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Supplementary Figure 1

a) Characterization of transgenic UAS-msl-2::3Flag flies. The scheme indicates the
crossing strategy and progeny obtained. Western blots from heads show tub-Gal4
driven UAS-msl-2::3Flag protein expression levels nearly identical to the wild-type
control male flies. In female heads, ectopic MSL2tg does not accumulate to the same
levels as in males.

b) Progeny was counted from the offspring of crosses (24 vials) and expressed as a %
of the CyO, Act5C-GFP, TM6, Th female progeny. The numbers refer to genotypes
stated in Supplementary Fig. 1a. Error bars represent the SD, P-values were calculated
using a one-tailed t-test. Male lethality in msi-2?*"/msi-2*" is fully rescued by ectopic
expression of UAS-msl-2::3Flag with tub-Gal4 at 25°C. Note the effect of the CyO,
Act5C-GFP and TM6, Th balancer chromosomes on viability of wild-type male and
female flies (right panel). Ectopic expression of MSL2tg in females causes around
30% reduction in viability with a mildly delayed eclosion rate compared to controls
(data not shown).

c¢) Real-time RT-qPCR analyses of the indicated genes from early male L3 larvae.
The RNA level of each gene is expressed relative to the heterozygous CyO, Act5C-
GFP progeny while normalizing to RpL32. The bar plot represents the average of 4
independently collected samples with error bars indicating the SEM.

d) Polytene squashes of male and female wild-type Oregon R (WOR) and MSL2tg
lines (msi-2*7 / msl-2"; tub-Gal4 / UAS-msl-2::3Flag). Squashes were
immunostained with RNA Pol2, MSL1 and FLAG antibodies, respectively. Scale bar
=10 pm.

e) As in d) but staining for MOF and MSL3. Note that the contrast setting of the
female WOR squash was set different compared with males to be able to visualize
autosomal MOF staining within the NSL complex. Scale bar = 10 um.

f) Genome browser snapshot of a selected HAS on the X chromosome illustrating the
difference between small and large reads recovered in MNase-fragmented MSL2tg
ChIP-seq. Coverage tracks were generated using deeptools bamCompare and plotted
in IGV.

g) Enrichment scores on the merged list of all called MSL2tg peaks (left) or MLE
peaks (right) were calculated using deeptools multiBigwigSummary and plotted in R.
Male and female peaks are highly correlated in MSL2tg ChIPs (blue dots). No



enrichment can be detected in each corresponding untagged control. ChIP peaks for
MLE can be only detected in males, but not females.

h) Characterization of the msl-2"" and msl-2*' CRISPR deletion alleles created in this
study. The two alleles were independently obtained, but are identical in molecular
nature, as assayed by DNA sequencing of PCR amplicons from the ms/-2 locus (data
not shown). The read coverage of the “input” samples (H4Kl6ac ChIP-seq
experiment) over the msl-2 locus shows the absence of reads from the gene in msl-2*’
/ msl-2*"" transheterozygous lines. Quantification of RNA levels by real-time qRT-
PCR in early L3 larvae indicates the absence of any ms/-2 RNA expression
normalized to RpL32. The barplot represents the average of 4 independently collected
samples with error bars indicating the SEM.

1) Violin plots showing the distribution of enrichment scores per 1 kb bin on each
chromosomal arm for the H3 ChIP performed in parallel to the H4K16ac ChIP shown
in Figure 1. Scores were calculated using deeptools multiBigwigSummary and plotted
in R. For the Inputs, the analyses were performed on log2FC Input (male) / Input
(female) coverage files.

j) Heatmaps, where 3 unsupervised k-Means clusters were generated based on the
H4K16ac ChIP-seq profiles in msi-2*"/ msi-2*'° mutant males. They were sorted
according to the enrichment intensity within each cluster. The NSL3 ChIP from S2
cells', H4ac, H3ac and H3K36me3 ChIP (this study) from L3 larvae was plotted on
the same regions keeping the order according to the clustering of the H4K16ac ChIP-

seq.
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Supplementary Figure 2

a) Genome browser snapshot comparing MSL2tg (male L3 larvae, this study), MSL2
(S2 cells’) and roX ChIRP (L3 larvae®) on X chromosome and autosomes. Data
normalization is described in methods.

