An enhanced CRISPR repressor for targeted mammalian gene regulation

Nan Cher Yeo^{1,2, †}, Alejandro Chavez^{3,†,*}, Alissa Lance-Byrne¹, Yingleong Chan^{1,2,Φ}, David Menn^{4,Φ}, Denitsa Milanova^{1,2,Φ}, Chih-Chung Kuo^{5,6,Φ}, Xiaoge Guo^{1,2}, Sumana Sharma⁷, Angela Tung¹, Ryan J. Cecchi¹, Marcelle Tuttle¹, Swechchha Pradhan⁴, Elaine T Lim^{1,2}, Noah Davidsohn^{1,2}, Mo R. Ebrahimkhani^{4,8}, James J. Collins^{1,9,10,11,11}, Nathan E. Lewis^{5,6,13}, Samira Kiani^{4,*}, and George M. Church^{1,2,*}

¹Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.

²Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. ³Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA

⁴School of Biological and Health Systems Engineering, Ira. A Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA.

⁵Department of Bioengineering, University of California, San Diego, USA. ⁶Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, USA.

⁷Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB101SA, United Kingdom.

⁸Division of Gastroenterology and Hematology, Mayo Clinic College of Medicine and Science, Phoenix, Arizona, USA.

⁹Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

¹⁰Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

¹¹Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

¹²Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.

¹³Department of Pediatrics, University of California, San Diego, USA

[†]Co-first authors

^ФThese authors contributed equally to the manuscript

^{*}Correspondence can be addressed to: Alejandro Chavez E-mail: ac4304@cumc.columbia.edu

Samira Kiani E-mail: samira.Kiani@asu.edu

George M. Church E-mail: gchurch@genetics.med.harvard.edu **Supplementary Table 1** Sequences of dCas9-Krab and dCas9-KRAB-MeCP2

>dCas9-KRAB

Labels: dCas9; SV40 nucleus localization signal (NLS); KRAB; glycine serinerich linker (bold); stop codon (italic)

ATGGACAAGAAGTACTCCATTGGGCTCGCTATCGGCACAAACAGCGTCGGCTGGGCCGTCA TTACGGACGAGTACAAGGTGCCGAGCAAAAAATTCAAAGTTCTGGGCAATACCGATCGCCA CAGCATAAAGAAGAACCTCATTGGCGCCCTCCTGTTCGACTCCGGGGAGACGGCCGAAGC GGAGTCCTTTTTGGTGGAGGAGGATAAAAAGCACGAGCGCCACCCAATCTTTGGCAATATC GTGGACGAGGTGGCGTACCATGAAAAGTACCCAACCATATATCATCTGAGGAAGAAGCTTG TTTCGGGGACACTTCCTCATCGAGGGGGGCCTGAACCCAGACAACAGCGATGTCGAtAAACT CTTTATCCAACTGGTTCAGACTTACAATCAGCTTTTCGAAGAGAACCCGATCAACGCATCCG GAGTTGACGCCAAAGCAATCCTGAGCGCTAGGCTGTCCAAATCCCGGCGGCTCGAAAACCT CATCGCACAGCTCCCTGGGGAGAAGAAGAACGGCCTGTTTGGTAATCTTATCGCCCTGTCA CTCGGGCTGACCCCCAACTTTAAATCTAACTTCGACCTGGCCGAAGATGCCAAGCTTCAACT GAGCAAAGACACCTACGATGATGATCTCGACAATCTGCTGGCCCAGATCGGCGACCAGTAC GCAGACCTTTTTTTGGCGGCAAAGAACCTGTCAGACGCCATTCTGCTGAGTGATATTCTGCG AGTGAACACGGAGATCACCAAAGCTCCGCTGAGCGCTAGTATGATCAAGCGCTATGATGAG CACCACCAAGACTTGACTTTGCTGAAGGCCCTTGTCAGACAGCAACTGCCTGAGAAGTACAA GGAAATTTTCTTCGATCAGTCTAAAAATGGCTACGCCGGATACATTGACGGCGGAGCAAGCC AGGAGGAATTTTACAAATTTATTAAGCCCATCTTGGAAAAAATGGACGGCACCGAGGAGCTG CTGGTAAAGCTTAACAGAGAAGATCTGTTGCGCAAACAGCGCACTTTCGACAATGGAAGCAT CCCCCACCAGATTCACCTGGGCGAACTGCACGCTATCCTCAGGCGGCAAGAGGATTTCTAC CCCTTTTTGAAAGATAACAGGGAAAAGATTGAGAAAATCCTCACATTTCGGATACCCTACTAT GTAGGCCCCCTCGCCCGGGGAAATTCCAGATTCGCGTGGATGACTCGCAAATCAGAAGAGA CCATCACTCCCTGGAACTTCGAGGAAGTCGTGGATAAGGGGGCCTCTGCCCAGTCCTTCAT CGAAAGGATGACTAACTTTGATAAAAATCTGCCTAACGAAAAGGTGCTTCCTAAACACTCTC GCTGTACGAGTACTTCACAGTTTATAACGAGCTCACCAAGGTCAAATACGTCACAGAAGGGA TGAGAAAGCCAGCATTCCTGTCTGGAGAGCAGAAGAAAGCTATCGTGGACCTCCTCTTCAA GACGAACCGGAAAGTTACCGTGAAACAGCTCAAAGAAGACTATTTCAAAAAGATTGAATGTT TCGACTCTGTTGAAATCAGCGGAGTGGAGGATCGCTTCAACGCATCCCTGGGAACGTATCA CGATCTCCTGAAAATCATTAAAGACAAGGACTTCCTGGACAATGAGGAGAACGAGGACATTC TTGAGGACATTGTCCTCACCCTTACGTTGTTTGAAGATAGGGAGATGATTGAAGAACGCTTG AAAACTTACGCTCATCTCTCGACGACAAAGTCATGAAACAGCTCAAGAGGCGCCGATATAC AGGATGGGGGGGGCTGTCAAGAAAACTGATCAATGGGATCCGAGACAAGCAGAGTGGAAA GACAATCCTGGATTTTCTTAAGTCCGATGGATTTGCCAACCGGAACTTCATGCAGTTGATCC ATGATGACTCTCTCACCTTTAAGGAGGACATCCAGAAAGCACAAGTTTCTGGCCAGGGGGGA CAGTCTTCACGAGCACATCGCTAATCTTGCAGGTAGCCCAGCTATCAAAAAGGGAATACTGC AGACCGTTAAGGTCGTGGATGAACTCGTCAAAGTAATGGGAAGGCATAAGCCCGAGAATAT CGTTATCGAGATGGCCCGAGAGAACCAAACTACCCAGAAGGGACAGAAGAACAGTAGGGAA AGGATGAAGAGGATTGAAGAGGGTATAAAAGAACTGGGGTCCCAAATCCTTAAGGAACACC CAGTTGAAAACACCCAGCTTCAGAATGAGAAGCTCTACCTGTACTACCTGCAGAACGGCAG GGACATGTACGTGGATCAGGAACTGGACATCAATCGGCTCTCCGACTACGACGTGGCTGCT ATCGTGCCCCAGTCTTTTCTCAAAGATGATTCTATTGATAATAAAGTGTTGACAAGATCCGAT AAAgcTAGAGGGAAGAGTGATAACGTCCCCTCAGAAGAAGTTGTCAAGAAAATGAAAAATTAT TGGCGGCAGCTGCTGAACGCCAAACTGATCACACAACGGAAGTTCGATAATCTGACTAAGG CTGAACGAGGTGGCCTGTCTGAGTTGGATAAAGCCGGCTTCATCAAAAGGCAGCTTGTTGA GACACGCCAGATCACCAAGCACGTGGCCCAAATTCTCGATTCACGCATGAACACCAAGTAC GATGAAAATGACAAACTGATTCGAGAGGTGAAAGTTATTACTCTGAAGTCTAAGCTGGTCTC ATGATGCCTACCTGAATGCAGTGGTAGGCACTGCACTTATCAAAAAATATCCCAAGCTTGAA

TCTGAATTTGTTTACGGAGACTATAAAGTGTACGATGTTAGGAAAATGATCGCAAAGTCTGAG CAGGAAATAGGCAAGGCCACCGCTAAGTACTTCTTTTACAGCAATATTATGAATTTTTCAAG AAACAGGAGAAATCGTGTGGGACAAGGGTAGGGATTTCGCGACAGTCCGGAAGGTCCTGTC CATGCCGCAGGTGAACATCGTTAAAAAGACCGAAGTACAGACCGGAGGCTTCTCCAAGGAA AGAAATACGGCGGATTCGATTCTCCTACAGTCGCTTACAGTGTACTGGTTGTGGCCAAAGTG GAGAAAGGGAAGTCTAAAAAACTCAAAAGCGTCAAGGAACTGCTGGGCATCACAATCATGG AGCGATCAAGCTTCGAAAAAAACCCCCATCGACTTTCTCGAGGCGAAAGGATATAAAGAGGTC AAAAAGACCTCATCATTAAGCTTCCCAAGTACTCTCTCTTTGAGCTTGAAAACGGCCGGAA ACGAATGCTCGCTAGTGCGGGCGAGCTGCAGAAAGGTAACGAGCTGGCACTGCCCTCTAAA TACGTTAATTTCTTGTATCTGGCCAGCCACTATGAAAAGCTCAAAGGGTCTCCCGAAGATAA GAGCAGAAGCAGCTGTTCGTGGAACAACACAAAACACTACCTTGATGAGATCATCGAGCAAAT AAGCGAATTCTCCAAAAGAGTGATCCTCGCCGACGCTAACCTCGATAAGGTGCTTTCTGCTT ACAATAAGCACAGGGATAAGCCCATCAGGGAGCAGGCAGAAAACATTATCCACTTGTTTACT CTGACCAACTTGGGCGCGCCTGCAGCCTTCAAGTACTTCGACACCACCATAGACAGAAAGC GGTACACCTCTACAAAGGAGGTCCTGGACGCCACACTGATTCATCAGTCAATTACGGGGGCT CTATGAAACAAGAATCGACCTCTCTCAGCTCGGTGGAGACAGCAGGGCTGACCCCAAGAAC AAGAGGAAGGTGAGTGGTGGAGGAAGTGGCGGGTCAGGGTCG<mark>ATGGACGCGAAATCACTT</mark> ACGGCATGGTCGAGAACACTGGTTACGTTCAAGGACGTGTTTGTGGACTTTACACGTGAGG AGTGGAAATTGCTGGATACTGCGCAACAAATTGTGTATCGAAATGTCATGCTTGAGAATTAC AAGAACCTCGTCAGTCTCGGATACCAGTTGACGAAACCGGATGTGATCCTTAGGCTCGAAAA GGGGGAAGAACCTTGGCTGGTATAG

>dCas9-KRAB-MeCP2

CCATCACTCCCTGGAACTTCGAGGAAGTCGTGGATAAGGGGGCCTCTGCCCAGTCCTTCAT CGAAAGGATGACTAACTTTGATAAAAATCTGCCTAACGAAAAGGTGCTTCCTAAACACTCTC GCTGTACGAGTACTTCACAGTTTATAACGAGCTCACCAAGGTCAAATACGTCACAGAAGGGA TGAGAAAGCCAGCATTCCTGTCTGGAGAGCAGAAGAAGCTATCGTGGACCTCCTCTTCAA GACGAACCGGAAAGTTACCGTGAAACAGCTCAAAGAAGACTATTTCAAAAAGATTGAATGTT TCGACTCTGTTGAAATCAGCGGAGTGGAGGATCGCTTCAACGCATCCCTGGGAACGTATCA CGATCTCCTGAAAATCATTAAAGACAAGGACTTCCTGGACAATGAGGAGAACGAGGACATTC TTGAGGACATTGTCCTCACCCTTACGTTGTTTGAAGATAGGGAGATGATTGAAGAACGCTTG AAAACTTACGCTCATCTCTCGACGACAAAGTCATGAAACAGCTCAAGAGGCGCCGATATAC AGGATGGGGGGGGCTGTCAAGAAAACTGATCAATGGGATCCGAGACAAGCAGAGTGGAAA GACAATCCTGGATTTTCTTAAGTCCGATGGATTTGCCAACCGGAACTTCATGCAGTTGATCC ATGATGACTCTCTCACCTTTAAGGAGGACATCCAGAAAGCACAAGTTTCTGGCCAGGGGGGA CAGTCTTCACGAGCACATCGCTAATCTTGCAGGTAGCCCAGCTATCAAAAAGGGAATACTGC AGACCGTTAAGGTCGTGGATGAACTCGTCAAAGTAATGGGAAGGCATAAGCCCGAGAATAT CGTTATCGAGATGGCCCGAGAGAACCAAACTACCCAGAAGGGACAGAAGAACAGTAGGGAA AGGATGAAGAGGATTGAAGAGGGTATAAAAGAACTGGGGTCCCAAATCCTTAAGGAACACC CAGTTGAAAACACCCAGCTTCAGAATGAGAAGCTCTACCTGTACTACCTGCAGAACGGCAG GGACATGTACGTGGATCAGGAACTGGACATCAATCGGCTCTCCGACTACGACGTGGCTGCT ATCGTGCCCCAGTCTTTTCTCAAAGATGATTCTATTGATAATAAAGTGTTGACAAGATCCGAT AAAgcTAGAGGGAAGAGTGATAACGTCCCCTCAGAAGAAGTTGTCAAGAAAATGAAAAATTAT TGGCGGCAGCTGCTGAACGCCAAACTGATCACACACGGAAGTTCGATAATCTGACTAAGG CTGAACGAGGTGGCCTGTCTGAGTTGGATAAAGCCGGCTTCATCAAAAGGCAGCTTGTTGA GACACGCCAGATCACCAAGCACGTGGCCCAAATTCTCGATTCACGCATGAACACCAAGTAC GATGAAAATGACAAACTGATTCGAGAGGTGAAAGTTATTACTCTGAAGTCTAAGCTGGTCTC ATGATGCCTACCTGAATGCAGTGGTAGGCACTGCACTTATCAAAAAATATCCCAAGCTTGAA TCTGAATTTGTTTACGGAGACTATAAAGTGTACGATGTTAGGAAAATGATCGCAAAGTCTGAG CAGGAAATAGGCAAGGCCACCGCTAAGTACTTCTTTTACAGCAATATTATGAATTTTTCAAG AAACAGGAGAAATCGTGTGGGACAAGGGTAGGGATTTCGCGACAGTCCGGAAGGTCCTGTC CATGCCGCAGGTGAACATCGTTAAAAAGACCGAAGTACAGACCGGAGGCTTCTCCAAGGAA AGAAATACGGCGGATTCGATTCTCCTACAGTCGCTTACAGTGTACTGGTTGTGGCCAAAGTG GAGAAAGGGAAGTCTAAAAAACTCAAAAGCGTCAAGGAACTGCTGGGCATCACAATCATGG AGCGATCAAGCTTCGAAAAAAACCCCCATCGACTTTCTCGAGGCGAAAGGATATAAAGAGGTC AAAAAGACCTCATCATTAAGCTTCCCAAGTACTCTCTCTTTGAGCTTGAAAACGGCCGGAA ACGAATGCTCGCTAGTGCGGGCGAGCTGCAGAAAGGTAACGAGCTGGCACTGCCCTCTAAA TACGTTAATTTCTTGTATCTGGCCAGCCACTATGAAAAGCTCAAAGGGTCTCCCGAAGATAAT GAGCAGAAGCAGCTGTTCGTGGAACAACACAACACTACCTTGATGAGATCATCGAGCAAAT AAGCGAATTCTCCAAAAGAGTGATCCTCGCCGACGCTAACCTCGATAAGGTGCTTTCTGCTT ACAATAAGCACAGGGATAAGCCCATCAGGGAGCAGGCAGAAAACATTATCCACTTGTTTACT CTGACCAACTTGGGCGCGCCTGCAGCCTTCAAGTACTTCGACACCACCATAGACAGAAAGC GGTACACCTCTACAAAGGAGGTCCTGGACGCCACACTGATTCATCAGTCAATTACGGGGGCT CTATGAAACAAGAATCGACCTCTCTCAGCTCGGTGGAGACAGCAGGGCTGACCCCAAGAAG AAGAGGAAGGTGAGTGGAGGAAGTGGCGGGTCAGGGTCGATGGACGCGAAATCACTT ACGGCATGGTCGAGAACACTGGTTACGTTCAAGGACGTGTTTGTGGACTTTACACGTGAGG AGTGGAAATTGCTGGATACTGCGCAACAAATTGTGTATCGAAATGTCATGCTTGAGAATTAC AAGAACCTCGTCAGTCTCGGATACCAGTTGACGAAACCGGATGTGATCCTTAGGCTCGAAAA GGGGGAAGAACCTTGGCTGGTATCGGGAGGTGGTTCGGGTGGCTCTGGATCAAGCCCAAA GAAGAAACGGAAGGTGGAAGCCTCAGTGCAGGTGAAAAGGGTGCTGGAAAAATCCCCCGG CAAACTCCTCGTGAAGATGCCCTTCCAGGCTTCCCCTGGCGGAAAAGGTGAAGGGGGGTGG **GCTGACCCTCAGGCCATTCCAAAGAAACGGGGACGCAAGCCAGGGTCCGTGGTCGCAGCT** GCAGCAGCTGAGGCTAAGAAAAAGGCAGTGAAGGAAAGCTCCATCCGCAGTGTGCAGGAG ACTGTCCTGCCCATCAAGAAGAGGAAGACTAGGGAGACCGTGTCCATCGAGGTCAAAGAAG TGGTCAAGCCCCTGCTCGTGTCCACCCTGGGCGAAAAATCTGGAAAGGGGCTCAAAACATG

CAAGTCACCTGGACGGAAAAGCAAGGAGTCTAGTCCAAAGGGGCGCTCAAGCTCCGCTTCT AGTCCCCCTAAAAAGGAACACCATCACCATCACCATCACGCCGAGTCTCCTAAGGCTCCTAT GCCACTGCTCCCACCACCTCCACCACCTGAGCCACAGTCAAGCGAAGACCCCATCAGCCCA CCCGAGCCTCAGGATCTGTCCTCTAGTATTTGCAAAGAGGAAAAGATGCCCAGAGCAGGCA GCCTGGAGAGTGATGGCTGTCCAAAAGAACCCGCCAAGACCCAGCCTATGGTGGCAGCCG CTGCAACTACCACCACAACCAACTACCACAGTGGCCGAAAAATACAAGCATCGCGGCGA GGGCGAACGAAAGGACATTGTGTCAAAGCTCCATGCCCAGACCTAACCGGGAGGAACCAGT CGATAGTAGGACACCGTGACTGAGAGAGTCTCA **Supplementary Table 2** A list of differentially expressed (DE) genes with log_2 FC above 1.5 threshold in RNA-seq experiment. (Note that all of these genes have positive log_2 FC, which corresponds to increased transcriptional activity).

