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ABSTRACT Small-angle x-ray scattering (SAXS) of biological macromolecules in solutions is a widely employed method in
structural biology. SAXS patterns include information about the overall shape and low-resolution structure of dissolved particles.
Here, we describe how to transform experimental SAXS patterns to feature vectors and how a simple k-nearest neighbor
approach is able to retrieve information on overall particle shape andmaximal diameter (Dmax) as well as molecular mass directly
from experimental scattering data. Based on this transformation, we develop a rapid multiclass shape-classification ranging from
compact, extended, and flat categories to hollow and random-chain-like objects. This classification may be employed, e.g., as a
decision block in automated data analysis pipelines. Further, we map protein structures from the Protein Data Bank into the
classification space and, in a second step, use this mapping as a data source to obtain accurate estimates for the structural
parameters (Dmax, molecular mass) of the macromolecule under study based on the experimental scattering pattern alone,
without inverse Fourier transform for Dmax. All methods presented are implemented in a Fortran binary DATCLASS, part of
the ATSAS data analysis suite, available on Linux, Mac, and Windows and free for academic use.
INTRODUCTION
Small-angle x-ray scattering (SAXS) is an increasingly
popular method in structural biology that usefully comple-
ments high-resolution structural techniques such as x-ray
crystallography, nuclear magnetic resonance spectroscopy,
and electron microscopy. SAXS does not require crystals,
labeling, or isolated particles at cryogenic temperatures,
and its applications extend to the determination of structural
parameters, e.g., the radius of gyration (Rg), maximal extend
(Dmax), and the molecular mass (MM), obtaining the low-res-
olution shapes of macromolecules and rigid body modeling
of complexes, quantitative characterization of flexibility,
and time-resolved conformational changes (1). The scat-
tering intensity I(q) is recorded as a function of the scattering
vector q, with the momentum transfer q¼ 4p sin q/l, where q
corresponds to half of the angle between incoming and scat-
tered photons, and l corresponds to the wavelength. To deter-
mine the scattering of the macromolecule under study, the
background scattering, including sample holder and solvent
(typically an aqueous buffer), has to be subtracted.

Over time, many methods have been developed to extract
relevant information directly from the experimental scat-
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tering intensities, exclusively working with the experimen-
tally obtained data. In contrast, in this manuscript, we
consider the application of data mining and machine
learning (2) to extract structural information from SAXS
data. In short, we shall evaluate the idea that, if there were
a way to locate similar macromolecules with known struc-
tural parameters, the parameter values of these similar struc-
tures could be used to approximate the parameter values of
the specimen under study. It should be noted that in this
context, ‘‘similarity’’ shall refer to similarity in scattering
patterns, with the assumption that similar scattering pattern
implies similar overall structure and not necessarily similar
higher-resolution detail; the latter may not be the case (3).

For each of the major methods in structural biology,
curated data banks invite researchers to deposit models as
well as raw data, in particular the Protein Data Bank
(PDB) (4), the Biological Magnetic Resonance Data Bank
(5), the Electron Microscopy Data Bank (6), and the Small
Angle Scattering Biological Data Bank (SASBDB) (7),
respectively. Here, a large number of records on structural
parameters, sequences, shapes, models, and more have
been accumulated. Using tools like CRYSOL (8) or FoXS
(9), theoretical scattering patterns of atomic models may
be readily calculated.

Finally, we bring the initial idea and available data
together by describing methods on how to make large
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amounts of data accessible for Knowledge Discovery. In
particular, in the context of data mining and machine
learning, any measurable property of the specimen under
study may be considered a ‘‘feature.’’ Features describe
the input for a machine-learning method and may be con-
crete values or abstract concepts. In SAXS, the experimental
Rg, the calculated forward scattering I(0), and the individual
experimental intensities at each q and any function thereof
may be considered potential features. In this manuscript,
we shall describe how to represent the overall shape of a
protein, e.g., compact, flat, extended, or random-chain,
with only three shape-related features. Here, random chains
are a mixture of conformations ranging from compact to
fully extended chains, whereas extended only refers to
preferred extended particles in solution. Further, to predict
structural parameters, a fourth, size-related feature may be
included in the feature vector. The advantage of describing
a complex SAXS pattern in a feature vector of only a few
components becomes apparent if one assumes a form of dis-
tance relationship between feature vectors. If two points in
the feature space are close together in the Euclidian sense,
then their properties, i.e., shape and/or structural parame-
ters, should be similar. Conversely, if they are far apart, their
properties should be significantly different. To predict prop-
erties of an unknown entity, one may look up its closest
neighbor(s) in the feature space and apply known properties
of the neighbor to the unknown entity. However, the larger
the number of components in the feature vector—i.e., the
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more dimensions are considered—the more likely are
sparsely populated regions in the underlying data source
that could reduce predictive power, a problem also known
as the ‘‘curse of dimensionality’’ (10).