b) Heatmaps showing CLAMP (L3 larvae®) enrichment on HAS sorted by enrichment
intensity. The HAS center was used as a reference point, while plotting the signal +/-
0.8Kb. The mean enrichment profile is shown on top of the heatmap, ChIP data
normalization is described in methods.

c) Genome browser snapshot showing that MLE and MSL2tg spreading is
pronounced at H3K36me3 positive regions, whereas H4K 16ac spreads beyond active
genes. r0X2 ChIRP signal is confined to HAS. Data normalization is described in
methods.

d) Analysis of X-linked peaks, which do not overlap with HAS. Mean enrichment
profile at non-HAS peaks on the X in comparison to all autosomal sites is shown. The
MEME motif analysis of these peaks is shown below, where the top-scoring motif
was chosen.

e) Real-time RT-qPCR analyses of the indicated genes from the same samples shown
in Figure 2g. The RNA level of each gene was calculated relative to RpL32
expression as a reference gene. The barplot represents the average of 3 independent
biological replicates with error bars indicating the SEM.

f) Real-time RT-qPCR analyses of the indicated genes from heterozygous mle’/CyO,
GFP (male, female) and homozygous mle’/mle’ (female) L3 larvae. The RNA level of
each gene was calculated relative to the geometric mean of RpL32 and Pfk and
expressed relative to the mle’/CyO, GFP males. The barplot represents the average of
5 independent biological replicates with error bars indicating the SEM.

g) Characterization of fly lines, where the msl-2 gene was CRISPR-tagged at its C-
terminus with a 3HA-6His-Bio tag (ms/-2::3HA line). Three independent lines were
obtained (#7, #8, #9) and analyzed by Western blot from heads. They display
identical protein expression levels compared to the endogenous MSL2 protein in
wild-type Oregon R flies (lanes 7 and 8).

h) Male and female progeny of the homozygous ms/-2::3HA line #7 in a total of 5
vials were counted each day after the first flies eclosed (ms/-2 null mutants are male-
specific lethal, whereas females are unaffected). The barchart represents the average

of 5 vials (progeny eclosed on each day in % of the total number of flies eclosed per



vial) and error bars represent the SD. ms/-2::3HA males and females display equal
viability and no developmental delay.

1) ChIP-qPCR analyses of endogenously tagged ms/-2::3HA male L3 larvae. The
barplot shows the average of 3 independent biological replicates / experiments, the
error bars represent the SEM. Enrichment values were calculated relative to input and
serial dilutions performed to account for primer efficiency. The data is expressed as
fold change enrichment over the non-targets.

j) Polytene squash of the endogenous msl-2::3HA line. Squashes were immunostained
with MSL1 and HA antibodies, respectively. The transgene displays the expected
localization to the X chromosome. Scale bar = 50 um.

k) Genome browser snapshots showing MLE and MSL2-HA binding to roX1 and
roX2 RNA in male and female L3 larvae. Oregon R L3 larvae (untagged) were used
as controls. Note that in endogenously tagged msl-2::3HA line, females do not
express MSL2-HA protein. The data range represents the number of uniquely mapped
alignments for each profile. Tracks show merged biological duplicates except for the

untagged larvae.
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Supplementary Figure 3

a) Real-time RT-qPCR analyses of the indicated genes in male and female wild-type
Oregon R wing discs. The RNA level of each gene was calculated relative to the
geometric mean of RpL32, Pfk and U6 expression level and expressed relative to
males. The bar plot represents the average of 4 independently collected samples each
consisting of 2 wing discs with error bars indicating the SEM. P-values were
calculated using a one-tailed t-test (males versus females).

b) Real-time RT-qPCR analyses of N and Bx in male and female wild-type L3 larval
Oregon R brains. The barplot represents the average of 3 independently collected
samples each consisting of 1 larval brain with error bars indicating the SEM, P-values
were calculated using a one-tailed t-test (males versus females).

c) Genome browser snapshot showing H4K16ac enrichment in wild-type male and
female L3 larvae on the X-linked Bx, N, Klp3a and Ucp4a. Data normalization is
described in methods.

d)-e) Immunostainings of female wing discs with FLAG (red), Wingless (Wg, white)
and DAPI in blue. The genotype in d) was w ;; tub-Gal4 / UAS-gfp and in e) w ;, tub-
Gal4 / UAS-msl-2::3Flag. Scale bar = 50 uM.