...

dCas9					
	Log₂FC	Log ₂ CPM	P-Value	FDR	
HSPA6 ¹	6.57	8.3400	2.00E-25	2.74E-21	
DNAJB1 ¹	2.24	8.2800	6.09E-23	4.16E-19	
HSPA7 ¹	7.28	2.1290	9.68E-16	4.41E-12	
HSPA1A ¹	4.69	2.7660	4.75E-13	1.62E-09	
CRYAB ¹	6.55	2.0320	4.09E-12	1.12E-08	
ANKRD1 ²	2.54	2.3950	4.02E-11	9.16E-08	
ZFAND2A ¹	1.65	4.2370	3.74E-10	7.29E-07	
ATF3 ²	1.11	6.0300	2.30E-07	3.93E-04	
DNAH17 ¹	1.74	3.5590	2.92E-07	4.44E-04	
SCG2	4.11	0.1960	1.35E-05	1.75E-02	
VGF ¹	2.33	1.9290	1.41E-05	1.75E-02	
FOS ²	1.41	2.9560	1.65E-05	1.88E-02	
GDF15 ¹	2.43	1.7580	2.68E-05	2.82E-02	
		dCas9-KRAB	8		
	Log₂FC	Log₂CPM	P-Value	FDR	
HSPA6 ¹	7.19	8.3398	2.26E-26	2.65E-22	
DNAJB1 ¹	2.62	8.2801	3.88E-26	2.65E-22	
HSPA1A ¹	6.36	2.7657	8.82E-21	4.02E-17	
HMOX1	2.07	5.5632	1.31E-20	4.48E-17	
CRYAB ¹	8.14	2.0315	2.86E-18	7.82E-15	
HSPA7 ¹	7.82	2.1293	5.79E-18	1.32E-14	
VGF ¹	4.6	1.9288	4.29E-16	8.37E-13	
ZFAND2A ¹	2	4.2367	6.13E-14	1.05E-10	
PPP1R15A ³	1.47	5.3442	2.88E-12	4.36E-09	
GDF15 ¹	4.08	1.7576	6.69E-12	9.13E-09	
DNAH17 ¹	2.34	3.5595	2.04E-11	2.53E-08	
CLU	1.49	4.588	6.38E-11	7.26E-08	
SERPINH1	1.24	6.3749	1.08E-10	1.14E-07	
FOXJ1 ³	6.5	0.4447	1.47E-10	1.43E-07	
ANXA1	2.55	1.9991	1.02E-09	9.33E-07	
FOS ²	1.86	2.9564	3.62E-09	3.09E-06	
NCRNA00306	3.6	0.6114	1.87E-08	1.50E-05	
CSRNP1	1.32	4.5789	2.82E-08	2.14E-05	
ANKRD1 ²	2	2.3946	1.28E-07	9.22E-05	

ACHE	1.89	2.0935	2.28E-06	1.56E-03
SCG2	4.28	0.1963	4.42E-06	2.75E-03
ATF3 ²	1.02	6.0304	4.42E-06	2.75E-03
HLA-G	3.54	-0.0433	5.02E-06	2.98E-03
INPP5D ³	2.93	0.983	5.69E-06	3.24E-03
RELB	1.56	2.6216	6.66E-06	3.64E-03
PNLDC1	3.2	0.0906	8.19E-06	4.15E-03
CYP4F3	7.12	-0.4274	8.21E-06	4.15E-03
MMP12	4.58	-0.6846	9.52E-06	4.64E-03
TUBB3	1.15	3.9455	1.39E-05	6.53E-03
PLK2	1.23	3.6057	1.52E-05	6.92E-03
IRX4	2.55	0.425	2.43E-05	1.07E-02
DUSP8	1.22	3.6476	3.69E-05	1.57E-02
FERMT3	2.22	0.6882	5.66E-05	2.34E-02
ACRC	1.63	1.6191	7.17E-05	2.88E-02
IL11	1.92	0.9971	9.89E-05	3.86E-02
	dCa	as9-KRAB-Me	CP2	
	Log₂FC	Log ₂ CPM	P-Value	FDR
HSPA6 ¹	6.7	8.34	1.27E-25	1.73E-21
DNAJB1 ¹	2.24	8.28	6.26E-23	4.28E-19
HSPA1A ¹	5.8	2.766	4.26E-18	1.94E-14
HSPA7 ¹	6.99	2.129	2.26E-14	7.71E-11
CRYAB ¹	6.59	2 0 2 2		
	0.00	2.032	4.73E-12	1.29E-08
DNAH17 ¹	2.43	3.559	4.73E-12 8.96E-12	1.29E-08 2.04E-08
INPP5D ³	2.43 3.96	3.559 0.983	4.73E-12 8.96E-12 1.65E-09	1.29E-08 2.04E-08 3.23E-06
DNAH17 ¹ INPP5D ³ GDF15 ¹	2.43 3.96 3.29	2.032 3.559 0.983 1.758	4.73E-12 8.96E-12 1.65E-09 2.00E-08	1.29E-08 2.04E-08 3.23E-06 3.41E-05
DNAH17 ¹ INPP5D ³ GDF15 ¹ CYP4F3	2.43 3.96 3.29 7.81	2.032 3.559 0.983 1.758 -0.427	4.73E-12 8.96E-12 1.65E-09 2.00E-08 3.40E-07	1.29E-08 2.04E-08 3.23E-06 3.41E-05 5.16E-04
DNAH17 ¹ INPP5D ³ GDF15 ¹ CYP4F3 FOXJ1 ³	2.43 3.96 3.29 7.81 5.41	2.032 3.559 0.983 1.758 -0.427 0.445	4.73E-12 8.96E-12 1.65E-09 2.00E-08 3.40E-07 4.53E-07	1.29E-08 2.04E-08 3.23E-06 3.41E-05 5.16E-04 6.19E-04
DNAH17 ¹ INPP5D ³ GDF15 ¹ CYP4F3 FOXJ1 ³ ZFAND2A ¹	2.43 3.96 3.29 7.81 5.41 1.33	2.032 3.559 0.983 1.758 -0.427 0.445 4.237	4.73E-12 8.96E-12 1.65E-09 2.00E-08 3.40E-07 4.53E-07 1.24E-06	1.29E-08 2.04E-08 3.23E-06 3.41E-05 5.16E-04 6.19E-04 1.54E-03
DNAH17 ¹ INPP5D ³ GDF15 ¹ CYP4F3 FOXJ1 ³ ZFAND2A ¹ PPP1R15A ³	2.43 3.96 3.29 7.81 5.41 1.33 1.09	2.032 3.559 0.983 1.758 -0.427 0.445 4.237 5.344	4.73E-12 8.96E-12 1.65E-09 2.00E-08 3.40E-07 4.53E-07 1.24E-06 1.46E-06	1.29E-08 2.04E-08 3.23E-06 3.41E-05 5.16E-04 6.19E-04 1.54E-03 1.66E-03
DNAH17 ¹ INPP5D ³ GDF15 ¹ CYP4F3 FOXJ1 ³ ZFAND2A ¹ PPP1R15A ³ VGF ¹	2.43 3.96 3.29 7.81 5.41 1.33 1.09 2.55	2.032 3.559 0.983 1.758 -0.427 0.445 4.237 5.344 1.929	4.73E-12 8.96E-12 1.65E-09 2.00E-08 3.40E-07 4.53E-07 1.24E-06 1.46E-06 2.43E-06	1.29E-08 2.04E-08 3.23E-06 3.41E-05 5.16E-04 6.19E-04 1.54E-03 1.66E-03 2.56E-03
DNAH17 ¹ INPP5D ³ GDF15 ¹ CYP4F3 FOXJ1 ³ ZFAND2A ¹ PPP1R15A ³ VGF ¹ NCRNA00306	2.43 3.96 3.29 7.81 5.41 1.33 1.09 2.55 2.75	2.032 3.559 0.983 1.758 -0.427 0.445 4.237 5.344 1.929 0.611	4.73E-12 8.96E-12 1.65E-09 2.00E-08 3.40E-07 4.53E-07 1.24E-06 1.46E-06 2.43E-06 2.56E-05	1.29E-08 2.04E-08 3.23E-06 3.41E-05 5.16E-04 6.19E-04 1.54E-03 1.66E-03 2.56E-03 2.50E-02
DNAH17 ¹ INPP5D ³ GDF15 ¹ CYP4F3 FOXJ1 ³ ZFAND2A ¹ PPP1R15A ³ VGF ¹ NCRNA00306 DUSP8 ³	2.43 3.96 3.29 7.81 5.41 1.33 1.09 2.55 2.75 1.23	2.032 3.559 0.983 1.758 -0.427 0.445 4.237 5.344 1.929 0.611 3.648	4.73E-12 8.96E-12 1.65E-09 2.00E-08 3.40E-07 4.53E-07 1.24E-06 1.46E-06 2.43E-06 2.56E-05 3.32E-05	1.29E-08 2.04E-08 3.23E-06 3.41E-05 5.16E-04 6.19E-04 1.54E-03 1.66E-03 2.56E-03 2.50E-02 2.92E-02
DNAH17 ¹ INPP5D ³ GDF15 ¹ CYP4F3 FOXJ1 ³ ZFAND2A ¹ PPP1R15A ³ VGF ¹ NCRNA00306 DUSP8 ³ PLA2G4C	2.43 3.96 3.29 7.81 5.41 1.33 1.09 2.55 2.75 1.23 1.89	2.032 3.559 0.983 1.758 -0.427 0.445 4.237 5.344 1.929 0.611 3.648 1.495	4.73E-12 8.96E-12 1.65E-09 2.00E-08 3.40E-07 4.53E-07 1.24E-06 1.46E-06 2.43E-06 2.56E-05 3.32E-05 3.55E-05	1.29E-08 2.04E-08 3.23E-06 3.41E-05 5.16E-04 6.19E-04 1.54E-03 1.66E-03 2.56E-03 2.50E-02 2.92E-02 2.92E-02

Note: ¹ indicates genes common to all three repressor groups, ² indicates common genes between dCas9 and dCas9-KRAB, and ³ indicates common genes between dCas9-KRAB and dCas9-KRAB-MeCP2. FC = fold-change, CPM = counts per million, FDR = false discovery rate. n=2 biologically independent samples. For DE analyses, see **Supplementary Note 2**.

dCas9-KRAB				
	Log₂FC	Log ₂ CPM	P-Value	FDR
EIF5B ¹	-0.59	5.4743	6.88E-07	2.54E-04
TMEM44	-1.329	2.2374	5.03E-06	1.37E-03
HNRNPA2B1 ¹	-0.463	8.6101	1.72E-05	3.86E-03
HNRNPD	-0.451	5.9149	2.69E-05	5.74E-03
HIST1H2AE	-0.822	3.4547	4.20E-05	8.44E-03
TAF15	-0.497	4.9187	1.88E-04	3.02E-02
NFXL1	-0.444	5.0202	2.40E-04	3.62E-02
ODZ3	-0.452	4.8766	2.44E-04	3.62E-02
	dC	as9-KRAB-Me	CP2	
	Log₂FC	Log ₂ CPM	P-Value	FDR
EIF5B ¹	-0.63	5.474	2.87E-07	1.87E-04
HNRNPA2B1 ¹	-0.427	8.61	5.75E-05	1.96E-02
LRRFIP1	-0.398	5.767	1.54E-04	4.34E-02
PRPF19	-0.359	6.983	1.55E-04	4.34E-02
RNU6ATAC	-0.662	3.595	1.67E-04	4.36E-02

Supplementary Table 3. A list of down-regulated genes identified in RNA-seq experiment. Note that all of these genes have log₂ FC below 1.5 threshold.

Note: ¹ indicates genes down-regulated in both dCas9-KRAB and dCas9-KRAB-MeCP2 groups. None of the down-regulated genes showed a near sequence match to the *CXCR4* targeting sgRNA. No downregulated genes were observed in the dCas9 group. FC = fold-change, CPM = counts per million, FDR = false discovery rate. n=2 biologically independent samples. For DE analyses, see **Supplementary Note 2**. **Supplementary Table 4** Mean fold changes of all essential gene-targeting sgRNAs and *p*-values for statistical comparison between essential and non-essential guides in HAP1 lethality screen.

Experiment	Mean essential guides log ₂ OR	P-value [#]
dCas9_day0	-0.008	0.1329
dCas9_day7	0.001	0.669
dCas9_day14	-0.001	0.6289
dCas9-KRAB_day0	-0.015	0.005708
dCas9-KRAB _day7	-0.056	1.83E-07
dCas9-KRAB _day14	-0.081	5.41E-19
dCas9-KRAB-MeCP2_day0	0.031	0.9996
dCas9-KRAB-MeCP2_day7*	-2.358	4.87E-78
dCas9-KRAB-MeCP2_day14**	-2.586	3.52E-80

[#] p-value is derived from one-tailed Welch T-test comparing the log₂ OR of the essential guides versus the log₂ OR of the non-essential guides. See **Supplementary Note 3** for detailed analysis and statistical test. * Log₂ Odds-ratio (log₂ OR) that was -Infinity, i.e. complete depletion, were

* Log_2 Odds-ratio (log_2 OR) that was -Infinity, i.e. complete depletion, were replaced by the least finite OR for day 7, i.e. -7.607176

** log₂ Odds-ratio (log₂ OR) that were -Infinity, i.e. complete depletion, were replaced by the least finite OR for day 14, i.e. -8.867043

Supplementary Table 5 Mean fold changes of all essential gene-targeting sgRNAs and *p*-values for statistical comparison between essential and non-essential guides in SH-SY5Y lethality screen.

Experiment	mean essential guides log2 OR	P-value [#]
dCas9_day0	-0.0517	0.0009321
dCas9_day7	-0.10179	9.92E-16
dCas9_day14	-0.12011	3.76E-20
dCas9_day22	-0.149066	1.31E-23
dCas9-KRAB_day0	-0.1341297	3.79E-22
dCas9-KRAB _day7	-0.3476919	4.72E-37
dCas9-KRAB _day14	-0.3733395	2.16E-44
dCas9-KRAB _day22	-0.386887	2.24E-52
dCas9-KRAB-MeCP2_day0	-0.1937839	5.27E-26
dCas9-KRAB-MeCP2_day7	-0.4740388	2.55E-55
dCas9-KRAB-MeCP2_day14	-0.3774654	1.19E-63
dCas9-KRAB-MeCP2_day22	-0.525382	3.08E-70

[#] p-value is derived from one-tailed Welch T-test comparing the log₂ OR of the essential guides versus the log₂ OR of the non-essential guides. See **Supplementary Note 3** for detailed analysis and statistical test.

Supplementary Table 6 Mean fold changes of all essential gene-targeting sgRNAs and *p*-values for statistical comparison between essential and non-essential guides in HEK293T lethality screen.

Experiment	mean essential guides log2 OR	P-value [#]
dCas9_day0	0.003201572	0.12
dCas9_day7	-0.03381157	1.18E-06
dCas9_day14	-0.05741197	2.43E-08
dCas9-KRAB_day0	-0.07741853	0.02
dCas9-KRAB _day7	-0.06196394	1.53E-14
dCas9-KRAB _day14	-0.007220968	4.15E-15
dCas9-KRAB-MeCP2_day0	-0.03050618	2.34E-06
dCas9-KRAB-MeCP2_day7	-0.120637	7.67E-38
dCas9-KRAB-MeCP2_day14	-0.1226212	4.63E-34

[#] p-value is derived from one-tailed Welch T-test comparing the log₂ OR of the essential guides versus the log₂ OR of the non-essential guides. See **Supplementary Note 3** for detailed analysis and statistical test.

