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Here we present further details about the numerical simulation of the discrete and continuum
models (Section S.1), a list of the parameter values used (Section S.2), and additional figures to
support and extend the continuum model results in Section 3 of the main text (Section S.3).

S.1 Numerical methods

Both models were implemented in MATLAB 2016b, as detailed below.

S.1.1 Discrete simulations

The algorithm employed in the discrete stochastic–elastic simulations (see Section 2.1) is sum-
marised as follows. We employ a first reaction method [1] to select the stochastic binding and
unbinding reactions.

Algorithm S1 Discrete stochastic–elastic model

1: Initialise actin and ECM spring networks and relax to mechanical equilibrium.
2: while t̂ < T̂ do
3: Calculate binding and unbinding propensities, ai, based on pairwise distances (where

i ∈ [1, ...N ] and N denotes the number of possible reactions).
4: Generate a uniformly distributed random number, r1, from the interval (0, 1), to calculate

the time elapsed before the next reaction, τ̂ = 1
a0

ln(1/r1). The constant a0 is the sum of

all reaction propensities, a0 =
∑N

i=1 ai.
5: if τ̂ < τ̂max then
6: Generate a second uniformly distributed random number, r2 ∈ (0, 1), and select the

reaction, indexed by µ, such that
∑µ−1

i=1 ai < a0r2 ≤
∑µ

i=1 ai is satisfied.
7: Update the structure of the spring network according to chosen reaction.
8: end if
9: Set t̂ = t̂+ min{τ̂ , τ̂max}. Calculate net forces acting on each point, and update positions

by solving ΣF̂i = 0
10: end while

S.1.2 Continuum simulations

In the continuum model (see Section 2.2), we solve a microscale advection–reaction system (Eq.
13) coupled to a second order macroscale PDE (Eq. 20). The macroscale PDE is solved using
a finite difference scheme, subject to the boundary conditions in Eq. 23.

We discretise the macroscale domain, X ∈ [0, 1], into N points with an equal spacing of ∆X =

1



1/(N − 1). Macroscale variables V , H, and B (defined in Eqs. 8, 21) are discretised into the
vectors v = (V1, V2, ..., VN )T , h = (H1, H2, ...,HN )T , and b = (B1, B2, ..., BN )T , respectively,
where the built-in MATLAB function trapz is used in calculating the elements of h and b from
microscale distributions (see Eq. 21).

By using a second order central difference in Eq. 20, we solve for v through a matrix equation
of the form

v = A−1p, (S1)

where the vector p is given by

p = (αωcos(ωt), γH2, ..., γHN )T , (S2)

and the matrix A is

A =



1 0 0 0 0 . . . 0
1

∆X2 D2
1

∆X2 0 0 . . . 0
0 1

∆X2 D3
1

∆X2 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 1
∆X2 DN−2

1
∆X2 0

0 . . . 0 0 1
∆X2 DN−1

1
∆X2

0 . . . 0 0 0 2
∆X2 DN


. (S3)

The diagonal elements, D2, ..., DN , are given by Di = − 2
∆X2 − γ

δBi, for i ∈ {2, ..., N}, where
Bi are elements of the discretised bound fraction vector, b, as defined above. Eq. S1 is solved
alongside the microscale advection–reaction system (Eq. 13), for which we evolve discretised
microscale distributions, b(x, t;X), using the built-in MATLAB function ode15s with a first
order upwind scheme for the spatial derivatives. We evolve microscale distributions at each of
the N (macroscale) discretised points, and distributions are coupled through the solution of v.

S.2 Parameter values

S.2.1 Dimensionless parameter values

Dimensionless parameter values used in the continuum and discrete simulations, unless otherwise
stated in figure captions, are given below.