f) As in a), the data is expressed relative to the UAS-GFP expressing control samples.
P-values were calculated using a one-tailed t-test (UAS-msl-2::3Flag flies versus
UAS-gfp controls). The genotype of the female flies was w ;,; tub-Gal4 / UAS-msl-
2::3Flag or w;; tub-Gal4 / UAS-gfp.

g) As in f), but for males w/ Y ;; tub-Gal4 / UAS-msl-2::3Flag or w/Y ;; tub-Gal4 /
UAS-gfp flies.
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Supplementary Figure 4

a) Immunostainings of male ms/-2::3HA wing discs with H4K16ac (green), HA (red),
and DAPI in blue. The very right panel shows a zoom from the merged panel. Scale
bar = 10 uM. The signal for MSL2-HA and H4K16ac overlap in the X chromosomal
territory within the male nucleus.

b) Immunostainings of wing discs with H4K16ac (green), FLAG (red) and DAPI
(blue). WOR refers to wild-type Oregon R, MSLtg to msi-2°*" / msi-2"; tub-Gal4 /
UAS-msl-2::3Flag wing discs. The very right panel shows a zoom from the merged
panel. Scale bar = 10 uM.

c¢) Pictures of female and male adult flies expressing ap-Gal4 / UAS-msl-2::3Flag
(BL3041).

d) Pictures of wings of female and male adult flies expressing UAS-msl-2::3Flag
using the indicated Gal4-drivers (see methods).

e) Immunostainings of female wing discs (UAS-gfp / w ;; hh-Gal4 / UAS-msl-
2::3Flag) with GFP (green), FLAG (red), Wingless (Wg, white) and DAPI (blue).
The bottom panel shows a zoom from the top panel. Scale bar =5 uM.

f) As in Figure 4f) Real-time RT-qPCR analyses of the indicated genes in male wing
discs upon UAS-msl-2"" with hh-Gal4.

g) Immunostainings of male wing discs (UAS-gfp / Y ;; hh-Gald / UAS-msl-2"M,
BDSC 31627) with GFP (green), MSL1 (red), H4K16ac (white) and DAPI (blue).

The bottom panel shows a zoom, DAPI is shown in blue. Scale bar =5 uM.
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Supplementary Figure 5

a) Scheme showing the CRISPR/Cas9-mediated strategy to delete Ms/2 in mESCs.
The two independently obtained knock-out clones lack most of the 5S’UTR, exonl and
exon2 affecting all isoforms.

b) Real-time RT-qPCR analyses of Ms/2 RNA levels in parental (MF clone) versus
the two Msl2 knock-out clones (A2 and D12) in Serum (blue, left) and 2i medium
(grey, right). The RNA level was calculated relative to Hprt. The bar plot represents
the average of 4 independent experiments with error bars indicating the SEM. Note
that transcripts can still be detected from exon 3, which can be attributed to non-sense
mediated decay (NMD).

c) Cell growth ratio of Msi2A cells (A2 and D12) versus parental MF cells after 4
days in culture. The barplot represents the average of 4 independent experiments with
parental (MF) cells set to 100% and error bars indicating the SEM.

d) Cropped western blots showing bulk H4Kl6ac levels in heterozygous msi-
2%7/Cy0, GFP and msl-2**"/msl-2”*" null mutant Drosophila L3 larvae. H4 and Rpb3
serve as loading controls.

e) Cropped western blots showing the impact of Msl2 deletion on bulk levels of the
indicated proteins and histone modifications in mESCs. The same extracts were
analyzed on multiple gels / membranes. For each condition two different amounts
were loaded.

f) Immunofluorescence of parental MF and Ms/2A mESC colonies grown in 2i
medium. Displayed stainings are DAPI (blue), E-cadherin (green) and H4K 16ac (red).
Scale bar = 10 pm.

g) Genome browser snapshot of MSL2, MOF, H4Kl6ac, H4Kl16ac (Msl2A) and
H3K36me3 ChIP-seq at the Zfpl185 (left) and Bscl2 (right) locus. The grey shaded
area corresponds to approximately 50 kb. Normalization is described in methods. The
right panel shows the Pearson correlation of several histone modifications compared
to the H4K16ac ChIP-seq profiles generated in this study. Enrichment scores were
calculated in 1kb tiled bins across the mouse genome, while excluding regions from
the ENCODE blacklist. The Correlation was then plotted from the deeptools
multibigwigSummary output using plotCorrelation function.

h) DE genes by RNA-seq of Ms/2A cells in Serum were plotted according to their

position on each chromosome, while scaling each chromosome to the same size. Each



dot represents a DE gene, where the color scale indicates the fold change of that
particular gene.