Supplementary Table 7. Shown is the total number of sgRNAs showing depletion within or outside of the optimal targeting window previously defined for repression. Data was based on our pooled essentiality screens where 370 essential gene-targeting sgRNAs were tested.

Targeting window	Total number of essential sgRNAs	Number of significantly depleted sgRNAs with dCas9	Number of significantly depleted sgRNAs with dCas9- KRAB	Number of significantly depleted sgRNAs with dCas9- KRAB- MeCP2
Within -50 to +200bp from TSS	213	35	94	181
Outside -50 to +200bp from TSS	144	19	47	113

a. Summary of depleted sgRNAs in HAP1 cells at day 14

b. Summary of depleted sgRNAs in SH-SY5Y cells at day 22

Targeting window	Total number of essential sgRNAs	Number of significantly depleted sgRNAs with dCas9	Number of significantly depleted sgRNAs with dCas9- KRAB	Number of significantly depleted sgRNAs with dCas9- KRAB- MeCP2
Within -50 to +200bp from TSS	213	75	117	149
Outside -50 to +200bp from TSS	144	27	58	77

C.	Summary	of depleted	sgRNAs in 293T	cells at day 14
				1

Targeting window	Total number of essential sgRNAs	Number of significantly depleted sgRNAs with dCas9	Number of significantly depleted sgRNAs with dCas9- KRAB	Number of significantly depleted sgRNAs with dCas9- KRAB- MeCP2
Within -50 to +200bp from TSS	213	50	64	84
Outside -50 to +200bp from TSS	144	26	29	49

Supplementary Table 8 Sequence of oligos used to construct dual guide RNA library

Target	Sequence of oligos used for cloning	Note
aenes	<u> </u>	
5		
BLM	[TTTTCGTCTCTCACCG]	first spacer BLM_1
	AGGAAACGGAAGAACCCGAG	
	[gttttagagctatgctgaaaagca]	
WRN	[TTTTCGTCTCTCACCG]	first spacer WRN_1
	CCGGCTTGTACTCGGCAGCG	
	[gttttagagctatgctgaaaagca]	
RECQL1	[TTTTCGTCTCTCACCG]	first spacer RecQL1_1
	GCTGAACGGACCGACCCGGA	
	[gttttagagctatgctgaaaagca]	
RECQL4	[TTTTCGTCTCTCACCG]	first spacer RecQL4_1
	TCGCTGGACGATCGCAAGCG	
	[gttttagagctatgctgaaaagca]	
RECQL5	[TTTTCGTCTCTCACCG]	first spacer RecQL5_1
	CGACGGATATAAGATTGCGT	
	[gttttagagctatgctgaaaagca]	
BLM	[TTTTCGTCTCTCACCG]	first spacer BLM_2
	CCTCGCACGCAGACTCCTAG	
	[gttttagagctatgctgaaaagca]	
WRN	[TTTTCGTCTCTCACCG]	first spacer WRN_2
	CTAGCACTATAGATACCCCG	
	[gttttagagctatgctgaaaagca]	
RECQL1	[TTTTCGTCTCTCACCG]	first spacer RecQL1_2
	GAGATCGGAGAGTCGGACAC	
	[gttttagagctatgctgaaaagca]	
RECQL4	[TTTTCGTCTCTCACCG]	first spacer RecQL4_2
	TGGAGCGGCTGCGGGACGTG	
	[gttttagagctatgctgaaaagca]	
RECQL5	[TTTTCGTCTCTCACCG]	first spacer RecQL5_2
	TGAGTTGGGGTTGTGTATAG	
	[gttttagagctatgctgaaaagca]	
BLM	[TTTTCGTCTCTCACCG]	first spacer BLM_3
	CCGCTAGGAGTCTGCGTGCG	
	[gttttagagctatgctgaaaagca]	
WRN	[TTTTCGTCTCTCACCG]	first spacer WRN_3
	GATGTGTACTGTGTGCGCCG	
	[gttttagagctatgctgaaaagca]	
RECQL1	[TTTTCGTCTCTCACCG]	first spacer RecQL1_3
	AAGATTTTACTCCCGAGTAG	
	[gttttagagctatgctgaaaagca]	
RECQL4	[TTTTCGTCTCTCACCG]	first spacer RecQL4_3
	CTGGACGATCGCAAGCGCGG	
	[gttttagagctatgctgaaaagca]	
RECQL5	[TTTTCGTCTCTCACCG]	first spacer RecQL5 3
	TTTAATTCTTGGGCGGACCA	
	[gttttagagctatgctgaaaagca]	
GFP	[TTTTCGTCTCTCACCG]	first spacer GFP 1
	CAAGTTCAGCGTGTCCGGCG	. –
	[gttttagagctatgctgaaaagca]	
LACZ	ITTTTCGTCTCTCACCGI	first spacer LACZ 1
	AGGTAGCAGAGCGGGTAAAC	

	[gttttagagctatgctgaaaagca]	
LUC	[TTTTCGTCTCTCACCG]	first spacer LUC_1
	AACGCCTTGATTGACAAGGA	
	[gttttagagctatgctgaaaagca]	
RPL34	[TTTTCGTCTCTCACCG]	first spacer RPL34_1
(ESSENTIA	TGGTGAGCTGTGGCTACTCA	
L GENE)	[gttttagagctatgctgaaaagca]	
RPL11	[TTTTCGTCTCTCACCG]	first spacer RPL11_1
(ESSENTIA	TCTCTTCCTGCTCTCCATCA	
L GENE)	[gttttagagctatgctgaaaagca]	
RPS24	[TTTTCGTCTCTCACCG]	first spacer RPS24_1
(ESSENTIA	CCATCATGGTGAGTCTCCCT	
L GENE)	[gttttagagctatgctgaaaagca]	
GFP	[TTTTCGTCTCTCACCG]	first spacer GFP_2
	CAGCTCGATGCGGTTCACCA	
	[gttttagagctatgctgaaaagca]	
LACZ	[TTTTCGTCTCTCACCG]	first spacer LACZ_2
	TTTGTGGACGAAGTACCGAA	
	[gttttagagctatgctgaaaagca]	
LUC	[TTTTCGTCTCTCACCG]	first spacer LUC_2
	ACAACTTTACCGACCGCGCC	
	[gttttagagctatgctgaaaagca]	
RPL34	[TTTTCGTCTCTCACCG]	first spacer RPL34_2
(ESSENTIA	CTCCTCGGATGGCAGCCGAT	
L GENE)	[gttttagagctatgctgaaaagca]	
RPL11	[TTTTCGTCTCTCACCG]	first spacer RPL11_2
(ESSENTIA	CCAGCTACTCACCGCCATGA	
L GENE)	[gttttagagctatgctgaaaagca]	
RPS24	[TTTTCGTCTCTCACCG]	first spacer RPS24_2
(ESSENTIA	TCCGTGCGCGTTGATATGAT	
L GENE)	[gttttagagctatgctgaaaagca]	
GFP	[TTTTCGTCTCTCACCG]	first spacer GFP_3
	CATGCCGAGAGTGATCCCGG	
	[gttttagagctatgctgaaaagca]	
LACZ	[TTTTCGTCTCTCACCG]	first spacer LACZ_3
	AGGGCGGCTTCGTCTGGGAC	
	[gttttagagctatgctgaaaagca]	
LUC	[TTTTCGTCTCTCACCG]	first spacer LUC_3
	AGCTATTCTGATTACACCCG	
	[gttttagagctatgctgaaaagca]	
RPL34	[TTTTCGTCTCTCACCG]	first spacer RPL34_3
(ESSENTIA	GAATGCAGCAAAGTCCCGGG	
L GENE)	[gttttagagctatgctgaaaagca]	
RPL11	[TTTTCGTCTCTCACCG]	first spacer RPL11_3
(ESSENTIA	CGGCCTGCCATGGATGGCGA	
L GENE)	[gttttagagctatgctgaaaagca]	
RPS24		first spacer RPS24_3
(ESSENTIA	CCGCGTATCCGAGCCATCCG	
L GENE)	[gttttagagctatgctgaaaagca]	
BLM	[TTTTCGTCTCTAAAC]	second spacer BLM_1
	CTCGGGTTCTTCCGTTTCCT[cggtgACCCAGGCGG	
	CGCACAAG]	
WRN	[TTTTCGTCTCTAAAC]	second spacer WRN_1
	CGCTGCCGAGTACAAGCCGG[cggtgACCCAGGCG	
	GCGCACAAG]	

RECQL1	[TTTTCGTCTCTAAAC] TCCGGGTCGGTCCGTTCAGC[cggtgACCCAGGCG GCGCACAAG1	second spacer RecQL1_1
RECQL4	[TTTTCGTCTCTAAAC] CGCTTGCGATCGTCCAGCGA[cggtgACCCAGGCG GCGCACAAG]	second spacer RecQL4_1
RECQL5	[TTTTCGTCTCTAAAC] ACGCAATCTTATATCCGTCG[cggtgACCCAGGCGG CGCACAAG]	second spacer RecQL5_1
CHEK1	[TTTTCGTCTCTAAAC] CCTGGTACCATTCCTCCACC[cggtgACCCAGGCGG CGCACAAG]	second spacer CHEK1_1
CHEK2	[TTTTCGTCTCTAAAC] CCTGGAGCCGCACACTCTCC[cggtgACCCAGGCG GCGCACAAG]	second spacer CHEK2_1
SLX4	[TTTTCGTCTCTAAAC] CCCGGGTGCCGACTCCCAGC[cggtgACCCAGGCG GCGCACAAG]	second spacer SLX4_1
DNA2	[TTTTCGTCTCTAAAC] CCGGTTCCGCTGTCTTTTCT[cggtgACCCAGGCGG CGCACAAG]	second spacer DNA2_1
EME1	[TTTTCGTCTCTAAAC] CTATCAGGAGATCTACTTCC[cggtgACCCAGGCGG CGCACAAG]	second spacer EME1_1
GEN1	[TTTTCGTCTCTAAAC] CTCGGCTTTCCCTTGCCGGC[cggtgACCCAGGCG GCGCACAAG]	second spacer GEN1_1
RNF4	[TTTTCGTCTCTAAAC] ACTTCCGCTTCGGAGGCCTC[cggtgACCCAGGCG GCGCACAAG]	second spacer RNF4_1
SLX1	[TTTTCGTCTCTAAAC] GTCGGCGAGCGCGTACCATT[cggtgACCCAGGCG GCGCACAAG]	second spacer SLX1_1
ТОРЗА	[TTTTCGTCTCTAAAC] CCTCAGCACCGAATCCAGTA[cggtgACCCAGGCG GCGCACAAG]	Second spacer TOP3A_1
ТОРЗВ	[TTTTCGTCTCTAAAC] CTATTTCCGGGTCCAGCCGC[cggtgACCCAGGCG GCGCACAAG]	second spacer TOP3B_1
WDHD1	[TTTTCGTCTCTAAAC] CAGTGGCGGAGGCTCGGTCA[cggtgACCCAGGCG GCGCACAAG]	second spacer WDHD1_1
CHTF8	[TTTTCGTCTCTAAAC] CGCGGCCAACGGGCGACAAC[cggtgACCCAGGCG GCGCACAAG]	second spacer CHTF8_1
SOD1	[TTTTCGTCTCTAAAC] CGTCTCCGCGACTACTTTAT[cggtgACCCAGGCGG CGCACAAG]	second spacer SOD1_1
GFP	[TTTTCGTCTCTAAAC] CGCCGGACACGCTGAACTTG[cggtgACCCAGGCG GCGCACAAG]	second spacer GFP_1
LACZ	[TTTTCGTCTCTAAAC] GTTTACCCGCTCTGCTACCT[cggtgACCCAGGCGG CGCACAAG]	second spacer LACZ_1

