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Transformation of standard Gibbs free energy of forma-
tion (∆fG

◦) of aqueous species across temperature

Considering constant pressure, the standard Gibbs free energy
of formation of an aqueous species at a given temperature T
and the reference temperature Tr (298.15 K) can be written
as ∆fG

◦
T and ∆fG

◦
Tr , respectively. Based on the Second law

of thermodynamics,

∆fG
◦
T = ∆fH

◦
T − T∆fS

◦
T [1]

∆fG
◦
Tr = ∆fH

◦
Tr − Tr∆fS

◦
Tr . [2]

Subtracting Equation 1 by Equation 2, we get

∆fG
◦
T = ∆fG

◦
Tr + (∆fH

◦
T −∆fH

◦
Tr )−

T (∆fS
◦
T −∆fS

◦
Tr )− (T − Tr)∆fS

◦
Tr

[3]

Using the definition of enthalpy and entropy in terms of heat
capacity at constant pressure (1, 2), Equation 3 is expressed
as

∆fG
◦
T = ∆fG

◦
Tr +

∫ T

Tr

CPrdT−

T

∫ T

Tr

CPrd lnT − (T − Tr)∆fS
◦
Tr

[4]

where CPr is the heat capacity of the aqueous species at Tr.
It is worth mentioning that the formulation above is slightly
different from that in the geochemistry literature (1, 2), where
we replaced S◦Tr with ∆fS

◦
Tr .

Based on Shock et al. (2), the heat capacity of an aqueous
species is a function of temperature and depends on three
parameters c1, c2, and ω, which are different for different aque-
ous species. We found that heat capacities of aqueous species
at different temperatures generally vary in a small range from
their values at Tr. Specifically, we examined a total of 399 com-
pounds with data available (3) and found that their CP values
at different temperatures vary maximally around 16% from
their CPr values, for the temperature range we are working
with (283.5 K to 360.5 K). The temperature range is based on
temperatures of measured data in TECRdb (4). Additionally,
the maximum variation in CP across temperature is smaller
than that across different compounds, as shown in Figure S1A.
Thus, given the assumption that heat capacity is a constant
with respect to temperature, we take integrals in Equation 4
and get

∆fG
◦
T = ∆fG

◦
Tr + CPr (T − Tr)−

TCPr ln
(
T

Tr

)
− (T − Tr)∆fS

◦
Tr .

[5]

Combining the terms involving CPr , we have

∆fG
◦
T = ∆fG

◦
Tr +

[
T − Tr − T ln

(
T

Tr

)]
CPr−

(T − Tr)∆fS
◦
Tr

[6]

From Equation 6, we have the term involving CPr and the
term involving ∆fS

◦
Tr together affecting the change of standard

Gibbs free energy of formation across temperature.
We define the coefficient in front of CPr to be a (a =

T − Tr − T ln
(

T
Tr

)
) and the coefficient in front of ∆fS

◦
Tr to

be b (b = T − Tr). Comparing the magnitude of a and b as a
function of temperature, we found that a is much smaller than
b (Figure S1B). The value of a/b is at most 0.025 for the most
frequent temperatures of TECRdb measured data (295.5 K to
313.5 K), and at most 0.1 in the overall temperature range of
interest.

Given that CPr and ∆fS
◦
Tr of the same aqueous species are

generally on the same order of magnitude (Figure S1C) and
CPr coefficient is much smaller than ∆fS

◦
Tr coefficient, it is

reasonable to neglect the term involving CPr in Equation 6.
Thus, we have

∆fG
◦
T = ∆fG

◦
Tr − (T − Tr)∆fS

◦
Tr [7]

to transform the standard Gibbs free energy of formation of
an aqueous species across temperature.

Equilibrium constant as a function of pH, temperature,
ionic strength and metal ion concentration

In aqueous solutions, each compound exists as several different
pseudoisomer forms distributed according to the Boltzmann
distribution. The pseudoisomer forms refer to the different
protonation and ion bound states of the same compound (5, 6).
For example, the pseudoisomer forms of orthophosphate in-
clude but are not limited to PO3−

4 and MgPO−4 . Adapted
from Alberty (6) and the formulation in the last section, the
standard transformed Gibbs free energy of formation of pseu-
doisomer i (∆fG

′◦
i ) of a given compound under certain pH,

temperature (T ), ionic strength (I) and metal ion concentra-
tion (pM) is expressed as
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∆fG
′◦
i = ∆fG