1) Heatmaps of all downregulated genes in 2i (left) and the Top60 (by p-adj)
downregulated genes in Serum grown mESCs (Parental MF versus Ms/2A cells).

J) GO based gene set enrichment map of the DE genes upon MsiI2A in Serum grown

mESCs.
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Supplementary Figure 5e

MSL2 EpiWhite (before cutting ladder)
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Supplementary Figure 6

Uncropped Western Blots with molecular weight markers. Note that for certain
antibodies, the ladder causes background and had to be cut before applying HRP
solution. Some blots are represented as merged with the molecular weight marker
causing slightly different appearance of contrast than presented in the actual figures
(blots marked as “ladder merged”). The molecular weight marker in Supplementary
Fig. 5d and certain blots of Supplementary Fig. Se was loaded together with sample
due to limitation of wells. H3K9me2 and H4K20mel antibodies were applied /

detected at the same time.



[RNA expression
1D [Sequence [Target
Drosophila
ck1313 TCAATCTCTAAGACAACGCCG ap fwd
ck1314 GCTATTGGACACTTGACACTGG ap rev
ck1315 CCATCGCTAAACCGCAAAAG vg fwd
ck1316 GTAGGCACCGTACATAACTTCG vg rev
ck1387 ATACTGCTTTGGGCAGGACC wg fwd
ck1388 CCAGCCCTGGTTACCGATTT wg rev
ckl1317 GGAGATCGTGTTTTGAGCATG hh fwd
ck1318 AGGTTGCGGTCCATGAAG hh rev
ck1319 GCGCGTCCAGCTAAAATAAAG Bx fwd
ck1320 CTCCAACTCCAACTCCAACTC Bx rev
ck1321 ATTATAGCCCCACACTTTCCG S0 fwd
ck1322 ACACAGATCGATGCAGAAGTC SO rev
ck640 ATCGGTTACGGATCGAACAA RpL32 fwd
ck641 GACAATCTCCTTGCGCTTCT RpL32 rev
ck439 GCTTCGGCAGAACATATACT snRNA::U6 fwd
ck440 ACGATTTTGCGTGTCATCCT snRNA::U6 rev
ck838 AAGGGCTATGAGGGCAGAGA N fwd
ck839 AGTCACCGATCCCATCCAGA N rev
ck447 GCCATCGAAAGGGTAAATTG rox2 fwd
ck448 CTTGCTTGATTTTGCTTCGG rox2 rev
ck449 TCCCACCCGAATAACCAACC rox1 fwd
ck450 GCATAGGCTTTCAATACCGTTCC rox 1 rev
ck1247 GCCCAGACGGCATACTTGAA msl-2 fwd
ck1248 CCCGCCGTTTGGAAAGATTC msl-2 rev
ck644 CTGAGGGCAAGTTCAAGGAG Pfk fwd
ck645 AAGCCACCAATGATCAGGAG Pfk rev
ck451 CGCAAGGAGTTCACACAGAA Ucp4a fwd
ck452 CTCCATTTGGATTTGCACCT Ucp4a rev
ck445 CATTCCCATTCGGAGGAGTA Klp3a fwd
ck446 GCAGCTCCTGTTTGAGATCC Klp3a rev
OAG456 ATCCTAGGCCTGGGCTACAA CathD fwd
OAG457 AGAATGAGAACACCGGAGCG CathD rev
2s33f CCAGCAAGGTGGTCAAGAAG Rpl22 fwd
gs33r CCATGATGCTATCCTCAGCA Rpl22 rev
ck642 CTCCTACTGGAAGGGCATCA CG5254 fwd
ck643 CCAGCCAGAGAAAAGGTCAG CG5254 rev
ck1480 gatacaatttggtacagtgaaatatgg [salm fwd
ck1481 ctgatcgctaccgatgtettt salm rev
ck1474 atcgagatggecttgetg ssp4 fwd
ck1475 catggtctcccacttcatca ssp4 rev
ck1476 gtttggctaaatcccaagga esn fwd
ck1477 cttcctectgetettgteca esn rev
ck1468 cgtcggacaagccctaca opa fwd
ck1469 gctcttetegtecacattge opa rev
ck1478 agacgaatgcaatccagga socs16D fwd
ck1479 gaccccagtaccagccatag socs16D rev
131a tcaactacctagtgcgegtyg mle fwd
131b tcaaacactcgcttctgetg mle rev
ck834 TCCAACCAGTGTAGCATCCA roX2 intron fwd
ck835 AGGATTGTCATAGGCGCAAC roX2 intron rev
Mouse
AACCCCGTGAATGCTACTG mmMsl2 (exonl) |fwd
CTGTCGGAAGTAAGGCAAGAG mmMsl2 (exonl) |rev
GGTTATCATGTACAGCAGCAACTC mmMsl2 (exon3) [fwd
GTAGAAATTGGAAGTGGCTGAACT mmMsl2 (exon3) |rev
GTATACCTAATCATTATGCCGAGGA mmHprt fwd
GACATCTCGAGCAAGTCTTTCA mmHprt rev
GGCAGAACTTTTGACAGCTC mmPhf38 fwd
TTCAAGACAAGGATAGGCACG mmPhf8 rev
CAGATTGACTGGAAACCGAGAG mmBex2 fwd
CACGCCTTGTTCCACTTTG mmBex2 rev
GGGTTGATGTGGTAGATGAGG mmZfp185 fwd
TGGGCAATCTTCTCGGTTG mmZfp185 rev
CCGACAAAGGGATAACTCACAC mmBscl2 fwd
AGGGCTCTCACCATCCTC mmBscl2 rev
GCAAAAGAGAAAGCCAAAGGG mmLin28 fwd
ACCACAGTTGTAGCATCTTGG mmLin28 rev
TTCCGGATTTTCACTCTGTCC mmTsix fwd
GAGGGTTTGAGGGAGTGTG mmTsix rev