Here, we present a framework of data transformation and
feature selection for a fast and selective lookup of structural
neighbors in the space of SAXS patterns. Based on the pro-
posed feature selection and the source data of the database,
different information may be inferred. In the case of
geometrical bodies (11), simple shapes may be determined
quickly, e.g., for use as a proto-shape for ab initio modeling
in the case of the PDB (4), and structural parameters such as
Dmax and MM of the immediate neighbors as discussed in
this work—but also other parameters of interest—may be
looked up and used as a starting point for further analysis
and refinement.
Materials and methods

Shape classification

Data simulation. The command-line program BODIES (11)
was modified to simplify the automated simulation of large
amounts of SAXS patterns derived from geometrical objects
with uniform scattering length density of compact spheres,
flat discs, extended rods, compact-hollow cylinders, hollow
spheres, and flat rings (Fig. 1 a). The corresponding dimen-
sions of the geometric bodies, i.e., inner and outer radius,
FIGURE 1 Transformation of scattering patterns

of geometric objects and random-chain on arbitrary

log scale (a) via integration of the normalized

Kratky Plot (b) to V’-space (c and d). (a–c) depict

a randomly selected member of each object class,

whereas (d) shows the locations of all 488,000 scat-

tering patterns generated. The color assignments

are identical in all panels: compact (dark blue),

extended (orange), flat (yellow), ring (violet),

compact-hollow (green), hollow-sphere (light

blue), and random-chain (dark red), also indicated

by corresponding pictograms.
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height, length, and width, etc., were uniformly and indepen-
dently sampled in ranges from 10 to 500 Å, respectively.
Classification labels were generated based on the extent of
the object; in short, proportions more or less extreme than
1:4 were considered to define compact, extended, and flat
objects, and in addition an inner cavity of more than 25%
of the outer radius generally indicates a hollow object.
Based on this, 460,000 scattering patterns of various
compact, flat, extended, filled, and hollow geometric objects
were generated. Although clearly limited, a selection of
body types enumerating an exhaustive list of geometrical
body shapes would be, at least, very difficult to obtain, espe-
cially considering the lack of analytical form factors. As
shown later in the text, classification with k-nearest neigh-
bors extends somewhat outside the boundaries of the map-
ped class volumes, thus smoothing out any gaps between
geometric objects (Fig. 1 d). Further, to allow the identifica-
tion of intrinsically disordered proteins, we employed
Ensemble Optimization Method (12) to generate an addi-
tional 560,000 simulations of random chains, subsequently
averaged in groups of 20 repetitions to simulate mixtures
of flexible proteins. The lengths of the random chains
were selected to follow the size distribution of amino acid
sequences of asymmetric units in the PDB. In total,
488,000 scattering patterns were created across all geomet-
ric classes to be used as a training data set for machine-
learning classification that encompass basic geometric ob-
jects and disordered polymer chains (Fig. 1 d).

Data transformation. To normalize for the varying size of
objects, Rg and forward scattering I(0) were required. As the
generated data is ideal and free of noise, the Rgwas obtained
from the slope of the Guinier plot (lnI(q) vs. q2) of the first
10 computed points, and I(0) was directly available from the
data due to simulation. With these two parameters, the data
was transformed to the dimensionless Kratky scale (13):

�
qRg

�2
I
�
qRg

��
Ið0Þ vs: qRg:

After this, the normalized Porod invariant, or integral Q’,
of the dimensionless Kratky plot was calculated up to
qRg ¼ 3, qRg ¼ 4, and qRg ¼ 5, respectively, and expressed
as a normalized apparent volume, or V’ (14), i.e.,
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Each scattering pattern was therefore reduced to three
features and its associated class label (Fig. 1, b and c).
The qRg upper bounds were chosen, as they provide a
trade-off between contained shape information and the
limitations of the assumption of uniform scattering length
density; larger qRg-values would separate the point clouds
in unrealistic ways (data not shown). That said, with the se-
lection presented here, the corresponding three-dimensional
scatter plot of the simulated data shows a V’-space with
good separation of the different shape classes (Fig. 1, c
and d).

