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Results 

Subjects characterization and sleep patterns 

 

Supplementary Table S1. Subject anthropometric parameters. 

 
System Design 

(n=150) 

System Validation 

(n=100) 
p 

Gender (M/F) 97/53 65/35 .957 

Age (yr) 
52.5±15.5 

(23–81) 

52.9±16.9 

(19–84) 
.862 

BMI (kg/m2) 
30.7±5.6 

(21.6–45.1) 

31.4±6.3 

(21.8–46.8) 
.306 

ESS (score) 
9.6±5.6  

(0–23) 

10.1±5.6 

(1–21) 
.495 

Total AHI (events/hr) 
16.0±14.3 

(1.4–58.8) 

19.2±16.5 

(1.3–56.8) 
.108 

REM AHI (events/hr) 
21.8±21.7 

(0.0–76.6) 

24.9±24.9 

(0.0–96.5) 
.298 

NREM AHI (events/hr) 
15.2±14.4* 

(0.0–54.4) 

17.7±15.4* 

(0.0–57.1) 
.192 

Wake percentage (%) 
18.6±11.2 

(3.7–47.3) 

19.2±13.6 

(3.8–52.2) 
.704 

REM percentage (%) 
11.1±6.7 

(0.0–26.9) 

10.7±7.8 

(0.0–27.8) 
.666 

NREM percentage (%) 
70.3±10.6 

(48.2–89.6) 

70.1±11.5 

(43.5–87.5) 
.888 

M – male; F – female; BMI – body mass index; ESS – Epworth sleepiness scale; REM – 

rapid eye movement; NREM – non-rapid eye movement; AHI – apnea-hypopnea index. 

Values are mean ± SD (95% CI); p-value was calculated using an unpaired t-test for age, 

BMI, ESS, and AHI; and χ2 for gender. Wake, REM, and NREM percentages are calculated 

from the entire sleep recording of a subject. 

* <0.005 comparing NREM to REM AHI by paired t-test. 
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Supplementary Fig. S1 | Individual big-data visualization for the study design and validation. A – Study design dataset 

(training, n=150); B – Validation dataset (testing, n=100). Each horizontal line represents individual data. Sleep stages were 

manually scored epoch-by-epoch (30 sec) using the polysomnography (PSG) data. Note the large individual differences in sleep 

stages. The onset of the gray area indicates study termination for each subject. Accuracy and Cohen's kappa coefficient epoch-by-

epoch of sleep stages for each subject were calculated comparing the proposed sleep sound analysis (SSA) system and the gold 

standard PSG; BMI – body mass index. For study protocol, see main body of the manuscript.  
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Macro sleep stages estimation 

Fig. S2 shows the detection (precision and recall) of each MSS (wake, REM, and NREM) among subjects 

for both realtime and offline estimation. 

 

Supplementary Fig. S2 | Macro sleep stages detection. Presented here boxplots of macro sleep stages (wake, REM, and NREM) 

detection in manner of precision (A) and recall (B) among subjects in the validation dataset.  

Offline system performances for each subject can be seen in Fig. S1 rightmost columns. Additionally, 

performance of given epoch estimation (wake, REM, and NREM) was measured as a function of the subject-

induced sounds such as respiratory and body movement sounds, relative to the background noise level (signal 

to noise ratio, SNR) of the testing room in the sleep laboratory using the validation dataset. In our setting, 

the average SNR overnight among subjects ranged from -18.3 dB to 2.7 dB (95% CI). We found that the 

estimation accuracy of a given epoch improved by 2.2% for every 10 dB increase in SNR.  
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System accuracy of offline MSS estimation was analyzed across subjects' anthropometric characteristics 

(Supplementary Fig. S3A–C), AHI, and sleep efficiency (Supplementary Fig. S3D,E) using the validation 

dataset. Univariate analysis revealed that accuracy inversely correlates with age, BMI, and AHI; and sleep 

efficiency positively correlates with system accuracy. Multivariate analysis revealed that only sleep 

efficiently correlates with system accuracy (adjusting for gender, age, BMI, AHI, and sleep efficiency) 

(Supplementary Fig. S3F). For every 10% increase in sleep efficiency, system MSS accuracy increases by 

1.3%. 