TCCTTGTCATCAAGGCGTT[cggtgACCCAGGCGG Construction RPL34 [TTTTCGTCTTAAAC] second spacer RPL34_1 (ESSENTIA GCGCACAAG] second spacer RPL34_1 (ESSENTIA GCGCACAAG] second spacer RPL34_1 (ESSENTIA GCGCACAAG] second spacer RPL11_1 (ESSENTIA GCGCACAAG] second spacer RPL31_1 (ESSENTIA AGGGAGACTCACCATGATGG[cggtgACCCAGGCG second spacer (ESSENTIA AGGGAGACTCACCATGATGG[cggtgACCCAGGCG second spacer (ESSENTIA AGGGAGACTCACCATGATGG[cggtgACCCAGGCG second spacer (ESSENTIA AGGGAGACTCACCATGATGG[cggtgACCCAGGCG second spacer (ESSENTIA GCGCACAAG] second spacer WRN [TTTTCGTCTTAAAC] second spacer (GGGCACAAG] Second spacer ReCQL1_2 (GGCACAAG] Second spacer ReCQL4_2 (TTTTCGTCTTAAAC] second spacer ReCQL4_2 (GCGCACAAG] Second spacer ReCQL4_2 (TTTTCGTCTCTAAAC] second spacer ReCQL5_2 (ECCL4 [TTTTCGTCTCTAAAC] second spacer	LUC	ITTTTCGTCTCTAAACI	second spacer LUC 1
CGCACAAG] RPL34 (ESENTIA L GENE) Second spacer RPL34_1 (ESENTIA L GENE) GCGCACAAG] RPL11 (ESSENTIA L GENE) (TTTCGTCTCTAAAC) RPS24 (TTTTCGTCTCTAAAC) (ESSENTIA L GENE) GCGCACAAG] RPS24 (TTTTCGTCTCTAAAC) (ESSENTIA L GENE) GCGCACAAG] BLM (TTTTCGTCTCTAAAC) (ESSENTIA GCGCACAAG] second spacer RPS24_1 BLM (TTTTCGTCTCTAAC) (EGCGCACAAG] second spacer BLM_2 WRN (TTTCGTCTCTAAC) (GGCGCACAAG] second spacer WRN_2 (GGCGCACAAG) second spacer RECQL1 (TTTCGTCTCTAAC) (GGCGCACAAG) second spacer RECQL4 (TTTCGTCTCTAAC) (GCGCACAAG) second spacer RECQL4 (TTTCGTCTCTAAC) (GCGCACAAG) second spacer RECQL4 (TTTCGTCTCTAAC) (CGCGCACAAG) second spacer RECQL4 (TTTCGTCTCTAAC) (CGCGCACAAG) second spacer (CCCCCTCCCAGCGCGCCCCCAGCGGCGCCCCAGCGGG		TCCTTGTCAATCAAGGCGTTIcaataACCCAGGCGG	
RPL34 TITTCGTCTCTAACCI TGAGTAGCCACAGCTCACCA[cggtgACCCAGGCG second spacer RPL34_1 (ESSENTIA (ESSENTIA) [GGCACAAG] second spacer RPL11_1 (ESSENTIA (ESSENTIA) TGATGGAGACGAGGAAGAGA(cggtgACCCAGGCG (GCGCACAAG] second spacer RPS24_1 RTTTCGTCTCTAAAC] second spacer (ESSENTIA AGGGAGACTCACCATGATGG[cggtgACCCAGGCG GCGCACAAG] second spacer RPS24_1 BLM [TTTTCGTCTCTAAAC] CTAGGAGTCTGCGTGCGAGG[cggtgACCCAGGCG GCGCACAAG] second spacer BLM_2 WRN [TTTTCGTCTCTAAAC] CGGGCACAAG] second spacer WRN_2 CGGGCACAG] second spacer WRN_2 CGGGCACAAG] second spacer WRN_2 RECQL1 [TTTTCGTCTCTAAC] CGGCCACAAG] second spacer RecQL1_2 RECQL4 [TTTTCGTCTCTAAC] CACGTCCCGCAGCCGCCCCCAGCCGGGG CGCCACAAG] second spacer RecQL4_2 RECQL5 [TTTTCGTCTCTAAC] CTTACACAACCCCCAACTCA[cggtgACCCAGGCG CGCCACAAG] second spacer RecQL5_2 CHEK1 [TTTTCGTCTCTAAC] CTTCGCTCTCTAAC] CCCTGCTCTAACC] CCCCCCCCCCCCCCCCCCCGCGGgtgACCCAGGCG GCGCACAAG] second spacer CHEK1_2 CHEK2 [TTTTCGTCTCTAAC] CCCTGGCTCACAGCTCCCCCCGCGGgtgACCCAGGCG GCGCACAAG] second spacer CHEK2_2 SLX4 [TTTTCGTCTCTAAC] CCCGGCACAAG] second spacer DNA2_2 CTCGCCTCACAGCTCCCCCCCC		CGCACAAGI	
(ESSENTIA L GENE) TGAGTAGCCACCAGCTCACCA[cggtgACCCAGGCG L GENE) GGCCACAAG] RPL11 [TTTCGTCTCTAAAC] (ESSENTIA L GENE) GGCCACAAG] RPS24 [TTTTCGTCTCTAAAC] (ESSENTIA L GENE) GGCCACAAG] RPS24 [TTTTCGTCTCTAAC] (ESSENTIA GGCGACAAG] second spacer RPS24 [TTTTCGTCTCTAAC] (ESSENTIA GGCGCACAAG] second spacer RECQL GGCGCACAAG] WRN [TTTTCGTCTCTAAC] (ESGEGGCACAAG] second spacer WRN_2 CGGCACAAG] second spacer RECQL1 [TTTTCGTCTCTAAC] (GCGCACAAG] second spacer RECQL4 [TTTTCGTCTCTAAC] (GCGCACAAG] second spacer RECQL5 [TTTTCGTCTCTAAC] (GCGCACAAG] second spacer (CCCCCCACAAG] second spacer CHEK1 [TTTCGTCTCTAAC] (TTTCGTCTCTAAC] second spacer (CCCCCCCACAG] second spacer CTCCCTCACACAG] second spacer CTCCCCCCACACAG]<	RPL34	ITTTCGTCTCTAAACI	second spacer RPL34_1
L (GENE) GCGCACAAG) RPL11 [TTTTCGTCTCTAAC] second spacer RPL11_1 (ESSENTIA GCGCACAAG] second spacer RPS24 [TTTTCGTCTCTAAC] second spacer (ESSENTIA AGGGAGACCACAG] second spacer RPS24 [TTTTCGTCTCTAAAC] second spacer (ESSENTIA AGGGACACAG] second spacer BLM [TTTTCGTCTCTAAAC] second spacer WRN_2 CGGGCACAAG] second spacer WRN_2 CGGGGCACAAG] WRN [TTTTCGTCTCTAAC] second spacer WRN_2 CGGGCACAAG] second spacer RecQL1_2 CGGGCACAAG] second spacer RecQL1_2 RECQL1 [TTTTCGTCTCTAAC] second spacer RECQL4 [TTTTCGTCTCTAAC] second spacer RECQL5 [TTTTCGTCTCTAAC] second spacer CGCACAAG] Second spacer RecQL5_2 CGCACAAG] Second spacer CHEK1_2 [TTTCGTCTCTAAC] second spacer CHEK1_2 [TTTCGTCTCTAAC] second spacer CTCGCCACAAG] se	(ESSENTIA	TGAGTAGCCACAGCTCACCAIcagtgACCCAGGCG	
RPL11 ITTTGGTCTCTAAC] second spacer RPL11_1 (ESENTIA LGENE) GGCGCACAGG second spacer RPL11_1 (LGENE) GGCGCACAGG second spacer RPS24 [TTTTCGTCTCTAAC] second spacer (LGENE) GGCGCACAAG] second spacer BLM [TTTCGTCTCTAAC] second spacer (CGGCGTACAAG] second spacer WRN_2 GGCGCACAAG] WRN [TTTCGTCTCTAAC] second spacer WRN_2 CGGGGTATCTATACGGCTAG[cggtgACCCAGGCG GCGCACAAG] second spacer RECQL1 [TTTCGTCTCTAAC] second spacer (TTTCGTCTCTAAC] second spacer RecQL1_2 CGGCACAAG] GTGTCCGACTCCCGAGCCGCCCCAGGCGG RecQL4_2 (TTTCGTCTCTAAC] second spacer RecQL4_2 CGCCACAAG] [TTTTCGTCTCTAAC] second spacer CACGTCCCGCAGCGCCCCAGCCCCAGGCG GCGCACAAG] second spacer RECQL5 [TTTCGTCTCTAAC] second spacer CCCCCACAAG] Second spacer CHEK1_2 CCCCCCACAGG GCGCACAAG] second spacer CCCCTCACAGGCTCC	L GENE)	GCGCACAAGI	
IESSENTIA TGATGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGGGG Coords option to ETC_1 ICESSENTIA GGGGACAAGG Second spacer RPS24 ITTTCGTCTCTAAAC] Second spacer LGENE) GCGCACAAG] Second spacer BLM ITTTCGTCTCTAAAC] Second spacer QCGGACAAG] Second spacer RPS24_1 WRN ITTTCGTCTCTAAAC] Second spacer WRN_2 CGGGCACAAG] Second spacer RecQL1 RECQL1 ITTTCGTCTCTAAAC] Second spacer GTGTCCGACCACGGCCGCCTCCA[cggtgACCCAGGCG Second spacer GCGCACAAG] Second spacer RECQL4 ITTTCGTCTCTAAC] Second spacer RECQL5 ITTTCGTCTCTAAC] Second spacer CGCACAAG] CCCCTCACACACCACCCACCCAGCCGG Second spacer CCGCACAAG] Second spacer CHEK1_2 CGCACAAG] CHEK1 ITTTCGTCTCTAAC] Second spacer CHEK1_2 CGCACAAG] CCCTCACCAACGCCACCCAGGCGG Second spacer CHEK2 ITTTCGTCTCTAAC] Second spacer CTCTGACCACAGGCAGCGCGGGGGGAG	RPI 11		second spacer RPI 11 1
LL GENE) GCGCACAAG] second spacer RPS24 [TTTTCGTCTTAAC] second spacer L GENE) GCGCACAAG] second spacer BLM [TTTTCGTCTTAAC] second spacer BLM_2 CTAGGACACAG second spacer WRN_2 CGGCACAAG] second spacer WRN_2 WRN [TTTTCGTCTTAAC] second spacer CGGCACAAG] second spacer WRN_2 CGGCACAAG] second spacer RECQL1 [TTTTCGTCTTAAC] second spacer CGCACAAG] second spacer RECQL4 [TTTTCGTCTTAAC] second spacer CGCACAAG] second spacer RECQL4 [TTTTCGTCTTAAC] second spacer CGCACAAG] second spacer RecQL4_2 GCGCACAAG] second spacer RecQL5_2 CGCACAAG] second spacer RecQL5_2 CGCACAAG] second spacer CHEK1 [TTTCGTCTTAAC] second spacer CHEK1_2 CHEK1 [TTTTCGTCTTAAC] second spacer CCCACAGG CGCACAAG] second spacer CL4 [TTTTCGTCTTAAC] second spacer	(ESSENTIA		
ENERCY DESCRICT Second spacer RPS24 [ITTTCGTCTCTAAAC] second spacer RPS24_1 GCGCACAAG] second spacer BLM_2 BLM [ITTTCGTCTCTAAAC] second spacer BLM_2 WRN [ITTTCGTCTCTAAAC] second spacer WRN_2 CGGGCACAAG] second spacer WRN_2 WRN [ITTTCGTCTCTAAAC] second spacer GTGTCGACACAG] second spacer RECQL1 [ITTTCGTCTCTAAC] second spacer GTGTCCGACACAG] second spacer RECQL4 [ITTTCGTCTCTAAC] second spacer RECQL5 [ITTTCGTCTCTAAC] second spacer CGCACAAG] second spacer RecQL4_2 CGCACAAG] second spacer RecQL4_2 CHEK1 [ITTTCGTCTTAAC] second spacer CTCTCACCACACCCAACTCACCCGggtgACCCAGGCG CHEK1_2 CGCACAAG] second spacer CHEK2 [ITTTCGTCTTAAC] second spacer CTCTCACACATCTACAGCCCGAGGCGGGGGGGGGGGGGG		GCGCACAAG1	
IN DATTIA AGGGAGACTCACCATGATGG[cggtgACCCAGGCG SRDS14_1 L GENE) GCGCACAAG] Second spacer BLM_2 BLM [ITTICGTCTCTAAAC] Second spacer WRN_2 GCGGACAAG] Second spacer WRN_2 WRN [ITTICGTCTTAAAC] Second spacer WRN_2 GCGGACAAG] Second spacer WRN_2 GCGGCACAAG] Second spacer WRN_2 RECQL1 [ITTICGTCTTAAC] Second spacer GCGCACAAG] Second spacer RECQL4 [ITTICGTCTTAAAC] Second spacer CGCACAAG] Second spacer RECQL5 [ITTTCGTCTTAAAC] Second spacer CGCACAAG] Second spacer CHEK1 [ITTTCGTCTTAAAC] Second spacer CCCCACAAG] Second spacer CHEK2 [ITTTCGTCTTAAAC] Second spacer CCCCACAAG] Second spacer CHEK1_2 CCCCCACAAG] Second spacer CHEK1_2 CCTCTGCTCTAAC] Second spacer CHEK2_2 CHEK2 [ITTTCGTCTTAAC] Second spacer CCCCACAAG] Second spacer SLX4_2 CGGACAAG] DNA2 [ITTTCGTCTTAAC] <td>RPS24</td> <td></td> <td>second spacer</td>	RPS24		second spacer
LEGENTM GCGCACAAG] INTEGET BLM [TTTTCGTCTCTAAAC] second spacer BLM_2 CTAGGAGTCTGCGTGCGAGG[cggtgACCCAGGCG GCGCACAAG] second spacer WRN_2 CGGGCACAAG] Second spacer WRN_2 Second spacer WRN_2 CGGGCACAAG] Second spacer WRN_2 Second spacer WRN_2 CGGCGCACAAG] Second spacer WRN_2 Second spacer WRN_2 RECQL1 [TTTTCGTCTCTAAAC] Second spacer RECQL4 [TTTTCGTCTCTAAAC] Second spacer RECQL5 [TTTTCGTCTCTAAAC] Second spacer CGCGCACAAG] Second spacer RecQL4_2 CGCGCACAAG] Second spacer RecQL4_2 RECQL5 [TTTTCGTCTTAAAC] Second spacer CTATACACAACCCCAACCC/caggtgACCCAGGCG Second spacer CCCCTCACTACAGAG Second spacer CTCCTCGTCTCTAAAC] Second spacer CTCTCGTCTCTAAAC] Second spacer CTCTCGTCTCTAAAC] Second spacer CTCTCGTCTCTAACG Second spacer CTCTCGTCTCTAACC] Second spacer CTCTCGTCTCTAACC] Second spacer CTCCCTCGTCTCAACGCGCGCGCGCGCGCGCGCGCGCGCG	(ESSENTIA		RPS24 1
EVEND OBSERTING BLM [ITTTCGTCTCTAAAC] CTAGGAGTCTGCGGGGGGGGGGGGGGGGGGGGGGGGGGG		GCGCACAAGI	
DLIM ITTTGGTGGTGCGAGG[cggtgACCCAGGCG Second spacer DLM_2 WRN [TTTTCGTCTCTAAC] Second spacer CGCGCACAAG] Second spacer RecQL1_2 RECQL1 [TTTTCGTCTCTAAC] Second spacer RECQL4 [TTTTCGTCTCTAAC] Second spacer RECQL5 [TTTTCGTCTCTAAC] Second spacer CGCGCACAAG] Second spacer RecQL4_2 CGCGCACAAG] CACGTCCCGCAGCCGCTCCA[cggtgACCCAGGCG RecQL4_2 CGCGCACAAG] Second spacer RecQL5_2 CGCGCACAAG] CTATACACAACCCCAACTCA[cggtgACCCAGGCGG Second spacer CTATACACAACCCCAACTCA[cggtgACCCAGGCGG CGCACAAG] Second spacer CHEK1 [TTTTCGTCTTAAC] Second spacer CHEK1_2 CGCGCACAAG] Second spacer CHEK1_2 CGCGCACAAG] CCTCGCTGCACGAGCGCGCGGggtgACCCAGGCG Second spacer CTTCGCTGCTAAC] Second spacer CHEK2_2 GCGCACAAG] Second spacer DNA2_2 CTCGGGCACAAG] DNA2 [TTTTCGTCTCTAAC] Second spacer EME1_2 CCCGGCACAAG] Second spacer EME1_2 CCGGCACAAG] Second spacer EME1_2 CCGGCACAAG] Second spacer GEN1_2 CCTGCGCTACCAGCTCTCCAGCGCTCGCCGCGCGGGGGGGG	BIM		second spacer BLM 2
BIAGGACAAG] WRN [TTTTCGTCTCTAAAC] CGGGCACAAG] second spacer RECQL1 [TTTTCGTCTCTAAAC] GTGTCCGACTCTCCGATCTC[oggtgACCCAGGCG RecQL1_2 CGCCCAAG] second spacer RECQL4 [TTTTCGTCTCTAAAC] second spacer CGCGCACAAG] second spacer RECQL4 [TTTTCGTCTCTAAAC] second spacer CACGTCCCGCAGCGCTCCA[cggtgACCCAGGCG GCGCACAAG] RECQL5 [TTTTCGTCTTAAAC] second spacer CTATACACAACCCCACACTCA[cggtgACCCAGGCGG GCGCACAAG] CHEK1 [TTTTCGTCTTAAAC] second spacer CCGCACAAG] second spacer CHEK2 [TTTTCGTCTTAAAC] second spacer CTCGCTCTAAAC] second spacer CCTTACACACCCCCACACCACCCGgtggACCCAGGCG GCGCACAAG] CHEK2 [TTTTCGTCTCTAAAC] second spacer CTTCGCTCTACAC] second spacer CTCGGCTCACAGCGCGCGCGCGCGCGCGGggtgACCCAGGCG GCGCACAAG] DNA2 [TTTTCGTCTCTAAC] second spacer EME1_2 CTCGCCTCACAGCTCCCGCGCGCGCGCGGgggACCCAGGCG second spacer EME1_2 CCCGGCACAAG] second spacer EME1_2	DLIVI		second spacer DEW_2
WRN ITTTCGTCTCTAAAC] second spacer WRN_2 CGGGGATACTATAGTGCTAG[cggtgACCCAGGCG GCGCACAAG] second spacer RECQL1 [ITTTCGTCTCTAAAC] second spacer CGCACAAG] CGCACAAG] second spacer RECQL4 [ITTTCGTCTCTAAAC] second spacer CACGTCCCGCAGCCGCTCCA[cggtgACCCAGGCG GCGCACAAG] second spacer RECQL5 [ITTTCGTCTTAAAC] second spacer CGCACAAG] CCTATACACACCCCAGCCGCCCCCGgtgACCCAGGCGG CCCACAAG] CHEK1 [ITTTCGTCTCTAAAC] second spacer CTECQL5 [ITTTCGTCTCTAAAC] second spacer CCCCACAAG] CCCCACAAG] second spacer CHEK2 [ITTTCGTCTCTAAAC] second spacer CTECTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCAGGCG Second spacer GCGCACAAG] second spacer CHEK2_2 SLX4 [ITTTCGTCTCTAAAC] second spacer DNA2_2 CCTGACACAGC GCGCACAAG] second spacer DNA2_2 CCCGCACAAG] Second spacer EME1_2 CCTGACACAGCTCCCGCCG[cggtgACCCAGGCG DNA2 [ITTTCGTCTCTAAAC] Second spacer EME1_2			
WRN [TTTCGTCTTATAGTGCTAG[cggtgACCCAGGCG] second spacer RECQL1 [TTTTCGTCTTATAGTGCTCC[cggtgACCCAGGCG] second spacer RECQL4 [TTTTCGTCTTAAAC] second spacer RECQL4 [TTTTCGTCTTAAAC] second spacer CAGCACAAG] second spacer RecQL4_2 RECQL5 [TTTTCGTCTTAAAC] second spacer CTATACACAACCCCCACCCAGCCG RecQL5_2 second spacer CGCACAAG] second spacer RecQL5_2 CHEK1 [TTTTCGTCTTAAAC] second spacer CCCCACAAG] second spacer CHEK1_2 CHEK2 [TTTTCGTCTCTAAAC] second spacer CTCTCCTCACAAG] second spacer CHEK2_2 CGGACAAG] second spacer CHEK2_2 CTCTCTCTAAAC] second spacer CHEK2_2 CGGACAAG] second spacer SLX4_2 CGGACACAAG] second spacer NLX4_2 CGGACACAGG SLX4 [TTTTCGTCTCTAAAC] second spacer DNA2_2 CTCCGCTCACAGCGCGCGCGCGCG[cggtgACCCAGGCG GCGCACAAG] second spacer SLX4_2 CGGACACAAG] second spacer EME1_2 CCCGTACACGCTCTCACAGCTCCCCGCGCGCGGCG <t< td=""><td></td><td></td><td>second spacer W/PNL 2</td></t<>			second spacer W/PNL 2
COSCINCTATIONAL CONSISTINCT AND CONSIST	VVICIN		second spacer writin_2
BCCGLANGJ Second spacer RECQL1 [TTTTCGTCTCTAAAC] second spacer RECQL4 [TTTCGTCTCTAAAC] second spacer RECQL5 [TTTCGTCTCTAAAC] second spacer RECQL5 [TTTCGTCTCTAAAC] second spacer CGCACAAG] second spacer RecQL4_2 CCACTCCCGCAGCCGCTCCA[cggtgACCCAGGCG RecQL5_2 second spacer CTATACACAACCCCAACTCA[cggtgACCCAGGCGG CGCACAAG] second spacer CHEK1 [TTTTCGTCTCTAAAC] second spacer CCCCCCCACAAG] Second spacer CHEK1_2 CHEK2 [TTTTCGTCTCTAAAC] second spacer CTCTCTGCTGGCTGAAGGCTGCG[cggtgACCCAGGCG GGCGCACAAG] second spacer SLX4 [TTTTCGTCTCTAAAC] second spacer DNA2_2 CTCGCCCACAGGGAGGAGACG[cggtgACCCAGGCG second spacer DNA2_2 DNA2 [TTTTCGTCTCTAAAC] second spacer DNA2_2 CTCGCCCACAAG] second spacer DNA2_2 GEN1 [TTTTCGTCTCTAAC] second spacer EME1_2 CCCGCACAAG] second spacer GEN1_2 GEN1 [TTTCGTCTCTAAC] second space			
RECULT [TTTTCGTCTCTAAAC] second spacer RECQL4 [TTTTCGTCTCTAAAC] second spacer RECQL5 [TTTTCGTCTCTAAAC] second spacer RECQL5 [TTTTCGTCTCTAAAC] second spacer CGCACAAG] second spacer RecQL4_2 CACGCACAAG] second spacer RecQL5_2 CHEK1 [TTTTCGTCTCTAAAC] second spacer CHEK1 [TTTTCGTCTCTAAAC] second spacer CHEK2 [TTTTCGTCTCTAAAC] second spacer DNA2_2 SLX4 [TTTTCGTCTCTAAAC] second spacer DNA2_2 CTCGGCACAAG] second spacer EME1_2 DNA2 [TTTTCGTCTCTAAAC] second spacer EME1_2 CCGGACAAG] second spacer EME1_2 CCGGACAAG] second spacer EME1_2 GEN1 [TTTCGTCTCTAAC] second spacer GEN1_2 CCGGACAAG]			accord appear
CIGCACAAG] RECQL4 [TTTTCGTCTCTAAAC] second spacer RECQL5 [TTTCGTCTCTAAAC] second spacer CGCACAAG] CTATACACAACCCCAACTCA[cggtgACCCAGGCGG RecQL4_2 CGCACAAG] second spacer CTATACACAACCCCAACTCA[cggtgACCCAGGCGG CHEK1 [TTTCGTCTTAAAC] second spacer CCCCTCACTAATCTAGACCC[cggtgACCCAGGCGG CHEK1_2 CGCACAAG] second spacer CTCTGCTGGCTGAGGCTGCG[cggtgACCCAGGCG CHEK2_2 CTCTGCTGCTGAGGCTGCG[cggtgACCCAGGCG GCGCACAAG] SLX4 [TTTTCGTCTTAAAC] second spacer SLX4_2 CGGACCAAG] second spacer DNA2_2 DNA2 [TTTTCGTCTCTAAC] second spacer DNA2_2 CTCCGCTCACACAGGCGCG GCGCACAAG] second spacer DNA2_2 DNA2 [TTTTCGTCTCTAAC] second spacer DNA2_2 CTCGGCACAAG] second spacer EME1_2 Second spacer GCCGGCACAAG] EME1 [TTTCGTCTCTAAC] second spacer GEN1_2 CCCGGACAAG] second spacer GEN1_2 Second spacer GEN1_2 GCGGCACAAG] second spacer GEN1_2 Second spacer GEN1_2 GEN1 [TTTCGTCTCTAAC] second spacer GEN1_2	RECULI		
CGCACAAGRECQL4[TTTCGTCTCTAAAC]second spacerRECQL5[TTTTCGTCTCTAAAC]second spacerCTATACACAACCCCAACTCA[cggtgACCCAGGCGGCGCACAAG]CHEK1[TTTTCGTCTCTAAAC]second spacerCCTCACTAATCTAGACCC[cggtgACCCAGGCGGCHEK1_2CHEK2[TTTTCGTCTCTAAAC]second spacerCTGCCGCACAAG]Second spacerCHEK2[TTTCGTCTCTAAAC]second spacerCTGCTGGCTGAGGCTGCG[cggtgACCCAGGCGCHEK2_2GCGCACAAG]second spacerCTCTGCTGGCTGAGGCTGCG[cggtgACCCAGGCGCHEK2_2SLX4[TTTTCGTCTCTAAAC]second spacer CHEK2_2CCGCGCACAAG]second spacer CCGCGCACAAG]second spacer DNA2_2DNA2[TTTTCGTCTCTAAAC]second spacer DNA2_2CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCGsecond spacer EME1_2CCTGAACACCGCTCTGCAGAG[GgtgACCCAGGCGsecond spacer EME1_2GEN1[TTTTCGTCTCTAAAC]second spacer GEN1_2CCGGCACAAG]Second spacer GEN1_2CCGGACACAAG]GEN1[TTTTCGTCTCTAAAC]second spacer GEN1_2CCGGCACAAG]Second spacer GEN1_2CCGGGCACAAG]SLX1[TTTTCGTCTCTAAAC]second spacer RNF4_2CGGCACAAG]Second spacer SLX1_2CGGCACAAG]SLX1[TTTCGTCTCTAAAC]second spacer SLX1_2CGGTACCGGGGCCGCGCGCCTCA[cggtgACCCAGGCGSecond spacer SLX1_2CGGTACCGGGGCCGCGCCCCCCCCCCCCCCCGGTCA[cggtgACCCAGGCGSecond spacerGCGCACAAG]CGGTACCGGGGCCCCCCCCCCCCCCCCCGGTCA[cggtgACCCAGGCGSecond spacerTOP3A[TTTCGTCTCTAAC] <td></td> <td></td> <td>Recul I_2</td>			Recul I_2
RECQL4 [TTTTCGTCTTAAAC] second spacer RECQL5 [TTTTCGTCTCTAAAC] second spacer RECQL5 [TTTTCGTCTCTAAAC] second spacer CACGCACAAG] second spacer RecQL4_2 CHEK1 [TTTTCGTCTCTAAAC] second spacer CHEK1 [TTTTCGTCTCTAAAC] second spacer CHEK2 [TTTTCGTCTCTAAAC] second spacer CHEK2 [TTTTCGTCTCTAAAC] second spacer CTGCCGCACAAG] Second spacer CHEK2_2 GCGCACAAG] second spacer CHEK2_2 SLX4 [TTTTCGTCTCTAAAC] second spacer CTCGCGCACAAG] second spacer CHEK2_2 DNA2 [TTTTCGTCTCTAAAC] second spacer DNA2_2 CTCGCGCACAAG] second spacer DNA2_2 CTCGCGCACAAG] EME1 [TTTTCGTCTCTAAAC] second spacer EME1_2 CCGGACAAG] second spacer EME1_2 Second spacer GEN1_2 GCGCACAAG] second spacer GEN1_2 Second spacer GEN1_2 GEN1 [TTTTCGTCTCTAAAC] second spacer RNF4_2 CCGGACAAG] second spacer RNF4_2 Second spacer RNF4_2 GCGGCACAAG] <td></td> <td></td> <td></td>			
CACGTCCCGCACAG RecQL4_2 RECQL5 [TTTTCGTCTCTAAAC] CTATACACAACCCCAACTCA[cggtgACCCAGGCGG CGCACAAG] second spacer RecQL5_2 CHEK1 [TTTCGTCTCTAAAC] TCCCTCACTAATCTAGACCC[cggtgACCCAGGCGG CGCACAAG] second spacer CHEK1_2 CHEK2 [TTTTCGTCTCTAAAC] CCGCACAAG] second spacer CHEK2_2 SLX4 [TTTTCGTCTCTAAAC] CGGCGCACAAG] second spacer CHEK2_2 SLX4 [TTTTCGTCTCTAAAC] CGGAGCCAGCGAGGGAGACG[cggtgACCCAGGCG GCGCACAAG] second spacer SLX4_2 DNA2 [TTTTCGTCTCTAAAC] CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCG GCGCACAAG] second spacer DNA2_2 EME1 [TTTTCGTCTCTAAAC] CCTGAACACCGCTCTCCAGAG[cggtgACCCAGGCG GCGCACAAG] second spacer EME1_2 GEN1 [TTTTCGTCTCTAAAC] CCGTGCTCTCACAGCTTCCC[cggtgACCCAGGCG GCGCACAAG] second spacer GEN1_2 RNF4 [TTTTCGTCTCTAAAC] CGGTACCGGGCCCGCCT[cggtgACCCAGGCG GCGCACAAG] second spacer RNF4_2 SLX1 [TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGCTCTA[cggtgACCCAGGCG GCGCACAAG] second spacer SLX1_2 SLX1 [TTTCGTCTCTAAAC] CGGTACCGGGGCCCGCGTCTA[cggtgACCCAGGCG GCGCACAAG] second spacer TOP3A_2	RECQL4		second spacer
GCGGCACAAG]RECQL5[TTTTCGTCTCTAAAC]second spacerCTATACACAACCCCAACTCA[cggtgACCCAGGCGGRecQL5_2CGCACAAG]Second spacerCHEK1[TTTCGTCTCTAAAC]second spacerCHEK2[TTTTCGTCTCTAAAC]Second spacerCHEK2[TTTTCGTCTCTAAAC]Second spacerCHEK2[TTTTCGTCTCTAAAC]Second spacerCGGCACAAG]CGGCACCAAG]Second spacerSLX4[TTTTCGTCTCTAAAC]Second spacer SLX4_2CGGAGCCACCAGGCGGGCGCACAAG]Second spacer DNA2_2DNA2[TTTTCGTCTCTAAAC]Second spacer DNA2_2CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCGSecond spacer DNA2_2GCGCACAAG]Second spacer EME1_2CCCGTACCACGCTCTCCACAGCTCCCCCG[cggtgACCCAGGCGSecond spacer EME1_2GEN1[TTTTCGTCTCTAAAC]Second spacer GEN1_2CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCGSecond spacer RNF4_2CGGCACAAG]Second spacer RNF4_2RNF4[TTTTCGTCTCTAAAC]Second spacer RNF4_2CGGAACAGGSecond spacer SLX1_2SLX1[TTTTCGTCTCTAAAC]Second spacer SLX1_2CGGTACCGGGCCCGCGCTCTA[cggtgACCCAGGCGSecond spacer SLX1_2CGGTACCGGGCCCCCCCCCCCCCCCCCCCCCCCCCGGCGSecond spacerTOP3A[TTTTCGTCTCTAAC]Second spacerCGCTCCGGTCACGGCCCCCCCCCCCCCCCCCCCCCCCCC		CACGICCCGCAGCCGCICCA[cggtgACCCAGGCG	RecQL4_2
RECQL5 [TTTTCGTCTCTAAAC] second spacer CTATACACAACCCCAACTCA[cggtgACCCAGGCGG RecQL5_2 CHEK1 [TTTCGTCTCTAAAC] second spacer CCCCACAAG] Second spacer CHEK2 [TTTCGTCTCTAAAC] second spacer CHEK2 [TTTCGTCTCTAAAC] second spacer CGCACAAG] CCTCGCTGGCTGAGGCTGCG[cggtgACCCAGGCG CHEK2_2 SLX4 [TTTCGTCTCTAAAC] second spacer CHEK2_2 CGGAGCAACAG] second spacer CHEK2_2 DNA2 [TTTCGTCTCTAAAC] second spacer DNA2_2 CTCCGCTCACAGGCCGGAGGAGACG[cggtgACCCAGGCG second spacer DNA2_2 CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCG second spacer EME1_2 DNA2 [TTTTCGTCTCTAAAC] second spacer EME1_2 CTCCGCTCACAGGCTCTGCAGA[cggtgACCCAGGCG second spacer EME1_2 CCCGGCACAAG] second spacer GEN1_2 CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG second spacer RNF4_2 CGGAACAAG] second spacer RNF4_2 CGGAAAAGATGCCGCCGCGCTCTA[cggtgACCCAGGCG second spacer SLX1_2 CGGACAAAG] second spacer SLX1_2 SLX1 [TTTTCGTCTCTAAAC] second spacer CGGTACCAGGGCCCCGCGCTCTA[cggt		GCGCACAAG]	
CTATACACAACCCCCAACTCA[cggtgACCCAGGCGGRecQL5_2CGCACAAG]CGCACAAG]second spacerTCCCTCACTAATCTAGACCC[cggtgACCCAGGCGGCHEK1_2CCCCACAAG]second spacerCHEK2[TTTTCGTCTCTAAAC]second spacerCHEK2[TTTTCGTCTCTAAC]second spacerCGCACAAG]CGGAGCAGGGAGGAGACG[cggtgACCCAGGCGGCGCACAAG]SLX4[TTTTCGTCTCTAAAC]second spacer SLX4_2CGGAGCCACAAG]Second spacer DNA2_2CTCCGCTCCTCAAAC]DNA2[TTTTCGTCTCTAAAC]second spacer DNA2_2CTCGGCCACAAG]Second spacer DNA2_2EME1[TTTTCGTCTCTAAAC]second spacer EME1_2CCGGACAAG]Second spacer GEN1_2GEN1[TTTTCGTCTCTAAAC]second spacer GEN1_2CCGTGCCACAAG]Second spacer GEN1_2SLX1[TTTTCGTCTCTAAAC]second spacer RNF4_2CGGACAAG]SLX1[TTTTCGTCTCTAAAC]SLX1[TTTTCGTCTCTAAAC]second spacer SLX1_2TOP3A[TTTCGTCTCTAAAC]second spacer SLX1_2	RECQL5	[TTTTCGTCTCTAAAC]	second spacer
CGCACAAG]CHEK1[TTTTCGTCTCTAAAC] TCCCTCACTAATCTAGACCC[cggtgACCCAGGCG CGCACAAG]second spacer CHEK1_2CHEK2[TTTTCGTCTCTAAAC] CTCTGCTGGCTGAGGCTGCG[cggtgACCCAGGCG GCGCACAAG]second spacer CHEK2_2SLX4[TTTTCGTCTCTAAAC] CGGAGCAGCGAGGGAGACG[cggtgACCCAGGC GGCGCACAAG]second spacer SLX4_2DNA2[TTTTCGTCTCTAAAC] CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2EME1[TTTTCGTCTCTAAAC] CCTGAACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTCTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2RNF4[TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGCCT[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2SLX1[TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGCGCTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2TOP3A[TTTTCGTCTCTAAAC] CGCTTCGGTCACAGCCCCCAC[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2		CTATACACAACCCCAACTCA[cggtgACCCAGGCGG	RecQL5_2
CHEK1[TTTTCGTCTCTAAAC] TCCCTCACTAATCTAGACCC[cggtgACCCAGGCGG CGCACAAG]second spacer CHEK1_2CHEK2[TTTTCGTCTCTAAAC] CTGCTGGCTGAGGCTGCG[cggtgACCCAGGCG GCGCACAAG]second spacer CHEK2_2SLX4[TTTTCGTCTCTAAAC] CGGAGCCAGCGAGGGAGAGCG[cggtgACCCAGGC GGCGCACAAG]second spacer SLX4_2DNA2[TTTTCGTCTCTAAAC] CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2EME1[TTTTCGTCTCTAAAC] CCTGACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2RNF4[TTTTCGTCTCTAAAC] CGGTACCGGGCCGCGCCT[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2SLX1[TTTTCGTCTCTAAAC] CGGTACCGGGCCGCGCGCTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2TOP3A[TTTTCGTCTCTAAAC] CGCTTCGGTCACGCCCCCCCCCCC[cggtgACCCAGGCG GCGCACAAG]second spacer TOP3A_2		CGCACAAG]	
TCCCTCACTAATCTAGACCC[cggtgACCCAGGCGG CGCACAAG]CHEK1_2CHEK2[TTTTCGTCTCTAAC] CCTCGCTGACGCGAGGCGAGGCGGCGCCAGGG GCGCACAAG]second spacer CHEK2_2SLX4[TTTTCGTCTCTAAC] CGGAGCCAGCGAGGGAGACG[cggtgACCCAGGC GGCGCACAAG]second spacer SLX4_2DNA2[TTTTCGTCTCTAAC] CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2EME1[TTTTCGTCTCTAAC] CCTGAACCCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2GEN1[TTTTCGTCTCTAAC] CCCGGTCACCAGCTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2GEN1[TTTTCGTCTCTAAC] CCCGGGCCACAAG]second spacer GEN1_2RNF4[TTTTCGTCTCTAAC] CGGAAAGATGCCGCGCCT[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2SLX1[TTTTCGTCTCTAAC] CGGTACCGGGGCCGCGCGTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2TOP3A[TTTTCGTCTCTAAC] CGGTCCGCGCCCCCCCCCCCCCCCCCCCCCCAGGCG GCGCACAAG]second spacer TOP3A_2	CHEK1	[TTTTCGTCTCTAAAC]	second spacer
CGCACAAG]CHEK2[TTTTCGTCTCTAAAC] CTCTGCTGGGCTGCG[cggtgACCCAGGCG GCGCACAAG]second spacer CHEK2_2SLX4[TTTTCGTCTCTAAAC] CGGAGCCAGCGAGGGAGAGCG[cggtgACCCAGGC GGCGCACAAG]second spacer SLX4_2DNA2[TTTTCGTCTCTAAAC] CCGCGCACAAG]second spacer DNA2_2EME1[TTTTCGTCTCTAAAC] CCTGAACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2EME1[TTTTCGTCTCTAAAC] CCTGAACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2RNF4[TTTTCGTCTCTAAAC] CGGAAAGATGCCGCCGCCT[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2SLX1[TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2TOP3A[TTTTCGTCTCTAAAC] CGGTTCGGTCACGTCCCCAC[cggtgACCCAGGCG GCGCACAAG]second spacer TOP3A_2		TCCCTCACTAATCTAGACCC[cggtgACCCAGGCGG	CHEK1_2
CHEK2[TTTTCGTCTCTAAAC] CTCTGCTGGCGGAGGCTGCG[cggtgACCCAGGCG GCGCACAAG]second spacer CHEK2_2SLX4[TTTTCGTCTCTAAAC] CGGAGCCAGCAGGGAGACG[cggtgACCCAGGC GGCGCACAAG]second spacer SLX4_2DNA2[TTTTCGTCTCTAAAC] CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2EME1[TTTTCGTCTCTAAAC] CCTGAACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTCCCC[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTCCCC[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2RNF4[TTTTCGTCTCTAAAC] CGAGAAAGATGCCGCGCCGCCTCTGCGGCCCCCCCCCGGCG GCGCACAAG]second spacer RNF4_2SLX1[TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGCTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2TOP3A[TTTTCGTCTCTAAAC] CGGTTCGGTCACGTCCCCAC[cggtgACCCAGGCG GCGCACAAG]second spacer TOP3A_2		CGCACAAG]	
CTCTGCTGGCTGAGGCTGCG[cggtgACCCAGGCG GCGCACAAG]CHEK2_2SLX4[TTTTCGTCTCTAAAC] CGGAGCCAGCGGAGGGAGACG[cggtgACCCAGGC GGCGCACAAG]second spacer SLX4_2DNA2[TTTTCGTCTCTAAAC] CTCCGCTCACAGGCTCCGCCG[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2EME1[TTTTCGTCTCTAAAC] CCTGAACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2RNF4[TTTTCGTCTCTAAAC] CGAGAAAGATGCCGCCGCCTC[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2SLX1[TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGCTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2TOP3A[TTTTCGTCTCTAAAC] CGCTTCCGTCACAGC]second spacer SLX1_2	CHEK2	[TTTTCGTCTCTAAAC]	second spacer
GCGCACAAG]SLX4[TTTTCGTCTCTAAAC] CGGAGCCAGCGAGGGAGAGCG[cggtgACCCAGGC GGCGCACAAG]second spacer SLX4_2DNA2[TTTTCGTCTCTAAAC] CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2EME1[TTTTCGTCTCTAAAC] CCTGAACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2RNF4[TTTTCGTCTCTAAAC] CGAGAAAGATGCCGCGCGCCT[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2SLX1[TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2TOP3A[TTTCGTCTCTAAAC] CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG GCGCACAAG]second spacer TOP3A_2		CTCTGCTGGCTGAGGCTGCG[cggtgACCCAGGCG	CHEK2_2
SLX4[TTTTCGTCTCTAAAC] CGGAGCCAGCGAGGGAGAGCG[cggtgACCCAGGC GGCGCACAAG]second spacer SLX4_2DNA2[TTTTCGTCTCTAAAC] CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2EME1[TTTTCGTCTCTAAAC] CCTGAACACCGCTCTGCAGAG[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2RNF4[TTTTCGTCTCTAAAC] CGAGAAAGATGCCGCGCGCGCCTCT[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2SLX1[TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2TOP3A[TTTTCGTCTCTAAAC] CGTTCGGTCACGTCCCCAC[cggtgACCCAGGCG GCGCACAAG]second spacer TDX2_2		GCGCACAAG]	
CGGAGCCAGCGAGGGAGACG[cggtgACCCAGGC GGCGCACAAG]second spacer DNA2_2DNA2[TTTTCGTCTCTAAAC] CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2EME1[TTTTCGTCTCTAAAC] CCTGAACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2RNF4[TTTTCGTCTCTAAAC] CGAGAAAGATGCCGCCGCCGCCT[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2SLX1[TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGCTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2TOP3A[TTTTCGTCTCTAAAC] CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG GCGCACAAG]second spacer TOP3A_2	SLX4	[TTTTCGTCTCTAAAC]	second spacer SLX4_2
GGCGCACAAG]DNA2[TTTTCGTCTCTAAAC] CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2EME1[TTTTCGTCTCTAAAC] CCTGAACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2RNF4[TTTTCGTCTCTAAAC] CGGAAAAGATGCCGCGCGCCT[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2SLX1[TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGCTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2TOP3A[TTTTCGTCTCTAAAC] CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG GCGCACAAG]second spacer		CGGAGCCAGCGAGGGAGACG[cggtgACCCAGGC	
DNA2[TTTTCGTCTCTAAAC] CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCG GCGCACAAG]second spacer DNA2_2EME1[TTTTCGTCTCTAAAC] CCTGAACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2RNF4[TTTTCGTCTCTAAAC] CGAGAAAGATGCCGCGCCGCCT[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2SLX1[TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGCTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2TOP3A[TTTTCGTCTCTAAAC] CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG GCGCACAAG]second spacer TOP3A_2		GGCGCACAAG]	
CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2EME1[TTTTCGTCTCTAAAC] CCTGAACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2RNF4[TTTTCGTCTCTAAAC] CGAGAAAGATGCCGCCGCCGCCCT[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2SLX1[TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGCTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2TOP3A[TTTTCGTCTCTAAAC] CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG GCGCACAAG]second spacer TOP3A_2	DNA2	[TTTTCGTCTCTAAAC]	second spacer DNA2_2
GCGCACAAG]EME1[TTTTCGTCTCTAAAC] CCTGAACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2RNF4[TTTTCGTCTCTAAAC] CGAGAAAGATGCCGCGCGCCGCCT[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2SLX1[TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGCTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2TOP3A[TTTTCGTCTCTAAAC] CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG GCGCACAAG]second spacer TOP3A_2		CTCCGCTCACAGCTCCGCCG[cggtgACCCAGGCG	
EME1[TTTTCGTCTCTAAAC] CCTGAACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG]second spacer EME1_2GEN1[TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG]second spacer GEN1_2RNF4[TTTTCGTCTCTAAAC] CGAGAAAGATGCCGCCGCCGCCT[cggtgACCCAGGCG GCGCACAAG]second spacer RNF4_2SLX1[TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGCGTCTA[cggtgACCCAGGCG GCGCACAAG]second spacer SLX1_2TOP3A[TTTTCGTCTCTAAAC] CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG GCGCACAAG]second spacer TOP3A_2		GCGCACAAG]	
CCTGAACACCGCTCTGCAGA[cggtgACCCAGGCG GCGCACAAG] GEN1 [TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG second spacer GEN1_2 CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG] RNF4 [TTTTCGTCTCTAAAC] second spacer RNF4_2 CGAGAAAGATGCCGCCGCCGCCGCCGCCGCCGCGCGCGCG	EME1	[TTTTCGTCTCTAAAC]	second spacer EME1 2
GCGCACAAG] second spacer GEN1_2 GEN1 [TTTTCGTCTCTAAAC] second spacer GEN1_2 CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG] second spacer RNF4_2 RNF4 [TTTTCGTCTCTAAAC] second spacer RNF4_2 CGAGAAAGATGCCGCCGCCGCCT[cggtgACCCAGGCG GCGCACAAG] second spacer RNF4_2 SLX1 [TTTTCGTCTCTAAAC] second spacer SLX1_2 CGGTACCGGGGCCGCGCGTCTA[cggtgACCCAGGCG second spacer SLX1_2 TOP3A [TTTTCGTCTCTAAAC] second spacer CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG TOP3A_2			
GEN1 [TTTTCGTCTCTAAAC] CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG] second spacer GEN1_2 RNF4 [TTTTCGTCTCTAAAC] CGAGAAAGATGCCGCCGCCT[cggtgACCCAGGCG GCGCACAAG] second spacer RNF4_2 SLX1 [TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGTCTA[cggtgACCCAGGCG GCGCACAAG] second spacer SLX1_2 TOP3A [TTTTCGTCTCTAAAC] CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG GCGCACAAG] second spacer TOP3A_2		GCGCACAAG]	
CCCGTGCCTACCAGCTTCCC[cggtgACCCAGGCG GCGCACAAG] RNF4 [TTTTCGTCTCTAAAC] CGAGAAAGATGCCGCCGCCGCCT[cggtgACCCAGGCG GCGCACAAG] SLX1 [TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGCGTCTA[cggtgACCCAGGCG GCGCACAAG] SLX1 [TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGTCTA[cggtgACCCAGGCG GCGCACAAG] TOP3A [TTTTCGTCTCTAAAC] CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG second spacer CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG TOP3A_2	GEN1	ITTTTCGTCTCTAAACI	second spacer GEN1 2
GCGCACAAG] Froot RNF4 [TTTTCGTCTCTAAAC] second spacer RNF4_2 CGAGAAAGATGCCGCCGCCT[cggtgACCCAGGCG GCGCACAAG] second spacer RNF4_2 SLX1 [TTTTCGTCTCTAAAC] second spacer SLX1_2 CGGTACCGGGGCCGCGCGTCTA[cggtgACCCAGGCG GCGCACAAG] second spacer SLX1_2 TOP3A [TTTTCGTCTCTAAAC] second spacer CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG GCGCACAAG] Second spacer	-	CCCGTGCCTACCAGCTTCCC[cqqtqACCCAGGCG	
RNF4 [TTTTCGTCTCTAAAC] second spacer RNF4_2 CGAGAAAGATGCCGCCGCCT[cggtgACCCAGGCG GCGCACAAG] second spacer RNF4_2 SLX1 [TTTTCGTCTCTAAAC] second spacer SLX1_2 CGGTACCGGGGCCGCGCGTCTA[cggtgACCCAGGCG GCGCACAAG] second spacer SLX1_2 TOP3A [TTTTCGTCTCTAAAC] second spacer CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG TOP3A_2		GCGCACAAG1	
CGAGAAAGATGCCGCCGCCT[cggtgACCCAGGCG GCGCACAAG] SLX1 [TTTTCGTCTCTAAAC] CGGTACCGGGGCCGCGTCTA[cggtgACCCAGGCG GCGCACAAG] TOP3A [TTTTCGTCTCTAAAC] CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG GCGCACAAG] Second spacer TOP3A_2	RNF4	ITTTTCGTCTCTAAACI	second spacer RNF4 2
GCGCACAAG] GCGCACAAG] SLX1 [TTTTCGTCTCTAAAC] second spacer SLX1_2 CGGTACCGGGGCCGCGTCTA[cggtgACCCAGGCG GCGCACAAG] second spacer SLX1_2 TOP3A [TTTTCGTCTCTAAAC] second spacer CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG TOP3A_2 GCGCACAAG] GCGCACAAG]		CGAGAAAGATGCCGCCGCCTIcaataACCCAGGCG	
SLX1 [TTTTCGTCTCTAAAC] second spacer SLX1_2 CGGTACCGGGGCCGCGTCTA[cggtgACCCAGGCG GCGCACAAG] TOP3A [TTTTCGTCTCTAAAC] second spacer CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG TOP3A_2 GCGCACAAG] GCGCACAAG]		GCGCACAAGI	
CGGTACCGGGGCCGCGTCTA[cggtgACCCAGGCG GCGCACAG] TOP3A [TTTTCGTCTCTAAAC] CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG Second spacer CGCTACGGTCACGTCCCCAC[cggtgACCCAGGCG TOP3A_2	SLX1		second spacer SI X1 2
GCGCACAAG] second spacer TOP3A [TTTTCGTCTCTAAAC] second spacer CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG TOP3A_2 GCGCACAAG] GCGCACAAG1			
TOP3A [TTTTCGTCTCTAAAC] second spacer CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG TOP3A_2 GCGCACAAG]		GCGCACAAGI	
CGCTTCGGTCACGTCCCCAC[cggtgACCCAGGCG TOP3A_2	TOP3A	ITTTTCGTCTCTAAACI	second spacer
			TOP3A 2
		GCGCACAAGI	