Learning, prediction, validation. As Fig. 1 d depicts a
well-defined point cloud within the three-dimensional
V’-space, we added 25,000 randomized points with un-
known class label to the space before learning. This helped
to facilitate compactness of the resulting predictions; other-
wise, a query point outside this well-defined V’ would still
have far-away neighbors and would thus be grouped to a
class it does not belong. It should be noted that this random
point cloud is not shown in Fig. 1 d, as it would obscure the
actual data of interest.

To classify the shape of an unknown entity, its feature
vector has to be computed, and the k-nearest-neighbors in
the three-dimensional V’-space are determined by k-d-tree
search (15) across the whole training set. Here, we chose
k ¼ 9, partly to avoid unknown classification of the
randomly distributed cases but also to facilitate a majority
vote classification in which classes overlap. The classes of
the neighbors are then weighted by empirical class weights
(Table S3), and the class with the maximal sum of weights is
selected as label for the unknown entity.

To evaluate the performance of this approach, we used
leave-one-out cross-validation, i.e., we removed each of
the 488,000 structures from the source data in turn and
used the remaining data points to predict the class of the
removed one. Cross-validated performance of this multi-
class classifier was evaluated by F1 measure and Matthews
correlation coefficient (MCC) (16).

Prediction of structural parameters

Data generation. A snapshot of more than 220,000 asym-
metric units and biological assemblies was taken from the
PDB (4). From these we discarded duplicates (i.e., biolog-
ical assemblies identical to asymmetric units), entries with
nucleotides, and peptides with less than 50 amino acids.
Entries with more than one model were discarded unless
the models were very similar, in which case we used the first
one listed in the atomic coordinate file. Metals, inorganic
molecules, and other posttranslational additions were
filtered out from all structures. No filtering was applied
with respect to sequence identity, as similarity in sequence
does not always imply similarity in structure (17). From
the remaining 165,982 unique atomic structures, we calcu-
lated scattering patterns with CRYSOL (8) using 30 spher-
ical harmonics and 1001 equidistant points up to a qmax of
0.6 Å�1. Besides the calculated scattering pattern, CRYSOL
also reports a variety of structural parameters, in particular
Rg, Dmax, and MM, which we recorded for later use.

Learning, predictionand validation.Similar to thegeomet-
ric bodies, the V’-values were computed for the atomic struc-
tures. Given that for the estimation of structural parameters
not only the shape but also the size of the molecule is impor-
tant, Rg was included as a size feature in addition to the three
Biophysical Journal 114, 2485–2492, June 5, 2018 2487



TABLE 1 F1 Score and MCC for k-Nearest Neighbors

Multiclass Classification Results of the Individual Shape

Categories

F1 score MCC (%)
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V’ shape features; here, Rg was chosen over Dmax, as the
former can be directly obtained from the experimental data,
whereas the latter can usually only indirectly be estimated.

To assess the structural parameters of an unknown entity,
the feature vector is computed, and the k-nearest structural
neighbors (here k ¼ 5) in a four-dimensional space
combining the three dimensions ofV’ alongwithRg are deter-
mined by k-d-tree search (15). Here, the parameter k¼ 5 was
chosen to minimize the relative prediction error. From this,
the parameters, i.e., Dmax and MM, are estimated as the
weighted mean of Dmax and MM of the neighbors, where
the weights correspond to the normalized inverse Euclidean
distance to the unknown entity—i.e., the closer the neighbor,
the more important its contribution to the prediction.

To evaluate the performance of this approach, we used
leave-one-out cross-validation, i.e., we removed each of
the 165,982 structures from the source data in turn and
used the remaining structures to predict the Dmax and MM
of the removed structure.

Application of shape classification and prediction of structural
parameters to experimental data

The classifier was further applied to the 401 public experi-
mental SAXS data sets without nucleotides available from
SASBDB (7) at the time of writing. As random-chain classifi-
cationsmay potentially indicatemodular, flexible, or unfolded
proteins, we also collected experimental SAXSdata on folded
and chemically modified unfolded ribonuclease A and folded
and denatured lipase B at the European Molecular Biology
Laboratory P12 SAXS beam line at PETRA-III (18), DESY,
Hamburg, Germany, to compare the results of the random-
chain classification with those from traditional biophysical
methods, i.e., circular dichroism spectropolarimetry, and tryp-
tophan fluorescence spectroscopy. See Supporting Materials
and Methods for details on their preparation.

To study the effects of experimental noise on shape clas-
sification and prediction of structural parameters, we further
collected experimental data of 100 repetitions of 50 ms ex-
posures of bovine serum albumin (BSA) in 50 mM HEPES
(pH 7.5) buffer. After subtracting 100 buffers from 100 sam-
ples, the resulting 100 data sets were identical up to noise as
evaluated by CorMap (19).