 

Supplementary Fig. S3 | Association between system performance and subject characteristics. System accuracy was 

calculated epoch-by-epoch between polysomnography and sleep sound analysis (SSA) using validation dataset (n=100). A) 

Gender, showing boxplot, measuring the quartile distribution of accuracy agreements between genders; B–E showing the Pearson 

correlation between SSA and Age (B); Body mass index (BMI) (C); Apnea-hypopnea index (AHI) (D), and Sleep efficiency (SE) 

(E). F) A multivariate regression analysis between predicted SSA based on subject characteristics (gender, age, BMI, AHI, and 

SE) and system accuracy. Each dot represents one individual from the validation dataset (n = 100); r – is the regression coefficient 

and its p-value.  
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Sleep quality parameters 

Using the detected MSS from the offline analysis, sleep quality parameters were calculated. Comparison 

between SSA estimation and PSG is presented using Bland-Altman plot. Future studies are needed to 

validate our approach on narcolepsy or insomnia patients. 

 

Supplementary Fig. S4. Bland-Altman plot of sleep parameters. A) TST – Total sleep time; B) SL – Sleep latency; C) SE – 

Sleep efficiency; D)  – Wake after sleep onset; E) RP – Rapid-eye-movement percentage of total sleep time; F) NP – Non-rapid-

eye-movement percentage of total sleep time; G) RL – REM latency; Data was taken from the validation dataset (n=100), each 

data point represents a subject; Black dashed line – mean difference between polysomnography (PSG) and sleeping sound analysis 

(SSA); X-axis represents the mean sleep parameter value between the polysomnography (PSG) and breathing sound analysis 

(BSA) in the relevant parameter units. The Y-axis is the difference between the PSG and BSA sleep quality parameter (SSA-PSG). 

The dashed lines represent the 95% CI for the scatter. 
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The sound of sleep 

Sleeping sounds include several types of sounds from several sources including vocal sounds, body frictions 

(body movements), and other sounds such as clock ticking, barking dogs. In this study, we grouped those 

into three main sources: 1) breathing sounds; 2) body movement sounds, and 3) other sounds. Fig. S5 shows 

the distribution of sleeping sound sources and their sound intensities (volume) during the night. Manual 

annotations and segmentations were conducted by several raters using ad hoc graphical user interface (GUI), 

which involved hearing and visualization of several PSG channels (including effort belts, and EMG) along 

with spectrogram of the audio (for each epoch). Annotations were made at 50 ms resolution.  

 

Supplementary Fig. S5 | Sleeping sounds distribution. A) Sleeping sound content and sound intensity in dB SPL (sum of all 

sources across all dBs gives 100%); B) Distribution of each sound source according to the sound intensity (sum of each sound 

source across all dBs gives 100%). Data were collected from 67 patients that underwent full manual annotation of sleeping 

sounds (into three classes: breaths, body movements, and other sounds). Pdf – probability density function. 

Detectors robustness estimation 

Sleeping sounds include several sources including vocal sounds, body movements (frictions), and other. 

Fig. S6 shows the performances of the detectors as a function of the signal quality (SNR). To measure the 

performance of specific SNR value, sound events from all subjects were sorted and divided into 4 dB sub-

bands with 50% overlaps.  

Detection agreement of a sound event (segmentation and detection) was measured by comparing frame-by-

frame (50 ms resolution) manual annotation with the detector’s predictions. Although this comparison is 

extremely strict, e.g., detection of 1.0-second event (20 frames) at 50 ms delay (1 frame) will results in 

19/21 (90%) frames agreement, in this study, we chose this comparison method because it measures the 

quality of both segmentation and detection, and it is easy to implement as classifier cost function. Detectors 

were designed based on 25 subjects and were validated on a 42 subjects dataset. 
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Supplementary Fig. S6 | Breathing and body movement detectors – Performance vs. SNR. A) Breathing detector 

(inhalation/ exhalation/ non-breathing) accuracy and Cohen’s kappa coefficient; B) Body movement detector (body-movement/ 

non-body-movement) accuracy and Cohen’s kappa coefficient. In each plot, the right Y-axis represents the accuracy scale (blue 

curve), and the left Y-axis represents the Cohen’s kappa coefficient value (red curve); please note the different Y-axis scales. 

Data were collected from 42 patients that underwent full night manual annotation of sleeping sounds. 

Assessing feature importance 

To assess the importance of each feature in the classifier, we measured the impact of the MSS classification 

(Cohen’s kappa coefficient) when corrupting only the tested feature. 

