog number Clone name  Host Dilution
Actin Santa Cruz Biotechnology sc-1616 Polyclonal Goat 1:5000
ABCB7 GeneTex GTX114916 Polyclonal Rabbit 1:5000
PPOX Sigma-Aldrich WHO0005498M1 2F10 Mouse 1:1000
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3. Supplementary Methods

Variant filtering criteria

Variants were filtered as in the previous paper and oncogenic variants were identified'. Putative variants
were first annotated using the following database: 1000 Genomes Project released in April 2012,
ESP6500, CG69, dbSNP version 137, Catalogue of Somatic Mutations in Cancer (COSMIC) version 67,
ClinVar released at November 5th, 2013, and our in-house SNP database. Variants that fulfilled the
following criteria were removed:

1. variants that do not have an effect on an amino acid sequence except for TERT promoter mutation;

2. variants of which an allele frequency < 0.05;

3. variants with a sequencing depth < 50;

4. variants that were registered to our in-house SNP database;

5. variants with a population frequency > 0.0014 (based on incidence of myeloid malignancies in the
population and of a known driver event JAK2 V617F in public databases) unless they were registered
to confirmed somatic mutation in COSMIC;

6. variants within regions prone to sequencing errors, including regions of high depth and repeat
elements;

7. highly recurrent calls with narrow allele frequency distribution in both tumor and control samples. This
can either be an allele frequency of <10% indicative of artifacts or that of ~50% indicative of

polymorphisms.

Target genes of the polycomb repressive complex 2

A gene set of the polycomb repressive complex 2 targets was defined as follows according to the previous
paper’: ABCCS, ABTB2, ADAMTS15, ADAMTS18, ADARB2, ADCY4, ADCYS, ADCYAPI, ADRAIA,
ADRA2A4, ADRBI, ADRB3, ALOX15, ALX3, ALX4, ANKRD19, ANKRD20A1, ANKRD20B, ANKRD27,
AQP5, ARHGAP20, ARLY, ASCLI, ASCL2, ASTNI, ASTN2, ZFHX3, ATF3, ATOHI, ATOHS, NKX3-2,
BARHLI, BARHL2, BARX1, BARX2, BCL2, BHLHE41, BHLHE23, BHLHE22, BMP8A, BNCI, BTG?2,
MKX, TMEMS59L, FAMS89A, ILDR2, FAM163A4, LRRC71, LAMPS5, EVAIC, CNRIP1, MAATS1, CA10,
CACNAIB, CACNAID, CACNAIE, CACNAIG, CALCA, CAMK2N1, CASZI, CBLNI, CBLN4, CBR3,
CBX8, CD34, CD84, CDH23, CDH7, CDK5R2, CDKN2C, CDX2, ADAP2, CGB7, CGBS, TPPP3,

CH25H, CHODL, CHRD, CHRDL2, CHSTS, VSX2, CIDEA, CITEDI, CMTM2, CLCNS5, CLEC144,
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CLSTN2, CNNM1, CNTFR, COL24A41, COL25A41, COL2741, COL241, COL4A45, COL4A46, COL9A42,
COLECI2, COMP, CORO6, CRHRI, CRLF1, CRTACI, CRYBA2, CSMDI, CSMD3, CTNND2, GJA9,
CXCL14, CXCLI6, CYP24A41, CYP26A1, CYP26B1, CYP26CI1, CYP27B1, DACHI, DACH2, DCLK2,
DCC, DCHS2, DDAHI, DGKG, DGKI, DHH, DIO3, PARM1I, DKKI1, DKK2, DLL4, DLX1, DLX2, DLX3,
DLX4, DMRTI, DMRT2, DMRT3, DOK6, DPF3, DPYI9L2, DRD5, DSC3, DSCAMLI, DUOXI, DUOX2,
DUSP4, ECELI, EFNAI, EFNA3, EGFL6, EGR3, EGR4, ELMODI, ENI1, EN2, EOMES, EPASI,
EPB411L4A, EPHAS, EPHBI, EPHB3, ERBB4, ESAM, ESPN, ESXI, F2R, FAM19A44, FAM43B, FAMS5B,
FAMS5C, RIMKLA, FAMS84A, FBN2, FBPI1, FBXLS, FBXO3, FEV, FEZI, FGF20, FGF3, FGFS5, FGF9,
FIGLA, FLII, FLJ11235, FLJ13236, TET2, FLJ32063, CCDC140, FLJ33790, SLFN11, FLJ35409,
ANKRD184, DPYI9L2P2, FBLN7, C8orf47, FLJ44815, FLJ45455, FLJ45983, FLJ46347, FLRT2,
FOXA2, FOXB1, FOXD2, FOXD3, FOXD4L4, FOXD4LI1, FOXD4L2, FOXD4L3, FOXEI, FOXF1I,
FOXGI, FOXJI, FOXLI, FOXL2, FRMD3, FUT4, FZDI10, FZD2, GABRA2, GABRA4, GAD2,
B4GALNTI, B4GALNT2, GALNTI8, GALR2, GATA2, GATA3, GATA4, GATA6, GBX2, GDF6, GDF?7,
GDNF, GHR, GHSR, GIMAPS, GJB2, GLT25D2, GNA14, GPC5, GPM6B, PRLHR, GPR101, GPRI2,
FFAR4, GPRSS, GRIA2, GRID1, GRIKI, GRIK3, GRIN3A4, GRM7, GSC, GSC2, GSXI, GSX2,
GUCYIA3, GUCY2D, HAND?2, HBAI, HBA2, HES2, HES7, HEY1, HHAT, HHEX, HHIP, HLX, MNX1,
HMX2, HMX3, HOXBI, HOXB13, HOXB2, HOXB3, HOXB6, HOXB7, HOXBS, HOXCI1, HOXCI2,
HOXC4, HOXCS5, HOXC6, HOXCS, HOXDI1, HOXD12, HOXD13, HOXD3, HOXD4, HOXDS8, HOXD?9,
HPCAL4, HPSE2, HRK, HS3ST3B1, HS6STI1P, HS6ST3, HSF4, HSPA6, HTRIA, HTR2C, HTR7, ICAMS,
IGF2AS, IGSF21, ILIRAPL2, IL7, INA, INSM2, INSRR, PDX1, IRX3, IRX4, IRXS5, ISL1, ISL2, ITGA4,
ITPKA, JUN, KAZALDI, KCNAI, KCNA3, KCNABI, KCNC2, KCNC4, KCND3, KCNHI, KCNH3,
KCNK12, KCNK13, KCNK2, KCNK4, KCNMAI, KCNQ3, KCNV1, VASHI, KIAA1199, KIAA1324,
RIMBP3, KIRREL3, KL, KLF4, KY, LBXI, LGALS3, LGR5, LHX2, LHX4, LHX5, LHX6, LHXS, LMXIB,
TMEMI132E, Clorf194, LAYN, Clorf213, LOC150221, LOC153684, NBPF11, PABPCIL24, RPRML,
Cl70rf82, ANXA2R, LOC400120, DUOXA2, LOC440804, LOC441413, ANKRD20A43, LOC441426,
ANKRD20A2, ANKRD18B, NDUFA4L2, TMEMS8S, LPHN3, LPL, LRCH2, LRFNS5, LRP2, LRRTM1,
LTBP2, LTK, LYSMD2, MAB21L1, MAB21L2, MAFB, MAL, MAPK4, MAPT, MCOLN3, MESP],
METRNL, AGPATY, FAM81A, MGC26718, RSPO2, MGC39545, MLLT3, MSC, MSX1, MTIA, MTIB,
MTIH, MTIM, MTIDP, MYF6, MYO5B, MYOD1, NAGS, NAV2, NCAM1, NEFM, NEFL, NELLI,
NEURODI, NEUROD2, NEUROGI, NEUROG2, NEUROG3, NFIX, DUOXAI, NKX2-2, NKX2-3,