All experimental data were submitted to SASBDB
for reference. The following accession codes were assigned:
SASDDK3 (lipase B), SASDDL3 (folded ribonuclease A),
SASDDM3 (chemically unfolded ribonuclease A), and
SASDDN3 (100 repetitions of BSA; buffers, samples, and
subtracted data were deposited).
Unknown 0.991 99.1

Compact 0.962 95.1

Extended 0.969 95.8

Flat 0.957 94.7

Ring 0.980 97.8

Compact-hollow 0.938 93.3

Hollow-sphere 0.997 99.7

Random-chain 0.964 96.2
Results

Shape classification

Appropriate evaluation of multiclass classification systems
is itself a topic of ongoing research. In this work, we follow
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the recommendations of Powers (16) and report the F1
score and MCC for each shape category (Table 1). Here,
F1 is a measure that considers precision and recall of the
classifier with a range between 0.0 and 1.0, and correspond-
ingly, MCC determines the correlation between expected
and predicted classes with a range from �1.0 to 1.0. In
both cases, larger (positive) values are associated with
better performance. In addition, Fig. S3 details the confu-
sion matrix, i.e., the actual counts of expected and predicted
classes of the leave-one-out cross-validation, together with
recall and precision percentages in the margins. The overall
accuracy of classification across all shapes is reported as
96.5%.

Further, we predicted the shape classification of the
165,982 unique atomic structures of the PDB and visualized
the resulting point cloud in V’-space (Fig. 2 a). It is imme-
diately apparent that the overall shape of the distribution of
proteins (opaque circles) is very similar to that obtained by
geometric objects (transparent background), with only 25
structures considered outside the volume mapped by the
geometric objects and thus being assigned an ‘‘unknown’’
class label (open circles). Interestingly, most (�90%) of
the PDB structures are classified as compact/globular,
whereas, for example, more extended proteins are much
less represented (�3%). A different picture arises from
experimental data deposited in SASBDB (Fig. 2 b). Here,
the distribution (Table S4) tends more toward the extended,
flat, and random-chain area (>50%), reflecting the fact that
solution scattering is often employed for systems that do not
easily crystallize. Indeed, the shape classification of exper-
imental SAXS data may also be done to describe protein
solution state or solution state transitions when the high-
resolution structure is not available or obtainable. For
example, Fig. 2, c and d show the V’-space point cloud
positions of SAXS data obtained from native ribonuclease
A compared to a final-state completely denatured protein,
highlighting the shift from compact to random/flexible
shape categories. SAXS data collected from lipase B sam-
ples that underwent systematic chemical denaturation
show the ‘‘denaturation trace’’ through V’-space as the pro-
tein populations unfold at ever-increasing concentrations of
guanidine hydrochloride.



FIGURE 2 Distribution of (a) atomic structures

of the PDB and (b) experimental scattering data

from SASBDB (opaque) indicating a good agree-

ment of the V’-space mapped out by shapes (trans-

parent) and that covered by atomic structures and

experimental data. The open circles in (a) depict

classifications with an ‘‘unknown’’ class label;

structures and models displayed in (a and b)

were randomly chosen and placed for the purpose

of illustration (PDB: 12as (compact), 1v18

(extended), 3oei (flat), 3h3w (ring), 4avt (compact

hollow), 3a68 (hollow sphere), and 2kzw (un-

known); SASBDB: SASDA52 (compact),

SASDA57 (extended), SASDAY4 (flat), and

SASDBD7 (compact hollow)). (c and d) show the

locations of experimental data of chemically

unfolded ribonuclease A and lipase B, respectively.

The V’-space trace for ribonuclease A shows the

position of the native, folded protein (compact)

compared to the chemically unfolded final state

(random/flexible). The trace for lipase B shows

the effect of systematically unfolding the protein

population through a denaturation gradient of gua-

nidine hydrochloride from compact to extended

until a random-chain conformation is reached

(see Supporting Materials and Methods for de-

tails). Color assignments are identical to those of

Fig. 1.
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Prediction of structural parameters

Fig. 3, a and c summarize the results of the leave-one-out
cross-validation for the prediction of structural parameters
of the PDB. As the values of the parameters are derived
from the atomic structures, a good agreement may be ex-
pected; in �90% of the cases, the estimate is within 10%
of the true value. The evaluation of experimental data as
deposited in SASBDB (Fig. 3, b and d) is not as straightfor-
ward, as the deposited values depend on sample quality,
experimental conditions, and the data analysis of the respec-
tive researcher. Interestingly, compared to the results of the
PDB, there seems to be a tendency to obtain somewhat
larger Dmax-values in manual analysis (Fig. 3 b), which
may, for example, be explained by the influence of the
hydration shell.