Parameter Description Value

KA Cell Stiffness 2
KE ECM Stiffness 4
h Integrin binding range 1
s Maximum integrin range 1.5
h1 Dimensionless unbinding parameter (Eq. 15) 0.5
h2 Dimensionless unbinding parameter (Eq. 15) 0.4
h3 Dimensionless unbinding parameter (Eq. 15) 5000

δ Ratio of microscale binding range, ĥ, to macroscale lengthscale L̂ 0.05

ν Ratio of microscale binding range, ĥ, to microscale characteristic length, l̂. 5
ω Frequency of oscillatory loading 20

Table S1: Dimensionless parameter values for the continuum simulations, unless otherwise stated in figures.
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Parameter Description Value

NIA Number of IA nodes 300
NE Number of E nodes 500
κa Cell Spring Constant 2(NIA-1)
κr Restoring Spring Constant 2(NIA-1)
κe ECM Spring Constant 4(NE-1)
κb Integrin Spring Constant 1.8
h Integrin binding range 1
s Maximum integrin range 1.5
h1 Dimensionless unbinding parameter (Eq. 15) 0.5
h2 Dimensionless unbinding parameter (Eq. 15) 0.4
h3 Dimensionless unbinding parameter (Eq. 15) 5000

δ Ratio of microscale binding range, ĥ, to macroscale lengthscale L̂ 0.05
ω Frequency of oscillatory loading 20

Table S2: Parameter values for the discrete simulations, unless otherwise stated in figures. Note that the cell and
ECM spring constants are scaled by (NIA -1) and (NE-1), respectively, which are the number of cell and ECM
springs that act in series between X = 0 and X = 1 (see Fig. 2).

S.2.2 Dimensional parameter values

The above dimensionless parameters were obtained, where possible, by using dimensional values
from the literature (see below). Some parameters were unknown or widely variable in the
literature (denoted by ∗∗) and are discussed further below.

Parameter Description Range of values Sources Chosen value

T̂ Breathing cycle duration 2.7− 5.8s [2] 3.9s

ω̂
Frequency (angular) of
oscillatory loading

1.08− 2.33s−1 From ω̂ = 2π/T̂ 1.6s−1

ĝ1 Unstressed unbinding rate 0.012− 0.04s−1 [3], [4] 0.04s−1

ĝ2 Unbinding parameter 0.032s−1∗∗

ĝ3 Forced unbinding rate Instantaneous Model choice 400s−1

f̂1 Unstressed binding rate 0.015− 1.5s−1 [4], [5] 0.08s−1∗∗

ĥ Integrin binding range 0− 28nm [6] 20nm

ŝ
Maximum integrin range
before unbinding

28nm+ [6] 30nm

λ̂b Integrin spring constant 0.15− 2pN/nm [7], [8], [9] 0.15pN/nm

ρ̂
Number of integrins per
unit length

0− 0.2nm−1 [10] 0.1nm−1∗∗

l̂ Characteristic length 4nm

L̂ Characteristic length 400nm

Table S3: Dimensional parameter values used to obtain the dimensionless values in Table S1. Parameters that
were unknown or widely variable in the literature are denoted by ∗∗ and are discussed further below.

The unstressed binding rate f̂1 varies widely in the literature, as it depends on a number of
factors including integrin affinity, integrin density and ligand density. Here we have chosen a
rate based on [4, 5]; however, higher values have also been used in the simulations of [9, 11]. The
unbinding parameter, ĝ2, used in the piecewise linear rates (Eq. 3) does not have an equivalent
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in the literature, and was chosen to be of the same order of magnitude as the other reaction
rates, ĝ1 and f̂1. Some parameter values were estimated from known properties of integrins.
The integrin binding ranges, ĥ and ŝ are estimates based on the length of integrins. An upper
bound for ρ̂ is estimated based on integrin diameters, which are typically between 5-10nm [10].
This suggests a maximum value of ρ̂ = 0.2nm−1; however, the integrin density will vary up to
this value depending on the extent of integrin clustering.

The constants K̂A and K̂E in Eq. 9 are given values (240pN and 480pN respectively) such that
the dimensionless stiffness parameters, KA and KE in Eq. 17, are O(1). We make this choice
so that the drag arising from bound integrins, F (X, t), influences the macroscale dynamics via
Eq. 17, since integrins are known to be able to influence cell and ECM deformation.

Naturally there is some uncertainty associated with the above parameters, and we have inves-
tigated the effect of varying some of these. We find that the qualitative behaviours reported in
the main text appear for a range of parameter values, with some examples discussed in Section
S.3.1 and shown in Figs. S1 and S2.