NKX2-8, NKX3-1, NKX6-1, NKX6-2, C2CD4A, NOL4, NPAS1, NPNT, NPR3, NPTXI, NPYIR, NR2F2,
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NR4A3, NRGI1, NRG2, OAF, NT5CIA, NTNI, NTNG2, NTRKI, NTRK2, NPAS4, OCA2, OLFML2B,
OLIG2, ONECUTI, ONECUT2, OPRDI, MGARP, OSRI, OTOPI1, OTOP2, OTOP3, OTP, OTXI, OTX2,
OXCT2, PAPPA, PAXI, PAX2, PAX3, PAX6, PAX7, PAX8, PAX9, PCDHI17, PCDHS, PDE4DIP,
PDGFRA, FRMPD4, PDZD2, PENK, PGMS5, PGR, PHOX2A, PHOX2B, PIP5K1B, PIR, PITX1, PITX2,
PITX3, PKNOX2, PKPI1, PLEC, PLXNA2, PMP22, PODN, POLE, POU3F1, POU3F4, POU4F1I,
POU4F2, POU4F3, PPMIE, PRAC, PRDM12, RP11-35N6.1, PRKCE, PRKGI, PROK2, PTFIA,
PTGDR, PTGER2, PTGER3, PTGER4, PTGFR, PTHLH, PTPRT, PTPRU, PXMP2, PYY, RAB6C, SHCH4,
RASGRF1, RASSF5, RAX, RBP4, REPS2, RGCC, RGS10, RGS20, RGS9BP, RIPK3, LONRF3, RNF128,
ROBO3, RPS6KA6, RASL10A, RSPO1, RTN4RL2, RYR3, SCD5, SCN4B, SCNNIG, SCTR, SEMA6D,
SFRPI1, SFRP5, SGPP2, SHH, SHOX, SHOX2, SIDTI, SIM2, SIX1, SIX2, SIX3, SIX6, SLC1044, SLCIA2,
SLC1A44, SLC24A44, SLC26A4, SLC27A2, SLC30A42, SLC30A43, SLC30A44, SLC32A41, SLC35F3, SLC6A1,
SLC6A43, SLC6AS5, SLC9A2, SLC9A3, SLCO2A1, SLCO5A1, SLIT1, SLIT2, SLITRKI, SLITRK3, PIGZ,
BATF3, SORCS1, SORCS3, SOX14, SOX17, SOX7, SPAG6, SPOCK3, SPONI, SRD5A42, SSTR1, SSTR2,
ST8SIA2, STK32B, STMN2, STXBP6, SUSD4, SV2B, SYT12, TALI, TBRI, TBX1, TBX2, TBX21, TBX3,
TBXS5, TCEA3, HNF1B, TFAP2E, THBD, PTH2, NKX2-1, TLLI, TLX1, TLX2, TMEFF2, TMEM27,
TMEM30B, TMOD?2, CD70, TP73, TRADD, TRH, TRIM36, TRIM67, TRIMY, TRPCS, TSLP, TTYH],
UCN, UCPI, UNC5C, FAM1504, USHIG, VAXI, VAX2, VDR, VSXI, WRAP73, WT1, WNTI1, WNTI10A4,
WNTI10B, WNT11, WNT16, WNT2, WNT3A, WNT6, WNT7A, WT1, ZADH?2, ZBTB16, ZCCHC16, ZEB2,

ZFYVE28, ZIC1, ZIC4, ZMYND15, FEZF2, ZNF436, ZNF503, and IKZF3.
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