Effects of experimental noise

Fig. 4 elucidates the effect of experimental noise on 100 rep-
etitions of BSA; all frames were found similar to each other
up to noise as per CorMap test (19). As depicted in Fig. 4 a,
the mapped locations of the 100 frames are slightly spread
out but still close together. Histograms of the estimated
structural parameters Dmax and MM are shown in Fig. 4, b
and c, respectively. Again, a spread may be observed; how-
ever, the width of the distributions most likely correlates
strongly with the amount of noise present in the data (not
evaluated). Both distributions are centered on values some-
what larger than what one may expect from strictly mono-
meric BSA (�100 Å and �67 kDa, respectively), but this
may be attributed to the presence of a fraction of dimers
in solution (20).
Discussion

Rapid shape classification as presented in this work is a
unique approach in the field of biological SAXS. However,
it is obvious that accurate estimates of Rg and I(0) are key
for appropriate transformation of experimental SAXS data
to V’-space. Interestingly, misspecification of these parame-
ters will often result in a data point outside the body of shape
space as depicted by Fig. 1 d and consequently lead to an
‘‘unknown’’ classification; therefore, the shape classification
may also be used as an initial validation of Rg and I(0).
Further, it has applications as a building block for automated
data analysis (21–23), e.g., to decide whether ab initio shape
modeling or ensemble optimization should be applied. In
addition, shape modeling applications may use the initial
classification as a starting point for their models; DAMMIF
(24) has already been modified to not only use a start model
based on the classification but also to adapt the search and
annealing parameters, e.g., by enabling anisometry penalties
for extended or flat objects.

Similarly, at present Dmax may only be obtained by in-
verse Fourier transform of the experimental scattering
pattern, which may be difficult to determine accurately
(25,26). The presented method provides an independent
Dmax estimate from similar entries in the PDB based on
experimental data alone. Consequently, this approach may
Biophysical Journal 114, 2485–2492, June 5, 2018 2489



FIGURE 3 Estimates of Dmax (a and b) andMM

(c and d) for entries of PDB (a and c) and SASBDB

(b and d). In the case of the PDB, the expected

values are known, and a good agreement can be

observed; in �90% of the cases, the estimate is

within 10% of the expected value (a and c). No

such claim can be made in the case of SASBDB,

as the expected values obtained depend on the

type of the experiment, the sample quality, and

the data analysis of the submitter.
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be applied to obtain a starting estimate of Dmax for the indi-
rect Fourier transform or as a tool for quality assessments
during data deposition procedures, e.g., to SASBDB,
whereby the automated Dmax estimates may be compared
to submitted values for validation purposes (Fig. 3 b).

In the past, multiple concentration-independent methods
to determine the MM of biological macromolecules from
SAXS data have been established (14,27,28), each with
their own respective strengths and weaknesses. In this
manuscript, we report the results of the size-and-shape-
based database lookup method (Fig. 3 b) without attempt-
ing to directly compare with any of the established
methods. The interested reader may find a thorough,
comprehensive, and quantitative comparison of all four
methods elsewhere (29).

It should be noted that some details of the presented
method were empirically determined, e.g., the qRg integra-
tion limits for V’; although the general magnitude is appro-
priate, e.g., on the lower end, integration to qRg ¼ 1
corresponds to the Guinier range, and on a normalized
scale, the integral is a constant up to rounding errors.
Consequently, on the higher end, qRg ¼ 10 would corre-
spond to wider-angle (i.e., higher-resolution) information
that is not easy to rationalize in terms of overall parame-
2490 Biophysical Journal 114, 2485–2492, June 5, 2018
ters. Thus, the selected qRg-values of 3, 4, and 5 are
reasonable but not necessarily optimal. For example, we
chose N ¼ 3 integration limits also for the ease of display.
A different selection of limits in number and magnitude
might result in an improved predictive performance. Along
the same line of argument, one may observe that in many
machine-learning applications, it is required to normalize,
scale, or transform the training data before learning and
prediction to achieve a good predictive result. Here, we
used the data ‘‘as-is’’; however, it is possible that there is
a transformation function that minimizes the relative error
and/or (root) mean-square error of the prediction. Potential
avenues of investigation for the k-nearest neighbors
method include the following: 1) selection of k and the
applied distance weights; 2) arbitrary linear and nonlinear
data scaling and transformation before learning; 3) metric
selection and metric learning (30); and, of course, 4) any
other learning method such as regression functions, support
vector machines, neural networks, deep learning, etc. As
in this manuscript we focus on outlining and introducing,
to our knowledge, a novel approach, we did not exhaus-
tively investigate all these options; however, the classifier
as presented here is already on par with established
methods (29).