ТОРЗВ		second spacer
	GCGCACAAG]	
WDHD1	[TTTTCGTCTCTAAAC]	second spacer
		WDHD1_2
CHTF8	ITTTTCGTCTCTAAACI	second spacer
	CTCGGCTCGCCATTCTTCTC[cggtgACCCAGGCGG	CHTF8_2
	CGCACAAG]	
SOD1		second spacer SOD1_2
GFP		second spacer GFP 2
	TGGTGAACCGCATCGAGCTG[cggtgACCCAGGCG	
	GCGCACAAG]	
LACZ		second spacer LACZ_2
	CGCACAAGI	
LUC	[TTTTCGTCTCTAAAC]	second spacer LUC_2
	GGCGCGGTCGGTAAAGTTGT[cggtgACCCAGGCG	
		accord and or PDI 24-2
(ESSENTIA		second spacer RPL34_2
L GENE)	GCGCACAAG]	
RPL11	[TTTTCGTCTCTAAAC]	second spacer RPL11_2
(ESSENTIA	TCATGGCGGTGAGTAGCTGG[cggtgACCCAGGCG	
L GENE)		accord appager
(ESSENTIA		RPS24 2
L GENE)	GCGCACAAG]	
BLM	[TTTTCGTCTCTAAAC]	second spacer BLM_3
	CGCACGCAGACTCCTAGCGG[cggtgACCCAGGCG	
		accord and or W/DNL 2
WIKIN		second spacer wrin_5
	GCGCACAAG]	
RECQL1	[TTTTCGTCTCTAAAC]	second spacer
	CTACTCGGGAGTAAAATCTT[cggtgACCCAGGCGG	RecQL1_3
		second spacer
RECQL4		RecQL4_3
	GCGCACAAG]	
RECQL5	[TTTTCGTCTCTAAAC]	second spacer
	TGGTCCGCCCAAGAATTAAA[cggtgACCCAGGCGG	RecQL5_3
		accord analogr
		CHEK1 3
	GCGCACAAG]	
CHEK2	[TTTTCGTCTCTAAAC]	second spacer
	CATATGACTCACCGCGTGAG[cggtgACCCAGGCG	CHEK2_3
	GCGCACAAG]	
		accord creater OLV/4 C
		second spacer SLX4_3