◦
i (I = 0, Tr)− (T − Tr)∆fS

◦
i +

NH(i)RT ln(10)pH−NM(i)(∆fG
◦
M (T )−

RT ln(10)pM)−RTα(z2
i −NH(i))

( √
I

1 +
√
I
− 0.3I

) [8]

where ∆fS
◦
i is the standard entropy change of formation of

pseudoisomer i at 298.15 K, zi, NH(i), and NM(i) are the
charge, number of hydrogen atoms and number of metal ions
M bound to pseudoisomer i (due to availability of metal bind-
ing data, we only handle pseudoisomer form bound with at
most one type of metal ion), ∆fG

◦
M (T ) is the standard Gibbs

free energy of formation of aqueous ionic metal species M at
T (can be calculated using equations and data from Shock et
al. (2)), pM (pM = − log10[Mm+]) is the potential of ionic
metal species M with concentration [M] and charge +m in
aqueous solutions, and α is the Debye-Hückel Constant and is
temperature dependent (6). The correction on ionic strength
is based on Davies equation, which is an empirical extension
of Debye–Hückel theory and can be used to calculate activity
coefficients of electrolytes at relatively high ion concentrations
(7).

The standard transformed Gibbs free energy of formation of
the compound (∆fG

′◦
j ) can be calculated based on the energies

of its pseudoisomer forms using Legendre transform (6):

∆fG
′◦
j = −RT ln

{
Niso∑
i=1

exp
[
−∆fG

′◦
i

RT

]}
. [9]

Additionally, the equilibrium mole fraction mi of the ith
pseudoisomer in the pseudoisomer group is given by

mi = exp
{

∆fG
′◦
j −∆fG

′◦
i

RT

}
[10]

The standard transformed Gibbs free energy of reaction
(∆rG

′◦) can thus be calculated based on the energies of its
participating compounds (∆fG

′◦
j ) and their corresponding

stoichiometries (rj) in the reaction

∆rG
′◦ =

N∑
j=1

rj∆fG
′◦
j [11]

Thus, we are able to calculate thermodynamics of the re-
action as a function of pH, temperature, ionic strength and
metal ion concentrations.

Under a specified condition, we can identify the dominant
pseudoisomer form for a compound (the form with the largest
concentration). Such dominant form also has a dominant
contribution to the Gibbs free energy of formation of the com-
pound, according to Equation 10 (mi = 1 when ∆fG

′◦
j =

∆fG
′◦
i ). Therefore, the transformation of ∆rG

′◦ across tem-
perature can be calculated as ∆rS

◦
Tr =

∑N

j=1 rj∆fS
◦
j , where

∆fS
◦
j of the compound can be approximated to that of its

dominant pseudoisomer form. We thus have

∆rG
′◦
T = ∆rG

′◦
Tr − (T − Tr)∆rS

◦
Tr [12]

The reaction equilibrium constant can thus be calculated
through the equation

∆rG
′◦ = −RT lnK′. [13]

The above procedures can also be used to transform the
measured equilibrium constants to ∆rG

◦ at the reference state
(298.15 K, pH 7, 0M ionic strength, no metal ion), by applying
corrections on pH, ionic strength and metal ion concentrations
as in Equation 8 and correction on temperature as in Equa-
tion 12. Then, we can use corrected ∆rG

◦ data to estimate
∆rG

◦ and ∆fG
◦ for new reactions and compounds, based

on the latest group contribution method, termed component
contribution (8).

Example of binding constant and binding polynomial
formulation

We introduce the concept of binding constant and describe its
relationship with the binding polynomial. Binding constant
describes the equilibrium of binding and unbinding reaction
between a receptor (compound) and a ligand (proton, metal
ion). Here, we specifically refer the binding constant to be
the equilibrium constant of the unbinding step. For example,
a reactant is composed of three ion bound states: A (with
least hydrogens and metal ions bound), HA (A bound with
H+), MgHA (A bound with H+ and Mg2+). There are two
binding steps between A and MgHA: HA 
 A + H+ and
MgHA 
 HA + Mg2+. The respective binding constants are

K1 = [A][H+]
[HA] [14]

K2 = [HA][Mg2+]
[MgHA] [15]

For practical purposes, it is more convenient to express the
logarithmic form of the constants, where pK1 = −log10K1
and pK2 = −log10K2. Based on the type of ligand, pK1 is
known as the acid dissociation constant (pKa) and pK2 is
the stability constant for magnesium binding (pKMg). The
logarithmic form of the binding constant is what we used for
estimation in regression models and calculation in the group
contribution framework.