FIGURE 4 Locations of shape classification in V’-space (a) and histo-

grams of structural parameters (b and c) of 100 repetitions of BSA that

are identical up to noise. Although affected by the experimental noise, all

frames map closely together in V’-space (a); the estimates of Dmax vary

from 100 to 110 Å (b), and MM from 66 to 82 kDa (c).
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Conclusions

In this manuscript, we present what is, to our knowledge, a
conceptually new approach to rapidly analyze the scattering
patterns in biological SAXS, not as an isolated data point
but in the context of all known biological macromolecules.
We have outlined and described a simple data transforma-
tion that combines large amounts of SAXS data into a few
numbers that suggest themselves as coordinates in a feature
space for machine learning. This space simplifies and im-
proves lookup of similar scattering patterns in a large data
set. The presented approach of integrating the intensities
has a strong advantage over the methods based on actual
(normalized) intensity values. Our method is independent
of the spacing of the available data points, obviating the
need for interpolation to a common grid, and fluctuations
of individual intensities have less of an effect for lookup
because of the integration, thus also avoiding the curse of
dimensionality.

The techniques described here allow for rapid shape clas-
sification and provide estimates of MM and Dmax with good
accuracy. It should be noted that so far Dmax was only avail-
able indirectly through inverse Fourier transform, but with
the new approach, it is now also accessible from experi-
mental data directly. Further, the general approach as
described easily extends to additional parameters of interest
extracted from source data, as labels may be assigned
arbitrarily.

The method has been implemented in the program
DATCLASS, integral part of the ATSAS data processing
and analysis suite (31), which is freely available for academic
users (https://www.embl-hamburg.de/biosaxs/software.html).
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Supplementary Materials and Methods 

Preparation of native ribonuclease A (RNAse) and carboxyamidomethylated 
ribonuclease A (cam-RNAse). 
Lyophilised bovine pancreatic ribonuclease A (Sigma) was resuspended in 
phosphate buffered saline, pH 7.0, (PBS) and dialysed overnight at 4 °C against 
the same buffer to obtain a sample of natively-folded RNAse. The final sample 
concentration was 5.24 mg/ml (determined at Abs280 nm using an E0.1% = 0.71 
ml/mg calculated from the amino acid sequence (1). The post dialysis buffer was 
used as an exact solvent blank for the SAXS measurements.  
 
The preparation of disulfide-reduced and carboyxamidomethylated RNAse (cam-
RNAse) followed the procedure as described by Wang, Trewhella, & Goldenberg 
(2008). Briefly, lyophilised RNASe powder (approximately 8–10 mg) was 
dissolved in 1 ml of 6 M guanidine hydrochloride (Gdn.HCl), 10 mM 
ethylenediaminetetraacetic acid (EDTA), 10 mM dithiothreitol (DTT) and 100 
mM Tris, with a final (combined) pH of 8.0. The solution was incubated for 1.5 hr 
at room temperature with gentle mixing to effect protein unfolding and 
disulphide reduction. At the completion of the high-pH denaturation step, fresh 
iodoacetamide (180 mM stock in H2O) was added to a final concentration of 30 
mM and the system left for approximately 45 min to effect sulfhydryl and 
histidine alkylation. Concentrated HCl (1 M in H2O) was then added to the RNAse 
with rapid mixing to a final concentration of 100 mM.  The protein solution was 
dialysed overnight at 4 °C against 10 mM HCl in water. To two individual aliquots 
of post-dialysis cam-RNAse were removed and a stock solution of 8 M urea in 10 
mM glycine (combined pH = 2.5) was added to final concentrations of 1 or 2 M, 
respectively. The protein concentrations of the cam-RNAse samples were: 5.97 
mg/ml (10 mM HCl), 5.27 mg/ml (10 mM HCl, 1 M urea) and 4.58 mg/ml (10 mM 
HCl, 2 M urea). For the SAXS measurements, the post-dialysis 10 mM HCl 
solution was used as an exact solvent blank, with the addition of an equivalent 
mass of 8 M urea solution (+/- 1 mg) as used for the 1 M and 2 M urea cam-
RNAse samples. The corresponding SAXS data of folded and unfolded RNAse can 
be located in the SASBDB entries SASDDL3 and SASDDM3, respectively. 