DNA2	[TTTTCGTCTCTAAAC] CGCGTCCAGGATGGAGCAGC[cggtgACCCAGGCG GCGCACAAG]	second spacer DNA2_3
EME1	[TTTTCGTCTCTAAAC] CAGGCCTGCGACCGGGGACG[cggtgACCCAGGCG GCGCACAAG]	second spacer EME1_3
GEN1	[TTTTCGTCTCTAAAC] CCGAGTCCGGTCACTGCGGA[cggtgACCCAGGCG GCGCACAAG]	second spacer GEN1_3
RNF4	[TTTTCGTCTCTAAAC] CGCAGCGCGGGCTCCCCCAAG[cggtgACCCAGGCG GCGCACAAG]	second spacer RNF4_3
SLX1	[TTTTCGTCTCTAAAC] TACTAAGGCGTACGTCAACG[cggtgACCCAGGCG GCGCACAAG]	second spacer SLX1_3
ТОРЗА	[TTTTCGTCTCTAAAC] CACAGCGACCTGGAACTACA[cggtgACCCAGGCG GCGCACAAG]	second spacer TOP3A_3
ТОРЗВ	[TTTTCGTCTCTAAAC] CCCCGGGAACAAGGACCGGA[cggtgACCCAGGCG GCGCACAAG]	second spacer TOP3B_3
WDHD1	[TTTTCGTCTCTAAAC] GAGTGGGGACTCACCCGGGT[cggtgACCCAGGCG GCGCACAAG]	second spacer WDHD1_3
CHTF8	[TTTTCGTCTCTAAAC] CCAATCCCGGCTCGGCCCTC[cggtgACCCAGGCG GCGCACAAG]	second spacer CHTF8_3
SOD1	[TTTTCGTCTCTAAAC] TTCAGCACGCACACGGCCTT[cggtgACCCAGGCG GCGCACAAG]	second spacer SOD1_3
GFP	[TTTTCGTCTCTAAAC] CCGGGATCACTCTCGGCATG[cggtgACCCAGGCG GCGCACAAG]	second spacer GFP_3
LACZ	[TTTTCGTCTCTAAAC] GTCCCAGACGAAGCCGCCCT[cggtgACCCAGGCG GCGCACAAG]	second spacer LACZ_3
LUC	[TTTTCGTCTCTAAAC] CGGGTGTAATCAGAATAGCT[cggtgACCCAGGCGG CGCACAAG]	second spacer LUC_3
RPL34 (ESSENTIA L GENE)	[TTTTCGTCTCTAAAC] CCCGGGACTTTGCTGCATTC[cggtgACCCAGGCG GCGCACAAG]	second spacer RPL34_3
RPL11 (ESSENTIA L GENE)	[TTTTCGTCTCTAAAC] TCGCCATCCATGGCAGGCCG[cggtgACCCAGGCG GCGCACAAG]	second spacer RPL11_3
RPS24 (ESSENTIA L GENE)	[TTTTCGTCTCTAAAC] CGGATGGCTCGGATACGCGG[cggtgACCCAGGCG GCGCACAAG]	second spacer RPS24_3
TOP1	[TTTTCGTCTCTAAAC] AAGTTCGCATTTGGGCTCAC[cggtgACCCAGGCGG CGCACAAG]	second spacer TOP1_1
FEN1	[TTTTCGTCTCTAAAC] CCGGGAGCGACGGGGTCCGC[cggtgACCCAGGC GGCGCACAAG]	second spacer FEN1_1