|ChIP-qPCR

1D [Sequence [Target
Drosophila
ck988 TGCATTGGATTTACCGCTCCT vg fwd
ck989 GCCGCTCAATCGGAAGAGAA vg rev
ck992 ACGTGAATAAGGCAGCGGTA ap fwd
ck993 TGGCGCACAGCTTATACTCC ap rev
ck998 CGTCCCGCGCACAAAGTTAT SO fwd
ck999 GCTTTTCTCTCGCTTCGTGTG S0 rev
ck923 ACCGCTCTCTTTCGGGACTTG roX1 HAS fwd
ck924 GGGTGAGTGAGACGGCCATAG roX1 HAS rev
ck927 GATTCGTGCCCAAAGTGAGGG socs16D HAS fwd
ck928 TCCCACCCACAACCAAAACCT socs16D HAS rev
ck1048 CGTATACGAGTCTTGAAAAGAAAGIroX2 HAS fwd
ck1049 CTCTCTAAGCCAGCACCGTT roX2 HAS rev
ck1050 GAGATAGCGATGGCGGTGTG CG15767/CG4064 HAS |fwd
ck1051 CATGAAGCTTCCAACTATCTCGC [CG15767/CG4064 HAS [rev
ag382 CCTTTCGGAACTAGATCCCC CG15011 fwd
ag383 AAGCCGGCGTTTTTGTCTAT CG15011 rev
ag378 CGTAACGGCACCCCTCAA Ent2 fwd
ag379 ACCGCACCGCACTACAAG Ent2 rev
Mouse
ck1108 TGTTGTGTTGCAAGTGTGGA Zp185 fwd
ck1109 AGTTGCCAGCACTGAGTACA Zfp185 rev
ckl116 TTCCTGTGTCAGCTTGTCCC Firre fwd
ckl117 CCCCAGTAATGTCTTGCAGC Firre rev
ck1166 CCTCCTCTAGGCACGTAGTAGT Bex2 fwd
ck1167 GGGATCCGATTGTGGCCC Bex2 rev
ck1261 CTCGTTGGTTTGGCAGATG Wap fwd
ck1262 TCCATGTTCCCAAAAGCCAG Wap rev
ck1267 GCTACCCACTGTCAGGATC Nanog fwd
ck1268 TCTCCCTGCTCCCTCTTC Nanog rev
ck1158 CGGACTCGGTCCTTAGCAG Arfl fwd
ck1159 TCATCGTGGGAGTCAAGGGG mmATrfl rev
ctctaccacttggaccatatgac [Intergenic fwd
gggctccaaacagcatctcta Intergenic rev




Supplementary Table 1
List of qPCR primers used in this study
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