Preparation of Candida antarctica lipase B. 
A solution of Candida antarctica lipase B (Hampton Research) was dialysed 
overnight at room temperature against 100 mM NaCl, 20 mM Na2HPO4, 
containing 0, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 or 6 M Gdn.HCl (combined pH = 6.0, 
adjusted using HCl/NaOH). In all instances, the respective post-dialysis buffer 
was used as the solvent blank for the SAXS measurements. A set of lipase B 
samples were also prepared under reducing conditions. DTT (1 M stock in H2O) 
was added to each lipase B sample/solvent blank to a final concentration of 10 
mM immediately prior to SAXS. The final concentrations of the lipase B samples 
were assessed using an Abs280 nm E0.1% = 1.239 ml/mg (1) and are summarised in 
Table 2. The SAXS data of both Lipase B both with and without DTT and the 
Gdn.HCl unfolding series can be located in the SASBDB entries SASDDJ3 and 
SASDDK3. 
 



Circular dichroism spectropolarimetry: native RNAse and unfolded cam-RNAse. 
Circular dichroism (CD) measurements were performed at room temperature 
using a Chirascan (Applied Photophysics) spectropolarimeter with a quartz cell 
pathlength (l) of 1 mm. The RNAse samples used for SAXS (described above) 
were diluted 50-fold in their respective supporting solvents. The approximate 
protein concentrations, C, in mg/ml used for the CD measurements are reported 
in Table 2.  
 
The CD spectra were acquired across 175–280 nm using a time constant of 0.5 s 
at 1 nm wavelength intervals (1 nm bandwidth). The presented data (Supp. Fig. 
1) represent the solvent-subtracted average of these scans for each sample, 
quoted as mean residue ellipticity, θ in deg.cm2/dmol versus wavelength, λ in nm 
(where the molecular weight, MW, of RNAse = 13690 Da, and the number of 
amino acids, N= 124). The conversion from machine units (mdeg) to θ followed: 
 

θ = (mdeg*MW)/(NlC). 
 
Those data with unduly high absorbance at low wavelength were discarded to 
produce the final spectra for: 
 
Native RNAse; 197–260 nm,     
cam-RNAse in 10 mM HCl; 197–260 nm,  
cam-RNAse in 10 mM HCl, 1 M urea; 205–260 nm,  
cam-RNAse in 10 mM HCl, 2 M urea; 206–260 nm. 
 
Secondary structure analysis was performed using the online BeStSel single 
spectrum analysis and fold recognition server, http://bestsel.elte.hu/ (2). 
Spectra were converted into absorption units, i.e., as the differential molar 
extinction coefficient, ∆ε (M-1.cm-1) vs λ, (where ∆ε = θ/3298.2) and analysed for 
secondary structure content using the 200–250 nm option of the BeStSel server. 
Only those spectra for native RNAse and cam-RNAse in 10 mM HCl access 
sufficiently low wavelengths for secondary structure analysis (Table 1), and 
consequently the secondary structure content of the remaining cam-RNASe 
samples were not assessed. The experimental results were compared to the 
secondary structure content extracted from the X-ray crystal structure of RNAse 
A (PDB: 3MZQ) and that reported for RNAse in the Protein Circular Dichroism 
Data Bank (http://pcddb.cryst.bbk.ac.uk/home.php, PCDDBID: CD0000063000).  

Tryptophan fluorescence spectroscopy: native and unfolded lipase B. 
Intrinsic tryptophan fluorescence spectroscopy measurements from lipase B and 
denatured lipase B in Gdn.HCl or Gdn.HCL plus 10 mM DTT (Table 2) were 
performed using a Tecan Infinite M1000 spectrometer. Scans were performed at 
25 °C using an excitation wavelength of 295 nm, with the emission spectra 
recorded from 310–600 nm using an emission wavelength step size of 1 nm 
(flash frequency, 400 Hz; 50 flashes per nm). The fluorescence yields were 
normalised to protein concentration and the wavelength corresponding to the 
maximum flourescence yield for each scan was recorded to qualitatively assess 
red-shifts in the tryptophan emission spectra (Supp. Fig. 2). 



Supplementary Figures and Tables 
 

 
Supplementary Figure 1. CD spectra of native folded RNase (blue), unfolded cam-
RNase (red) and cam-RNase in the presence of 1 M or 2M urea (black and 
orange, respectively) 
  



Table 1: Sample protein concentrations and secondary structure analysis derived 
from CD measurements of native and cam-RNAse. Included is a comparison with 
secondary structure content extracted from the X-ray crystal structure of RNAse 
(PDB 3MZQ) and from CD spectra deposited in the Circular Dichroism Data Bank 
(CD0000063000). 
 