The corruption was achieved by scrambling (permutation) the feature values along the time index (for each 

sleep sequence). In order to maintain valid values for the feature (and the classifier), we repeated the 

corruption for each period suitable for each sub-classifier. To minimize the randomness effect, we averaged 

the scores of 30 permutations for each test feature/s. 
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Supplementary Fig. S7. | Feature importance. Feature importance was estimated by measuring the impact on performance 

when feeding a permutated version of the tested feature (permutation along time step) into the MSS classifier. The importance 

values are presented as a horizontal bar chart to visualize the relative improvement between features. A) Features set – each feature 

category set; B) WB – within-breathing features; C) BB – between-breathing features; D) BG – background noise features; E) 

PN – personalization features; and F) BM – body-movement features. The importance value represents the degradation in MSS 

classification (kappa coefficient) from the complete model (reference kappa = 0.694), e.g., without the within-breathing-features 

set (WB) system performance was degraded to 0.424 (-0.270). 
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Methods 

Sleep sound analysis system 

 

 

Supplementary Fig. S8 | Block diagram of the proposed system. The system is 

composed of four main stages: A) pre-processing and noise reduction, B) breathing 

and body movement detection, C) Feature extraction, D) MSS classification. Whole 

night audio signals were recorded using a non-contact microphone. To simulate real-

time analysis (at 30-sec resolution), data was fed using streaming protocol. The 

outputs of the system are MSS stream – a real-time (stream) estimation at 30-sec 

epoch resolution, and Sleep report – Sleep quality parameters calculated using the 

offline 30-sec MSS estimation. 
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Feature extraction 

 

Supplementary Table S2. Features pool. 

Feature                                                                   Symbol Count Importance 

A. Within breathing features (WB) Feature code 33 0.270 

Detection score of inspiration (µ,σ) WB_DI 2 0.093 

Detection score of expiration (µ,σ) WB_DE 2 0.048 

Detection score of respiration (µ,σ) WB_DR 2 0.037 

Duration inspiration (µ,σ) WB_DurI 2 0.075 

Duration expiration (µ,σ) WB_DurE 2 0.024 

Stationarity inspiration (µ,σ) WB_SI 2 0.013 

Stationarity expiration (µ,σ) WB_SE 2 0.009 

Sound intensity inspiration (µ,σ) WB_SII 2 0.044 

Sound intensity expiration (µ,σ) WB_SIE 2 0.009 

Sound intensity inspiration top 1% (µ,σ) WB_SII01 2 0.027 

Sound intensity expiration top 1% (µ,σ) WB_SIE01 2 0.053 

Entropy inspiration (µ,σ) WB_EI 2 0.045 

Entropy expiration (µ,σ) WB_EE 2 0.008 

Frequency centroid inspiration (µ,σ) WB_FCI 2 0.031 

Frequency centroid expiration (µ,σ) WB_FCE 2 0.036 

Frequency bandwidth (resp., insp., expi.) WB_FB 3 0.009 

B. Between breathing features (BB) 12 0.267 

Respiration duty cycle BB_DCR 1 0.026 

Inspiration duty cycle BB_DCI 1 0.058 

Expiration duty cycle BB_DCE 1 0.020 

Respiration cycle period (µ,σ) BB_RCP 2 0.033 

Respiration cycle period consistency BB_RCPC 1 0.068 

Respiration cycle periods fourth-order curve BB_RCPfit 5 0.023 

Breathing Count BB_BC 1 0.006 

C. Body movement features (BM) 10 0.054 

Body movement average score BM_AS 1 0.002 

Body movement overall score percentiles BM_OS 7 0.017 

Sound intensity body movement (all curve) BM_SI 1 0.007 

Sound intensity body movement 10% (all curve) BM_SI01 1 0.038 

D. Background noises features (BG) 8 0.159 

Sound intensity background (µ,σ) BG_SIBG 2 0.052 

Sound intensity background 90% (µ,σ) BG_SIBG90 2 0.058 

Sound intensity background normalized(µ,σ) BG_SIBGnor 2 0.042 

Sound intensity background 90% normalized (µ,σ) BG_SIBGnor90 2 0.052 

E. Personalization features (PN) 4 0.151 

Subject's age (years) PN_Age 1 0.058 

Subject's gender (1-M, 2-F) PN_Gender 1 0.062 

Subject's BMI (kg*m-2) PN_BMI 1 0.031 

Epoch’s time index (log scale) PN_Time 1 0.051 

Table presents the name of the feature, its symbol, number of features used (count), and its importance. 