S.3 Additional simulations

Using the continuum model, we can also investigate the effect of varying the oscillation frequency,
material stiffnesses, and binding affinities (Section S.3.1). We show that these parameters affect
the position and width of the bistable region, and demonstrate that the dynamics we observe
can be found for a range of parameter values. In Section S.3.2, we will consider the effect of
varying the waveform representing tidal breathing since, in reality, this will not be perfectly
sinusoidal.

S.3.1 Effect of varying the model parameters

We first consider the effect of varying the oscillation frequency. An increase in the frequency
of applied oscillations results in a decrease in the averaged bound integrin density, 〈Btot〉, on
both stable branches (Fig. S1(a)). This is due to reduced contact times for integrin binding.
The most significant shift occurs in the lower branch where rupture and rebinding must occur
at each cycle; the increased frequency prevents significant binding. The location and size of the
bistable window are also affected; for increased frequencies the lower branch persists for lower
amplitudes, A, and the bistable region widens. The end points of the high and low branches
have been calculated (to the nearest 0.005), giving the widths of the bistable region to be in the
ranges [0.03, 0.04], [0.045, 0.055], and [0.055, 0.065] for ω = 10, 20, and 30 respectively.

The material stiffnesses KA and KE influence the microscale distributions through the parameter
γ that appears in the macroscale relative velocity (Eqs. 20, 21). As seen by Eq. 21, the value of
γ decreases when either KA or KE are increased; similarly, γ increases when either KA or KE are
reduced. Without loss of generality, in Fig. S1(b) we present results corresponding to variations
in KA. We observe that an increased cell or ECM stiffness (i.e. reduced γ) leads to a narrowing
of the bistable region and a significant downward shift in the amplitude of forcing at which
the saddle node bifurcations occur, and where the high branch exists. This is due to increased
propagation of the forcing across the macroscale domain resulting from reduced attenuation
of the oscillatory load (results not shown). For stiffer cells a lower oscillation amplitude can
therefore result in the same degree of bond rupture.

Since binding affinities are specific to integrin type and can vary due to integrin activation and
intracellular signalling [12, 13], we also investigate how the magnitude of and transitions between
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Figure S1: Stable branches in the continuum model (Section 2.2) indicating the values of 〈Btot〉 (Eqs. 27,28)
for: (a) varying frequencies of the oscillatory loading, ω = 10, 20, and 30 (Eq. 18); (b) varying cell stiffnesses,
KA = 1, 2, and 4; and (c) varying integrin binding affinities h1 = 0.25, 0.5 and 1 (Eq. 15). For increased
frequencies, contact times for integrin binding are reduced, leading to lower averaged bound integrin densities.
For increased stiffnesses, there is a significant downward shift in the amplitude of oscillation at which the saddle
node bifurcations occur. Binding affinities affect the magnitude of the stable adhesion states, most notably the
upper branch, as well as the position and width of the bistable region. Unless otherwise stated, dimensionless
parameter values are as in Table S1.
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stable adhesion states respond to variations in binding affinities. In Eq. 15 the rupture rates
involve parameters h1, h2, h3, the ratios of unbinding rates ĝ1, ĝ2, ĝ3 to the maximum binding
rate f̂1 (see Eqs. 2, 3). Here we vary h1, the unbinding rate for integrins at x = 0. We find
that the magnitudes of the high stable states decrease with increased h1 (Fig. S1(c)), since
this state is obtained when adhesion formation and rupture balance, i.e. when the system is
subject to only small fluctuations. Additionally, the bifurcation point on the top branch shifts
to a lower value of A as h1 increases, as deformation-induced rupture will dominate under lower
loading if the bound fraction 〈Btot〉 is reduced. The shift in stable branches is most notable in
the upper branch since the high equilibrium bound state is more sensitive to h1, the unbinding
rate at x = 0, than the low oscillatory rupture state. In Fig. S2 we show the effect of varying h1

with a reduced frequency of oscillatory loading, where the separation in the low branch becomes
more apparent since the integrins spend more time in an unstressed state in this regime. The
separation is still small since the rates h2 and h3, which control the unbinding of integrins in a
stressed state (see Eq. 15), are dominant on this branch.
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Figure S2: Stable branches indicating the values of 〈Btot〉 (Eqs. 26,27) as a function of oscillation amplitude, A,
for different h1 = 0.25, 0.5 and 1 in Eq. 15 for ω = 10. The lower branches separate (compared to in Fig. S1(c)
with ω = 20) due to the lower frequency of oscillations.