EXO1	[TTTTCGTCTCTAAAC] TTCGCGCGCTGTGTAGGCAA[cggtgACCCAGGCG GCGCACAAG]	second spacer EXO1_1
RNASEH1	[TTTTCGTCTCTAAAC] CGCCGGTGACGGAAGTGCGG[cggtgACCCAGGCG GCGCACAAG]	second spacer RNASEH1_1
LIG4	[TTTTCGTCTCTAAAC] CCGGTCTGTTGCCCCACAGA[cggtgACCCAGGCG GCGCACAAG]	second spacer LIG4_1
BRCA1	[TTTTCGTCTCTAAAC] TCTGTCAGCTTCGGAAATCC[cggtgACCCAGGCGG CGCACAAG]	second spacer BRCA1_1
MRE11	[TTTTCGTCTCTAAAC] CGGGAGAGAACGGCGTCCGT[cggtgACCCAGGCG GCGCACAAG]	second spacer MRE11_1
CTIP	[TTTTCGTCTCTAAAC] CCGAGATTGCCTCGGGATTC[cggtgACCCAGGCG GCGCACAAG]	second spacer CTIP_1
RNASEH2A	[TTTTCGTCTCTAAAC] CATCGACGCCCAGGACGCAA[cggtgACCCAGGCG GCGCACAAG]	second spacer RNASEH2A_1
RAD51B	[TTTTCGTCTCTAAAC] CCTTAAGACTCGGGATCGTC[cggtgACCCAGGCG GCGCACAAG]	second spacer RAD51B_1
XRCC3	[TTTTCGTCTCTAAAC] CCCGCGGGTTCCGCACTCCT[cggtgACCCAGGCG GCGCACAAG]	second spacer XRCC3_1
RAD51C	[TTTTCGTCTCTAAAC] CCGAGCTTAGCAAAGGTAAC[cggtgACCCAGGCG GCGCACAAG]	second spacer RAD51C_1
BRCA2	[TTTTCGTCTCTAAAC] CCTAGTTTCAGAAGCTCGCG[cggtgACCCAGGCG GCGCACAAG]	second spacer BRCA2_1
RAD52	[TTTTCGTCTCTAAAC] TCTTGTTACTCCCTAGCAGT[cggtgACCCAGGCGG CGCACAAG]	second spacer RAD52_1
RTEL	[TTTTCGTCTCTAAAC] CGGCGAACCTTCCAGAACCG[cggtgACCCAGGCG GCGCACAAG]	second spacer Rtel_1
FBH1	[TTTTCGTCTCTAAAC] CGTCTGCGGCCTCACGCACT[cggtgACCCAGGCG GCGCACAAG]	second spacer Fbh1_1
FANCM	[TTTTCGTCTCTAAAC] CTACGGTTCCGATCCCCATC[cggtgACCCAGGCGG CGCACAAG]	second spacer FANCM_1
TOP1	[TTTTCGTCTCTAAAC] CCGCTTACCTGCGCCTCCTC[cggtgACCCAGGCG GCGCACAAG]	second spacer TOP1_2
FEN1	[TTTTCGTCTCTAAAC] CCCGCCGCTAAGCTGAGAAG[cggtgACCCAGGCG GCGCACAAG]	second spacer FEN1_2
EXO1	[TTTTCGTCTCTAAAC] GTGTTCTGCGTTGCCGGCCG[cggtgACCCAGGCG GCGCACAAG]	second spacer EXO1_2

RNASEH1	[TTTTCGTCTCTAAAC] CCGGCGCTCAACACCGCACT[cggtgACCCAGGCG GCGCACAAG]	second spacer RNASEH1_2
LIG4	[TTTTCGTCTCTAAAC] GCGTGCTTGAGCCCGGTGAC[cggtgACCCAGGCG GCGCACAAG]	second spacer LIG4_2
BRCA1	[TTTTCGTCTCTAAAC] TCCAGGAAGTCTCAGCGAGC[cggtgACCCAGGCG GCGCACAAG]	second spacer BRCA1_2
MRE11	[TTTTCGTCTCTAAAC] TGGGTCGCGATTGTGGGGGCT[cggtgACCCAGGCG GCGCACAAG]	second spacer MRE11_2
CTIP	[TTTTCGTCTCTAAAC] CCGAGTGTAGCCCGGGCCCG[cggtgACCCAGGCG GCGCACAAG]	second spacer CTIP_2
RNASEH2A	[TTTTCGTCTCTAAAC] CGGGCACAGGCGAACTCAGG[cggtgACCCAGGCG GCGCACAAG]	second spacer RNASEH2A_2
RAD51B	[TTTTCGTCTCTAAAC] CCAATATCGAAACCCACGAG[cggtgACCCAGGCG GCGCACAAG]	second spacer RAD51B_2
XRCC3	[TTTTCGTCTCTAAAC] CGGGTTCCGCACTCCTCTTC[cggtgACCCAGGCG GCGCACAAG]	second spacer XRCC3_2
RAD51C	[TTTTCGTCTCTAAAC] CGCTGGGGCGTGCGGCGTGA[cggtgACCCAGGCG GCGCACAAG]	second spacer RAD51C_2
BRCA2	[TTTTCGTCTCTAAAC] CGGGTGTCTTTTGCGGCGGT[cggtgACCCAGGCG GCGCACAAG]	second spacer BRCA2_2
RAD52	[TTTTCGTCTCTAAAC] TTCATTTCTTGGACATCCGG[cggtgACCCAGGCGG CGCACAAG]	second spacer RAD52_2
RTEL	[TTTTCGTCTCTAAAC] TTGCTTTGTGCTCCCGGCGG[cggtgACCCAGGCG GCGCACAAG]	second spacer Rtel_2
FBH1	[TTTTCGTCTCTAAAC] CCGTGTGGAAAACTTAACCT[cggtgACCCAGGCGG CGCACAAG]	second spacer Fbh1_2
FANCM	[TTTTCGTCTCTAAAC] TCGGTGGTTGTCGGCCTAAT[cggtgACCCAGGCG GCGCACAAG]	second spacer FANCM_2
TOP1	[TTTTCGTCTCTAAAC] CACAGGCCGGTTCGCCGTCT[cggtgACCCAGGCG GCGCACAAG]	second spacer TOP1_3
FEN1	[TTTTCGTCTCTAAAC] CGAACCAAGCTTTAGCCGCC[cggtgACCCAGGCG GCGCACAAG]	second spacer FEN1_3
EXO1	[TTTTCGTCTCTAAAC] CTGGGCGGGGCCGCAAGGAA[cggtgACCCAGGCG GCGCACAAG]	second spacer EXO1_3
RNASEH1	[TTTTCGTCTCTAAAC] ACAGAGTCGCCTTGGCCGCC[cggtgACCCAGGCG GCGCACAAG]	second spacer RNASEH1_3

LIG4	[TTTTCGTCTCTAAAC]	second spacer LIG4_3
	CACAGACTTCTCGCCGCCTG[cggtgACCCAGGCG	
		second spacer
BRCAT		BRCA1 3
	CGCACAAG]	
MRE11	[TTTTCGTCTCTAAAC]	second spacer
	CGGAATTCAGGTTTACGGCC[cggtgACCCAGGCG	MRE11_3
	GCGCACAAG]	
CTIP		second spacer CTIP_3
	GCGCACAAGI	
RNASEH2A	[TTTTCGTCTCTAAAC]	second spacer
	AGACCCGCTCCTGCAGTATT[cggtgACCCAGGCGG	RNASEH2A_3
	CGCACAAG]	
RAD51B		second spacer
	GCGCACAAGI	KADDID_3
XRCC3		second spacer
		XRCC3_3
	GCGCACAAG]	_
RAD51C	[TTTTCGTCTCTAAAC]	second spacer
		RAD51C_3
PPCA2		second spacer
BRCAZ		BRCA2 3
	GCGCACAAG]	
RAD52	[TTTTCGTCTCTAAAC]	second spacer
	CCGGGGTGGTTCTAGCCGTG[cggtgACCCAGGCG	RAD52_3
DTE		Distance in the second s
RIEL		second spacer Rtel_3
	GCGCACAAGI	
FBH1		second spacer Fbh1 3
	GCGCACAAG]	
FANCM		second spacer
		FANCM_3
1	00070770	<u> </u>

Note: Sequences in bracket '[]' are homologous to guide expression vector. First spacer represents oligo sequence cloned into the first guide position, while second spacer represents oligo sequence cloned into the second guide position in the vector.

Target gene	sgRNA sequence
EYFP reporter ¹	TACCTCATCAGGAACATGT
NEAT1 sgRNA1	GCGACAGGGAGGGATGCGCGCC
NEAT1 sgRNA2	GCGCGCCTGGGTGTAGTTGT
NEAT1 sgRNA3	GAAGTGGCTAGCTCAGGGCTTC
CXCR4	CAGGTAGCAAAGTGACGCCGA
SEL1L sgRNA1	GCAGGAAGAGCAGCGGCGAGG
SEL1L sgRNA2	GGGGGCGGATACTGACCCG
SEL1L sgRNA3 ²	GATACTGACCCGAGGACGCCG
ARPC2 sgRNA1 ²	TGTCGGTGAAGCGGCAGTGG
ARPC2 sgRNA2	CAGGCGGGTTCAGGCTTCGG
ERK1 sgRNA1 ²	GGGAGCCCCGTAGAACCGAG
ERK1 sgRNA2	CACCGCCCTCCTCCCCACGG
BRCA1 sgRNA1	GGATTTCCGAAGCTGACAGA
BRCA1 sgRNA2 ²	GCTCGCTGAGACTTCCTGGA
BLM sgRNA1	AGGAAACGGAAGAACCCGAG
BLM sgRNA2	CCTCGCACGCAGACTCCTAG
MET1 sgRNA1	TGAGCAGATGCGGAGCCGAG
MET1 sgRNA2	ACTGGTTCCTGGGCACCGAA
RHOA sgRNA1	AGTTCCCGTGATGCCCCACG
RHOA sgRNA2	GCGCGCCTCCGAGTGCCCAG
CHK2 sgRNA1	GGAGAGTGTGCGGCTCCAGG
CHK2 sgRNA2	CGCAGCCTCAGCCAGCAGAG
CHK1 sgRNA1	GGTGGAGGAATGGTACCAGG
CHK1 sgRNA2 ²	GGGTCTAGATTAGTGAGGGA
CANX700*	TGAAGTGAGATTAGGTGTCA
CANX335*	GTTGGGTTGGAACGCCCCGA
CANX505*	GGTTCTGCTCACGCCCGTAG
CANX22*	GCTCGCTCGCGCGGCAGCGG
CANX1 ² *	GGCCGAGGCCTCTTGGTTCTG
CANX_47*	GCGCCGCAGTAAAGAGAGAGG
CANX_155*	TCGGGCCTGTGAGGACCTCG
CANX_263*	CGACGCGCCGCCGTGAGCG
CANX_472*	GAGTAACTGGGTAAAAGTAT
CANX_642*	ACCAGAAGGAGAACACGCAG
SYVN11032 ^{3,4} *	GGAAAACGCAAGGCACAAAG
SYVN1734 ^{3,4} *	AACGTTCCCGGAGGCCAGCC
SYVN1601 ^{3,4} *	ACCTTTGCTGGCCTATAGAA
SYVN1555 ^{3,4,6} *	AACTTATCGCAACCAATCAG
SYVN1339 ^{3,4,6} *	CAGGTGGTACAGCCCGCAAG

Supplementary Table 9 Sequence of sgRNAs used in the studies

SYVN1194 ^{3,4} *	ATTACCTTCCGACCACCTCT
SYVN1116 ^{3,4,6} *	CCTACGTGGGCCCATAGCAA
SYVN143 ^{3,4} *	ACACCTCACTTCCGGCGGCG
SYVN1_19 ^{3,5} *	CCGCTCAATCCGCGCGACTG
SYVN1_45 ^{3,5} *	GGCGCTGGGTTCCTGGTGAGT
SYVN1_183 ^{3,5} *	GCACCGGCGTCTGAGGTCTC
SYVN1_228 ^{2,3,5,6} *	GTTGCGGGCGTCGCAGGCA
SYVN1_292 ^{3,5} *	GAGAGCAGCAGCGGGACGGG
SYVN1_480 ^{3,5} *	TGAGAGCAGCCAAGGCACAG
SYVN1_702 ^{3,5} *	TAAGTGATCACACTGACGCA
SYVN1_844 ^{3,5} *	TCGTGCTGTGCAAAATAGCC

1: Guide RNA targeting EYFP reporter in the reporter screen assay

2: Guide RNA used in single gene targeting experiments

3: Guide RNA used in 'mixed gRNAs 1-16' group shown in Figure 2b and Supplementary Figure 8

4: Guide RNA used in 'mixed gRNAs 1-8' group shown in Figure 2b and Supplementary Figure 8

5: Guide RNA used in 'mixed gRNAs 8-16' group shown in Figure 2b and Supplementary Figure 8

6: Guide RNA used in 'mixed best 4 gRNAs' group shown in Figure 2b and Supplementary Figure 8

*: The numerical number indicates the position of spacer relative to transcription start site of the target gene.

Target gene	Forward qPCR primer sequence	Reverse qPCR primer sequence
NEAT1	GTGGCTGTTGGAGTCGGTAT	ATTCACTCCCCACCCTCTCT
CXCR4	ACTACACCGAGGAAATGGGCT	CCCACAATGCCAGTTAAGAAGA
SEL1L	GAGGGGGAAAGTGTCACAGA	GGTCAAAGCTGGTTTCCGTA
SYVN	ACCAGCATCCCTAGCTCAGA	TCCTCAGGCATCTCCTCTGT
ARPC2	CTGGAGGTGAACAACCGCAT	GACCCCATCGAAATCTGCAAA
ERK1	ATGTCATCGGCATCCGAGAC	GGATCTGGTAGAGGAAGTAGCA
BRCA1	CTCAAGGAACCAGGGATGAA	GCTGTAATGAGCTGGCATGA
BLM	CAGACTCCGAAGGAAGTTGTAT G	TTTGGGGTGGTGTAACAAATGA T
MET1	AGCAATGGGGAGTGTAAAGAGG	CCCAGTCTTGTACTCAGCAAC
RHOA	GGAAAGCAGGTAGAGTTGGCT	GGCTGTCGATGGAAAAACACAT
CHK1	ATATGAAGCGTGCCGTAGACT	TGCCTATGTCTGGCTCTATTCTG
CHK2	GCGCCTGAAGTTCTTGTTTC	CGTAAAACGTGCCTTTGGAT
CANX	GATCCAGACGCAGAGAAACC	CATCCAGGAGCTGACTCACA
TERC	CCCTAACTGAGAAGGGCGTA	GCTCTAGAATGAACGGTGGAA
XIST	AGGTCAGGCAGAGGAAGTCA	CTGCCTCCCGATACAACAAT
АСТВ	CATGTACGTTGCTATCCAGGC	CTCCTTAATGTCACGCACGAT
CAS9	GAGTTGACGCCAAAGCAATC	TACCAAACAGGCCGTTCTTC

Supplementary Table 10 Sequences of all qPCR primers in the studies.

Supplementary Table 11 Sequence of sgRNA2-7SK template

sgRNA1 tail; 7SK promoter

Supplementary	Table	12	Sequence	of	PCR	primers	for	next	generation
sequencing									

PCR 1 primers	Sequence
Forward primer	
Reverse primer	GGAGTTCAGACGTGTGCTCTTCCGATCT TGTACA
(lethality screen)	AGAAAGCTGGGTCTAG
Ecoward primar	CTTTCCCTACACCACCCTCTTCCCATCT
Forward primer	CITICULACACGACGCICITCCGATCI
(epistasis screen)	NNNNNCTTGTGGAAAGGACGAAACACC
Reverse primer (epistasis screen)	GGAGTTCAGACGTGTGCTCTTCCGATCTCATTTG TCTCGAGGTCGAGAATTC

Sequences in bold are adaptor sequence for next generation sequencing.

Supplementary Table 13 PCR cycling conditions to amplify libraries for next generation sequencing PCR 1

FUNT						
Step	Temperature	Duration				
Step 1	95 °C	8 min				
Step 2	95 °C	30 sec				
Step 3	0°C	30 sec				
Step 4	72 °C	30 sec [#] / 1 min*				
Repeat step 2-4 for a total a 25-30 cycles						
Step 5	72 °C	2 min				
# extension time for lethality screen library; * extension time for epistasis screen library PCR 2						
Step	Temperature	Duration				
Step 1	95	3 min				
Step 2	95	10 sec				
Step 3	55	20 sec				

30 sec

72

Repeat step 2-4 for a total a 5-10 cycles

Step 4

Supplementary Note 1 Interpretation of pi scores. A positive pi-score suggests that the fitness effect of the gene pair knockdown is less than expected from individual knockdowns (e.g., loss of two proteins in a pathway or complex), while a negative pi-score means that the fitness effect was more pronounced than expected based on the individual fitness effects from single-gene knockdowns (e.g., synthetic lethal effects).

Supplementary Note 2 This section describes the strategy used to identify and analyze genes with differential expression (DE) in our RNA-seq experiments. Related results are **Supplementary Figure 10-11** and **Supplementary Table 2**.