The code name (symbol) for each feature is composed of prefix (symbol group family) and suffix (individual 

symbol abbreviation). For example, WB_SIE01, i.e., meaning within breathing feature (WB) indicating sound 

intensity expiration top 1%. µ – mean; σ – standard deviation. The importance value represents the decrement in 

MSS classification (kappa coefficient) from the complete model (reference kappa = 0.694), e.g., without the 

within-breathing-features set (WB) system performance is degraded to 0.424 (-0.270).  

Feature calculations 

The following section describes how to calculate some of the features presented in Table S2. 

Denote Sft as the spectrogram of the epoch being tested (half-sided FFT 512 coefficients, 50 ms resolution, 

50 ms frame rate, 30 s epoch, 600 frames per epoch), for convenience the values are stored in logarithmic 

scale. 
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Denote Ft as the frames
/2

0

Fs

t ft

f

F


 S .  

Denote , , ,In Ex BM R In Ex

t t t t t tD D D D D D   as the detectors curves (Figure 4D main body) for detecting inhale, 

exhale, body movements, and respiration; these values are detection probabilities (likelihood scores), and 

between 0 and 1, higher scores represent “detection”. 

 WB_DI, WB_DE, WB_DR are calculated as the mean (and std) of the detected curves (D) in the 

epochs. 

 WB_DurI, WB_DurE – duration in seconds for the detected breathing events. Calculation yields 

mean and std of the breathing duration. 

 WB_SI, WB_SE – the mean (and std) of breaths in a manner of stationarity. The stationarity 

measurement was calculated as the differences between frames (50 ms) of the breathing normalized 

by the total epoch’s energy. 

 WB_SII, WB_SIE, WB_SII01, WB_SIE01 were calculated based on the estimated sound intensity 

(in dB) of each frame measured from Sft. 

 WB_EI, WB_EE were calculated as the entropy of each frame from Sft. 

 WB_FCI, WB_FCE were calculated as: 
/2

1
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f
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 WB_FB was calculated as:  
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1
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 BB_DCR, BB_DCI, BB_DCE were calculated as:  
600

1

1
_ Bool 0.5

600
t

t

BB DC D


  . 

 BB_RCP, BB_RCPC were calculated by estimation of breathing period using autocorrelation 

function. 

 BB_RCPfit – fourth order curve fit for breathing period along the epoch. 

 BM_AS was calculated as:  
600

1

1
_ Bool 0.5

600

BM

t

t

BM AS D


   

 BM_OS was calculated as the BM

tD  percentile at 80, 85, 90, 95, 97, 98, and 99%. 

 BM_SI  was calculated as:    
1

600 600

1 1

_ Intensity 0.5 Bool 0.5BM BM

t t

t t

BM SI D D
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 BM_SI  was calculated as:  
10%

_ 01 Intensity 0.5BM

t
percentile

BM SI D   

 BG_SIBG was calculated as the mean (and std) of the sound intensity where background noise is 

detected. 

 BG_SIBG90 same as BG_SIBG but calculated over the 90-100% percentiles. 

 BG_SIBGnor – same as BG_SIBG but was normalized by the frame with the maximum sound 

intensity. 

 BG_SIBGnor90 – same as SIBG90 but was normalized by the frame with the maximum sound 

intensity. 
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MSS Classifier 

 

Supplementary Fig. S9 | Classifier configuration. A) Real-time classifier (C(r)); B) Offline classifier 

(C(o)). The input for the C(r) is ki time step series of acoustic features (x). The output of C(r)
 is the estimation 

of the current epoch (t) using three MSS probability scores (p(r)
t). The input of the offline classifier C(o) is 

the real-time classifier output (p(r)
t) at different time-steps (future epochs) to produce three MSS probability 

scores (p(o)
t).  

 

 

Training the MSS classifiers 

In this work, we configured time-series classifiers that are designed to learn short- to long-term relations 

between epochs, i.e., from adjacent epochs’ relations and up to the relations between two REM cycles of 

roughly 90-100 minutes (180-200 epochs). We chose to work with one hidden-layer ANN as it was powerful 

enough to learn the discriminative information on the design dataset features, yet simple enough to overcome 

the "overfitting curse" on a small database. In our case, 100 subjects (out of 150 subjects) on the design 

dataset had a simultaneous recording from two audio recorders, therefore presenting 200 observations for 

each time-step. We treated the additional records as new subjects, i.e., a total of 250 records in the design 

dataset; although it is not good as 250 different subjects, it is better than 150 in the sense of model 

convergence and robustness to different microphones specifications, distance and angle to subject’s head. 