S.3.2 Effect of varying the input waveform

Typically, breathing is not perfectly sinusoidal, with a longer time spent on exhalation than
inhalation. Here we have considered how an asymmetric waveform (accounting for physiological
differences in inhalation and exhalation times) may affect the bound integrins, compared to the
sinusoidal waveform used to represent breathing in the main text. We implement the asymmetry
by replacing the sinusoidal displacement condition in Eq. 18 by a boundary condition of the
form

UE(0, t) = Asin(ωt+ αsin(ωt)), (S4)

where A and ω control the amplitude and frequency of oscillation, respectively, and α is a
skewness parameter. Note that Eq. 18 and the results in the main text are recovered when
α = 0. The waveform in Eq. S4 is shown in Fig. S3, where we have chosen to use α = 0.4.
Denoting the inhalation and exhalation times by tI and tE , respectively, this gives tI/tE ≈ 0.62,
which is within the range of ratios reported during tidal breathing in [2]. In the sinusoidal case
used in the main text (Eq. 18), this ratio was tI/tE = 1.
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Figure S3: Plot of the asymmetric waveform used for UE(0, t), given by Eq. S4 with α = 0.4, A = 0.1 and ω = 20.
The times tI and tE represent inhalation and exhalation, respectively, and in this case tI/tE ≈ 0.62.

Since the model is driven by the relative velocity at X = 0 (see Eq. 23 and Section S.1.2), we
differentiate Eq. S4 with respect to time to obtain

V (0, t) = Aω(1 + αcos(ωt))(cos(ωt+ αsin(ωt))). (S5)

Additionally, we have used the zero displacement condition for the cell, UA(0, t) = 0 (Eq. 18).

Timecourses of the total bound fraction, Btot, (Eq. 27) as the oscillation amplitude, A, varies is
shown in Fig. S4. For each amplitude of oscillation we consider a zero (orange) and saturated
(blue) initial condition (Eq. 26), as before. Since the oscillations are now asymmetric (Fig.
S3), the oscillations in the total bound fraction also exhibit asymmetry; there is more adhesion
formation during the longer exhalation period, and the bound fraction therefore reaches a higher
peak than during inhalation. As in Fig. 5 in the main text, for low oscillation amplitudes
we find that adhesion formation dominates and a high bound integrin state is obtained. For
high oscillation amplitudes, adhesion rupture dominates, resulting in a lower bound integrin
regime. For intermediate oscillation amplitudes, bistability is again observed due to shared
loading between integrins; the outcome depends on the initial condition.

In Fig. S5 we show the stable solution surfaces for a range of amplitudes of oscillatory loading,
which corresponds to Fig. 6 in the main text. Since the results are time-averaged over a full
cycle, they exhibit only slight differences. The bistable window is slightly wider (a difference
of 0.05) in the asymmetric case. As the tI/tE value decreases from 1 (corresponding to the
symmetric case), the asymmetry in the bound fraction timecourses will become increasingly
apparent; however, we expect the results to exhibit the same overall dynamics.
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Figure S4: Timecourses illustrating the responses of total bound integrin fractions (Eq. 27) to low (A = 0.1),
intermediate (A = 0.15) and high (A = 0.2) amplitude oscillatory loading. This is applied via the boundary
conditions in Eq. S5 with ω = 20. In each case we consider a zero (orange) and a saturated (blue) initial
condition (Eq. 26).
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Figure S5: Upper (blue) and lower (orange) stable solution surfaces for the asymmetric waveform in Equation S4.
For intermediate values of A there is bistability. The corresponding result with a symmetric waveform is shown
in Fig. 6 in the main text.
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