To analyze raw reads from RNA-sequencing experiments and profile whole transcriptome activity induced by dCas9, dCas9-KRAB and dCAS9-KRAB-MeCP2 repressors, we implemented edgeR quasi-likelihood (edgeR-quasi) pipeline for DE. EdgeR-quasi uses negative binomial generalized linear model¹ with F-tests², and holds advantages over other methods as it provides speed and reliable error rate control. For the DE analyses, we utilize edgeR-quasi and limma-voom pipelines for two independent biological replicates of dCas9, dCas9-KRAB and dCAS9-KRAB-MeCP2 repressors. The sample size of n=2 in each repressor group is reasonable due to the low biological variability characteristic of cell culture experiments. Our analysis involves importing of raw counts, filtering of lowly expressed counts, normalization due to library size bias, DE, and clustering testing.

First, we tested DE between each repressor group relative to a control group (delivered sgRNA only) using the edgeR QL functions set to robust=TRUE in *glmQLFit* to reduce the number of false positives from genes with extreme dispersions (very low and very high). In Supplementary Figure 10a-c, we plot these results on two axes - log₂ fold change (FC) versus averaged log₂ counts per million (CPM), where positive log₂ FC indicates upregulated genes while negative log₂ FC represent downregulated genes relative to the negative control. DE genes at FDR of 5% and corrected using Benjamini-Hochberg method are shown in grey, whereas genes with no significant fold change are shown in black. glmQLFTest function identifies all DE only based on statistical significance including genes with small fold changes. To remove such bias, we apply the TREAT method³ which leverages a negative binomial framework using the edgeR's glmTreat function, and simultaneously tests for significance and differential fold change at a cutoff of log_2 FC > 1.5. This method is more stringent as it requires larger p-values for calling genes and leads to fewer detected genes. It therefore provides better specificity in recognizing genes with true biological function. The resulting genes are plotted in red on Supplementary Figure 10a-c and summarized in the table on Supplementary Figure 10d. The identity of these genes are listed in Supplementary Table 2. The application of log fold change cutoff of 1.5 results in no downregulated genes, and significantly reduces the number of upregulated genes.

We display expression patterns of transcriptional changes by plotting the top 35 genes with DE in the control, dCas9, dCas9-KRAB and dCas9-KRAB-MeCP2 groups. Clustering of genes with correlated expression provides insights into the biological effects of repressor's activity. To display relative changes in genes across the four groups, we performed scaling such that each gene has a mean of zero and standard deviation of 1. The displayed gene clusters are based on Euclidean distance, $(1-R)^2/2$ between each gene pair where R is the Pearson's correlation of the two genes. A scale bar key of normalized Log₂ CPM represents large negative (colored blue) and positive (colored red) correlations. Genes with large positive correlations correspond to small Euclidean distances and cluster together (**Supplementary Figure 11a**).

Lastly, we examine activated and repressed genes across all three repressor groups (all normalized to the negative control) by applying the limmavoom workflow. We performed linear modelling in limma, and used *ImFit* and *contrasts.fit* functions followed by empirical Bayes model, *eBayes*. This workflow removes variance-associated dependencies on the mean. In **Supplementary Figure 11b-c**, we plot genes on Venn diagrams for downregulation and upregulation where we define significance at 5% p-value with no log fold change cutoff as a less stringent method for examining transcriptome-wide transcriptional offsets for the different repressors. Based on these results, dCas9-KRAB repressor shows the largest clusters of activated genes followed by dCas9-KRAB-MeCP2, and dCas9.

Supplemental Note 3 This section describes the methods and bioinformatics analyses we used to interpret the repressor screens in HAP1, SH-SY5Y and 293T cell lines. Related results are **Supplementary Table 4-6** and **Supplementary Data 2-4**.

Alignment of sequencing reads to reference contig

Analysis of the repressor sgRNA library

We first sequenced the sgRNA library to determine the distribution of the guide sequences. A total 129,362 sequences map to a guide sequence within the library of 683 guides. However, 53 of the guides were severely underrepresented, i.e. less than 50 reads mapped to the guide (< 0.04%) and

they were removed from all further analysis.

Comparing the guide sequences for all the conditions

For all the conditions, we compared the mapped guides against the corresponding control experiment. The control experiment for all the conditions is the experiment performed without any repressor, i.e. without dCas9, dCas9-KRAB or dCas9-KRAB-MeCP2. For each guide, we compared its frequency for the condition against its frequency for the control. This is done by calculating the odds-ratio (OR) for each guide using the formula,

$$OR_{i} = \frac{\frac{test_{i}}{testTotal}}{\frac{control_{i}}{controlTotal}}$$

where $test_i$ is the number of reads that map to guide *i* for the test condition and $control_i$ is the number of reads that map to guide *i* for the control while testTotal and controlTotal are the total number of reads for the test condition and control, respectively. If the guide is enriched in the test condition, the OR would be > 1 while if the guide is depleted, the OR would be < 1 (**Supplementary Data 2-4** list the OR and p-value of each tested guide).

Determining if the essential guides are depleted

Out of the 630 guides from the library, 370 target essential genes (essential guides) while the remaining 260 target non-essential genes. To determine if the essential guides were significantly depleted, we performed a 1-tailed Welch T-test between the log₂ OR of the essential guides versus the log₂ OR of the non-essential guides (**Supplementary Table 4-6**). Also, for the dCas9-KRAB-MeCP2 for HAP1 day 7 and day 14, there were a number of guides that were completely depleted, ie. they had 0 reads for the test condition. This presents a problem as the log₂ OR for those guides would be $-\infty$. To allow for the T-test, we replaced the log2 OR for those guides to the minimal finite log₂ OR for that condition, which is -7.61 for day 7 and -8.87 for day 14.

Supplementary Note 4 This section describes detailed methods used to analyze the repressor-dual gRNA screen. The analysis was performed using an adapted version of a published workflow for computing genetic interactions using a combinatorial CRISPR-Cas9 knockouts⁶ as follows.

Read alignment

Pair-end reads were first aligned to the sequence immediately upstream and downstream of the 20 bp protospacers, thus allowing us to extract protospacer sequences from each read. The protospacer sequences were then aligned to expected sequences, allowing for 3 mismatches ($3 < \frac{1}{2} * \min(hamming(g_i, g_j))$ for all i, j). To ensure the robustness of the mapping, constructs with fewer than 5

reads mapped will be excluded from downstream analysis. Only when both reads in a pair were matched with a designed construct sequence was the pair considered for downstream scoring.

Quantification of fitness and gRNA fitness and gRNA-gRNA interactions

We modeled the cell population change over the 14 day duration of the screen using an assumption of exponential growth⁶. For each synthesized construct, we estimated the relative abundance (x_c) of the sub-population of cells harboring the construct. We did this by using the count of the reads that aligned to the designed construct.

$$x_c(t) = a_c + f_c t - \log_2 \sum_c 2^{a_c + f_c t}$$

In which a_c denotes the initial abundance of the construct at day 0, f_c is the fitness of the cells with the construct. Since each gene is targeted by at least 3 gRNAs, gene-gene fitness $f_{g_ig_j}$ are calculated by collapsing f_c from all dual gRNA constructs targeting the same gene pairs.

We quantified genetic interactions as the difference between summation of single gene fitnesses and the double gene fitness, as follows:

$$f_{g_ig_j} = f_{g_i} + f_{g_j} + \pi_{g_ig_j}$$

Single gene fitnesses f_{g_i} , f_{g_j} were obtained by fitting of above equations to the screen data. The residual of the fit, $\pi_{g_ig_j}$, denotes the genetic interaction score (i.e., pi-score) for a gene pair $g_i g_j$. Note that theoretically f_{g_i} , f_{g_j} can be more easily obtained by measuring the fitness of the constructs that contain a negative control gene (lacZ, GFP and luc). We noticed that the negative controls lacZ and luc seemed neutral to cell fitness when a regression model was used to estimate the single gene fitnesses f_{g_i} from the fitness of all constructs $f_{g_ig_j}$ in which f_{g_i} participates, as previously done⁶. Interestingly, GFP gRNAs, expected to serve as a third negative control, showed positive fitness, suggesting that the used GFP targeting guide may be hitting an off-target sequence within the mammalian genome that when mutated causes a fitness benefit. **Supplementary Data 7** lists the genetic interactions uncovered in our screen.

Validation of genetic interaction screens by examining the topology of protein complex network and genetic interactions

We first filtered out gene-pairs that show zero interaction ($\{g_ig_j \forall |\pi_{ij}| > 0\}$), and the shortest path was computed for the remaining gene-pairs. The shortest paths between gene pairs were computed based on a network of experimentally characterized protein complexes⁷ The number of intermediate genes that connect the gene pair as determined by the protein complex network is treated as the distance between the two genes ($d_{g_ig_j}$). $d_{g_ig_j}$ values are subsequently multiplied by the genetic interaction score π_{ij} derived from the 3 repression screens for gene-pair g_ig_j to get the enrichment score $ES_{ij} = d_{g_ig_j} \cdot \pi_{ij}$. The overall enrichment score can then be calculated by the summing all enrichment scores ($ES_{overall} = \sum_{i,j} ES_{ij}$). Permutation tests are performed by shuffling the genetic interaction scores and repeating the above steps for a total of 10000 permutations. As valid screen should have a smaller $ES_{overall}$ compared to a non-valid one, left-tailed p values are reported.

Supplementary Note 5 This section describes detailed materials and methods used to perform circuit experiments.

Cell culture

Transfections were performed on HEK293ft cells using polyethylenemine (PEI). Cells were cultured in Debulcco's Modified Eagle Medium (DMEM), with 10% Fetal Bovine Serum (FBS), non-essential amino acids (NEAA), glutamine, sodium pyruvate, and penicillin/streptomycin. The day prior to transfection, cells were passaged and split into 24-well plates, then allowed to grow to 70-90% confluence. Mixes of DNA were used with a 2:1 PEI:DNA ratio to transfect the 90% confluent cells using standard transfection protocols. All conditions were transfected in quadruplicate. For inducible circuits, doxycycline was added to cultures to a concentration of 2000ng/uL. Media and inducers were changed daily post-transfection until flow cytometry was performed 72 hours later. In wells designated for control experiments, corresponding plasmid DNA under study was replaced by equal amount of empty DNA plasmid. 72 hours post-transfection, cells were collec-ted for flow cytometry assay.

Flow Cytometry and Data analysis

72 hours post-transfection, cells were trypsinized, washed with Hank's Balanced Salt Solution (HBSS) with 2% FBS, then resuspended in 200uL HBSS+FBS. Then flow cytometry was performed using a BD FACSCelesta flow cytometer. 200,000 events were collected, measuring forward scatter (FSC), side scatter (SSC), EBFP expression (BV421), and EYFP expression (BB515). Data were analyzed using FlowJo (FlowJo, LLC). For analysis, all data were compensated using single color and non-transfected controls. Cells were then gated by FSC and SSC to separate healthy, living cells from dead cells and debris. Living cells were further gated by EBFP; laser voltage was set in such a way as to make non-fluorescing cells express at 10^2 or lower, so the BV421 gate was set at 10^2 .

Cells with above 10² a.u of EBFP expression were considered transfected and were further analyzed by taking the geometric mean of the population's EYFP (BB515) expression. The geometric means of all samples were exported and further analyzed in Excel (Microsoft) or Prism (GraphPad Software). For single repression circuits, fold repression was calculated by dividing the average EYFP expression of the unrepressed samples by the EYFP of each of the four replicates. These four measures were then used to find average fold repression and standard error of the mean (s.e.m.).

For layered transcriptional repression circuits, fraction of maximum expression was calculated by dividing the average EYFP expression of the

unrepressed samples by the EYFP of each of the four replicates. These four measures were then used to find average fraction of maximum and standard deviation. For inducible layered transcriptional repression circuits, fold derepression was calculated by dividing the EYFP expression of each sample in the +Dox condition by the average EYFP expression of their No Dox counterpart. These four measures were then used to find the average fold derepression and s.e.m.

For transfections involving CXCR4 as the output, after supernatant was removed, cells in each well were labeled with 5 ul of CD184 (CXCR4) monoclonal antibody (eBioscienceTM) conjugated to PE and diluted (1:40) in HBSS without calcium and magnesium supplemented with 2% FBS and incubated at 4°C for 30 minutes. Cells were then centrifuged and supernatant was removed. They were then resuspended in 7-AAD solution to exclude dead cells and subjected to FACS. Flow cytometry measurements were performed using BD FACSCelesta with the following settings: EBFP measured with 405 nm laser and a 450/40 filter, EYFP measured with 488 nm laser and a 530/30 filter, 7-AAD measured with a 488 nm laser and a 695/40 filter and CXCR4 measured with 561 nm laser and a 586/15 filter. At least 300,000 events were gathered from each well. Appropriate compensation controls were dedicated for each experiment. Untransfected and unstained cells were used as negative control. Similarly, untransfected cells stained only with CD184-PE antibody were used for CXCR4 control, cells transfected only with EBFP were used as BFP controls. Finally, a mixture of live and dead cells from untransfected wells were used as 7-AAD controls. Data from flow cytometry was analyzed using FlowJo software. Briefly, live cells (7-AAD negative population) were selected and then gated for EBFP expression >10³ A.U. Geometric mean of PE fluorescence level was then calculated in this population.

Statistical analysis

Statistical comparison was performed using one-tailed Student's T-test with a p-value < 0.05 as the threshold for significance. In all synthetic reporter gene circuits, sample size (n) of 4 biologically independent samples (cell cultures) was used for statistical test. In the endogenous gene circuit, n of 3 biologically independent samples (cell cultures) was used for statistical test.

Plasmids

The plasmids used in each circuit, along with a brief description of their function, are as follows:

Circuit		1	2	3	4	5
Background Plasmids and dCas9	ND220	20	20	20	20	25
	114	20	20	20	20	20
	Csy4			50	50	
	dCas9 Variant	70	70	70	70	70
gRNA repression devices	3475	100	200			500
	LR2002			100	200	
	U6/Tal4- sgRNA- CXCR4					50
TALE repressor	473		50		50	50
Reporter	1341	20		20		
	ND252		20		20	
	Midi129					

 dCas9 Variants: CMV promoter driving dCas9, dCas9-KRAB, or dCas9-KRAB-MeCP2 expression.

- Background plasmids:
 - 1. ND220: CAG promoter driving EBFP expression. EBFP expression was used to gate transfected cells.
 - 2. 114: Hef1a promoter driving Gal4-VP16 and rtTA expression; the protein products are separated by a T2A amino acid sequence. The Gal4-VP16 activator binds upstream of the CRP promoter, driving its expression in the absence of a repressor. rtTA, when combined with Dox, binds upstream of the TRE promoter, driving its expression.
 - 3. Csy4: PGK promoter driving Csy4 expression. The Csy4 protein was used to cleave gRNAs in an mRNA transcript into functional gRNAs.
- Regulators in single repression circuits:
 - 1. 3475: U6 promoter driving gRNA expression.
 - 2. LR2002: TRE promoter driving gRNA expression 3' to iRFP flanked by Csy4 target sites.
 - 3. U6/Tal14_CXCR4 gRNA: gRNA targeting endogenous CXCR4 locus under U6 promoter (repressed by TALER).
- Regulators in layered transcriptional repression circuits:
 - 1. 473: CRP promoter driving TALER expression.
- Reporters:
 - 1. 1341: CRP promoter driving EYFP expression.
 - 2. Midi129:CRP promoter driving EYFP expression, containing two gRNA target sites flanking the mini CMV.

ND252: pTal promoter driving EYFP expression.

Supplementary References:

1. McCarthy, D. J., Chen, Y, and Smyth, G. K. Differential Expression Analysis of Multifactor RNA-Seq Experiments with Respect to Biological Variation. *Nucleic Acids Research* **40**, 4288–97 (2012).

2. Lund, S. P., Nettleton, D, McCarthy, D. J., and Smyth, G. K. Detecting Differential Expression in RNA-Sequence Data Using Quasi-Likelihood with Shrunken Dispersion Estimates. *Statistical Applications in Genetics and Molecular Biology* **11**, Article 8 (2012).

3. McCarthy, D. J., and Smyth, G. K. Testing Significance Relative to a Fold-Change Threshold Is a TREAT. *Bioinformatics* **25**, 765–71 (2009).

4. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *ArXiv13033997 Q-Bio* (2013).

5. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinforma. Oxf. Engl.* **25,** 2078–2079 (2009).

6. Shen, JP *et al.* Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. *Nat Methods.* **14**, 573-576 (2017).

7. Ruepp, A *et al.* CORUM: the comprehensive resource of mammalian protein complexes--2009. *Nucleic Acids Res.* **38** (Database issue), D497-501 (2010).

Supplementary Data 1 A list of differentially expressed genes considered significant at FDR < 0.05 in the RNA-seq experiment.

Supplementary Data 2 A list of all sgRNA sequences in single guide RNA library and their log2 odd ratios in HAP1 lethality screen.

Supplementary Data 3 A list of all sgRNA sequences in single guide RNA library and their log2 odd ratios in SH-SY5Y lethality screen.

Supplementary Data 4 A list of all sgRNA sequences in single guide RNA library and their log2 odd ratios in 293T lethality screen.

Supplementary Data 5 A list of non-essential gene-targeting sgRNAs that showed depletion in lethality screens.

Supplementary Data 6 Summary of rank-ordered genes identified from sgRNA enrichment analysis performed using MAGeCK software.

Supplementary Data 7 Genetic interactions captured through repressor screens.

Supplementary Data 8 DNA sequences and species origins of all protein domains used to construct the different repressors in this study.