 
 

      Lipase B  
  

Lipase B  
  

SAXS Samples     
fluorescence spectroscopy 
samples 

 
Gdn.HCl 
concentration 
(M) 

Protein 
Concentration 
(mg/ml)   

Gdn.HCl 
concentration 
(M) 

Protein 
Concentration 
(mg/ml) 

Protein 
Concentration 
(mg/ml), plus 
DTT 

      
0 4.65 

 
0 0.48 0.5 

1 4.66 
 

1 0.43 0.38 
1.5 4.59 

 
1.5 0.37 0.42 

2 4.52 
 

2 0.4 0.38 
2.5 4.48 

 
2.5 0.37 0.41 

3 4.19 
 

3 0.39 0.37 
3.5 4.06 

 
3.5 0.39 0.44 

4 4.09 
 

4 0.38 0.39 
4.5 4.12 

 
4.5 0.41 0.37 

5 4.02 
 

5 0.38 0.39 
6 4.19   6 0.41 0.38 
Table 2: Concentration of Gdn.HCl and Lipase B used for SAXS and 
fluorescence spectroscopy measurements. Note: the SAXS samples for lipase 
B under reducing conditions were prepared by adding 1 µl of 1 M DTT to 99 
µl of protein. Therefore, within pipetting and spectrophotometric error, it is 
expected that the reduced lipase B sample concentrations will not differ 
significantly from the concentrations quoted here for the lipase B SAXS 
samples in Gdn.HCl.  

  

RNAse A  
 

RNAse A 
   CD Samples   % Secondary structure 

  
  Protein Concentration 

(mg/ml)   
α-helix β turn+other 

            
Native RNAse 0.105 

 
20.1 34.7 45.2 

cam-RNAse 10 mM HCl 0.119 
 

0 23.9 76 
cam-RNAse 10 mM HCl, 1 M Urea 0.105 

 
- - - 

cam-RNAse 10 mM HCl, 2 M Urea 0.092   - - - 

  
PDB: 3MZQ 21.0 33.1 46.0 

 
PCDDBID: CD0000063000 20.9 33.1 45.9 



Supplementary Figure 2. a. Tryptophan fluorescence intensities vs emission 
wavelengths through a Gdn.HCl concentration gradient (0-6 M) for Lipase B with 
no DTT present in solution. b. With additional 10 mM DTT added to solution. c. 
The shift in emission wavelength maximum of Lipase B as a function of Gdn.HCl 
concentration.  

Preparation and SAXS data of bovine serum albumin. 
Lyophilised bovine serum albumin (Sigma: # 05470) was dissolved in 50 mM 
HEPES, pH 7.5, and 0.22 micron pore spin-filtered. The final sample 
concentration was 2.25 mg/ml evaluated at Abs280 nm using an E0.1% = 0.646 
ml/mg (Gasteiger, et al., 2005). An aliquot of 0.22 micron filtered HEPES buffer 
was used as the solvent blank for the SAXS measurements. The subsequent SAXS 
data and collection parameters of both un-subtracted and subtracted SAXS data 
frames can be found in SASBDB entry SASDBK3. 
   
 
 
 
Class Label Class Weight 
Unknown 1 
Compact 2 
Extended 2 
Flat 2 
Ring 2 
Compact-hollow 4 
Hollow-sphere 2 
Random-chain 2 
Table 3: Empirical class weights for k-nearest-neighbour shape classification. 
 



 
 

 
Supplementary Figure 3: Leave-One-Out cross validation results for shape 
classification with recall and precision percentages in the margins. Class labels 
are (0) unknown, (1) compact, (2) extended, (3) flat, (4) ring, (5) compact-
hollow, (6) hollow-sphere, (7) random-chain.  
 
 
 
 
Class Label PDB SASBDB 
Unknown 25 0. 02 % 2 0.05 % 
Compact 122.913 74.05 % 149 37.16 % 
Extended 5.382 3.24 % 36 8.98 % 
Flat 9.734 5.86 % 119 29.68 % 
Ring 154 0.09 % 3 0.08 % 
Compact hollow 26.909 16.21 % 25 6.23 % 
Hollow sphere 125 0.08 % 0 0.00 % 
Random Chain 740 0.45 % 67 16.71 % 
Total 165.982 100.00 % 401 100.00 % 
Table 4: Absolute and relative shape counts as depicted in main Figure 2(a) and 
2(b). 
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