Another challenging task in the design phase was the unbalanced MSS class sizes, e.g., NREM is more 

abundant than REM and wake during sleep. To overcome this, we formulated a penalty weight for each 

epoch proportional to the PSG a priori probability of each MSS, as follows in Eq. 1 

 

 
 

1

, , ,

Bool
i iN

j i

j

N
Weight Epoch Wake REM NREM

Epoch Epoch


 


  (1) 

where N is the total number of epochs for the design dataset, and Bool is the Boolean operator resulting in 

"1" if the statement is true. In recent studies1-3 it has been shown that recurrent neural network (RNN) and 

long-short-term memory (LSTM) neural network have superior potential to learn the relations found in time-

series data.  

In our ongoing attempts to  a bi-directional LSTM (BiLSTM) model as a classifier, we achieved almost 

similar, yet slightly inferior, results for three-class estimations, mainly due to REM misdetection (see Fig. 

S10). We hypothesized that similar to BiLSTM, our original proposed classifier holds enough information 
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presented in both the short- and long-term memory for past and future information (using up to 200 adjacent 

epochs each side). Consequently, training each sub-classifier (separately) proved to be a much easier task (to 

converge) with less sensitivity to hyperparameters values compared to the BiLSTM model. Further studies 

are needed to support these findings. Presented here is our attempt to use the BiLSTM model. 

 
Supplementary Fig. S10 | BiLSTM classifier configuration and performance. A) Model configuration; B) confusion 

matrix for offline MSS classification.  Performances are 85.1% accuracy and a kappa coefficient of 0.66.  

Overfitting assessment 

Several aspects are affecting system performances including microphone specifications, distance to subject’s 

head, bedroom background noise level, and even subject’s loudness. In our study, most aspects were fixed 

except the sounds (intensities) generated by the subjects. To overcome some of these aspects, we trained our 

model using a large database and two types of microphones (see main body for more information) located at 

a 90 degrees angle and about 0.5 – 1.0 m distance to the subject’s head. 

Robustness of the model can be indicated by achieving for each subject high agreement with the gold 

standard (PSG), and with a minor deviation between subjects. Additionally, performances of the training 

dataset may imply the upper-limit performances while large differences between training and validation 

datasets may imply an “overfitting” situation. Table S3 summarizes performances of the training and 

validation datasets. 

Supplementary Table S3. System design and validation performances. 

 Accuracy (%) Cohen's kappa (κ) 

Protocol Dataset Mean ± SD Median (95% CI) Mean ± SD Median (95% CI) 

R
ea

l-
ti

m
e 

 Design 85.5±5.8 86.7 (70.7–94.2) .654±.126 .674 (.351–.854) 

Validation 82.2±6.4 82.6 (69.0–93.3) .590±.122 .598 (.323–.798) 

Difference 3.3 (p<0.0001) .064 (p<0.0001) 

O
ff

li
n

e 
 Design 89.7±4.2 90.3 (79.3–96.0) .748±.114 .766 (.444–.911) 

Validation 86.9±4.8 87.3 (76.3–95.0) .694±.113 .700 (.377–.869) 

Difference 2.8 (p<0.0001) .054 (p<0.0001) 

p-value is calculated for unpaired t-test two-tailed (250 and 100 samples for design and validation, respectively). 

 

One can see minor differences between design and validation datasets (~3% and κ=.06). 
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Sleep evaluation report 

REM cycles (RC) and REM latency (RL) parameters are sensitive to the definition of REM episode. 

Fragmented REM episode may include intermediate S2 stage (NREM) or even short arousal (Wake) epochs; 

inadequate treatment will result in over-counting REM episodes.  

For the purpose of this study, to evaluate a genuine REM episode (cycle) with defined onset and offset, we 

formulated four decision rules. These rules were formulated using our knowledge of sleep cycles and applied 

for both on PSG and SSA, REM estimations. Future studies are needed to evaluate the validity of these rules, 

especially on REM disorders, and their effect on RL and RC comparisons. 

Rules: 

1) REM episode starts (Onset) with three consecutive REM epochs (1.5 min); 

2) REM cycle progresses if REM-fragmentation is separated by less than seven different epochs (i.e., 

filling the gaps). 

3) The second rule applies as long as the REM episode is less than 130 epochs (65 min). 

4) The distance between two REM episodes (two onsets) is higher than 100 epochs (50 min). 
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