Binding polynomial gives the partition of a reactant be-
tween various aqueous species that make it up. Binding polyno-
mial is the measure of the difference in Gibbs energy between
one ion bound state and another. For convenience of calcula-
tion, we usually write the binding polynomial of an ion bound
state with respect to the one with the least hydrogens and
metal ions bound. Thus, the binding polynomial P of MgHA
is defined as (6):

P = [A] + [HA] + [MgHA]
[A] [16]

Substituting Equations 14 and 15 into 16, we get

P = 1 + [H+]
K1

+ [H+][Mg2+]
K1K2

[17]

The energy difference between A and MgHA is −RT lnP , which
can be used in Equation 9 of the main text and calculate
∆fG

′◦ of the reactant. Therefore, binding polynomial can be
expressed in terms of proton and metal ion concentrations, as
well as the binding constants of different binding steps. This
example can be extended to any other ion bound states with
defined number of hydrogens and metal ions bound.
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Case studies on correcting K ′ data measured at differ-
ent magnesium concentrations

Through several case studies, we examined how well the magne-
sium binding constants correct K′ data measured at different
magnesium concentrations to the same reference conditions.
Specifically, we transformed the ∆rG

′◦ data calculated from
K′ (∆rG

′◦ = −RT lnK′) to the reference state ∆rG
◦ (298.15

K, pH 7, 0 M ionic strength, no metal ion) using Legendre
transforms (6). The resulting reference state ∆rG

◦ values
should be within a small range, which would indicate that
the correction to Gibbs energy for magnesium binding is accu-
rate. Taking data from the reaction catalyzed by adenylate
kinase, one of the best characterized reactions, as an exam-
ple, we found a substantial decrease in ∆rG

◦ variation with
respect to magnesium concentration after applying corrections
to account for magnesium binding (Figure S2C). We observed
similar trend in arginine kinase (Figure S2D) and creatine ki-
nase reactions (Figure S2E), when accounting for the binding
of ATP and ADP to magnesium. We found more cases where
applying correction to account for magnesium binding reduced
the variation in ∆rG

◦ significantly (Figure S2F-S2H).
However, in some cases, the differences in ∆rG

◦ remained
substantial (Figure S2I-S2K). One example is the dataset from
the hexokinase reaction, where we also applied the correc-
tion on the binding of ATP and ADP to magnesium. To
address such inconsistency in magnesium correction, which we
hypothesized to be errors in measured binding constants, we at-
tempted to adjust the binding constants through optimization
to maximize the correction on K′ data at different magnesium
concentrations. Specifically, we optimized the binding con-
stants of ATP, ADP, AMP and glucose 6-phosphate together
using a Levenberg-Marquardt algorithm that minimizes the
squared distance from the average inferred ∆rG

◦ values of
hexokinase and adenylate kinase reactions (9, 10). However,
we found that while the optimized binding constants resulted
in a smaller variation in ∆rG

◦ for data in hexokinase reac-
tion (Figure S3A), the variation in ∆rG

◦ for adenylate kinase
reaction increases significantly using those optimized values
(Figure S3B). We observed similar trend for arginine kinase
reaction when optimizing its data together with data from the
hexokinase reaction. The optimized binding constants resulted
in much greater variation in ∆rG

◦ for arginine kinase reaction
data compared to ∆rG

◦ values calculated from the original
binding data (Figure S3C). We also observed such inconsis-
tency in magnesium correction for data from different sources
of the same reaction, where the optimized binding constants of
aconitase reaction failed to reduce the variation in ∆rG

◦ across
all three datasets (Figure S3D-S3F). Additionally, we noted
that the dataset where magnesium correction did not help
(Figure S3F) had reported total magnesium concentrations
rather than the more direct free concentrations. However, after
applying the free magnesium concentrations calculated from
the total substrate and magnesium concentrations reported,
we found that the variation in ∆rG

◦ remained large.

To summarize, we found that magnesium binding correction
works well in cases where high quality K′ data and magne-
sium binding constants are available. However, issues such as
inconsistency in measured data (involving magnesium bind-
ing) and report of total magnesium concentration exist, which
can be problematic when applying the correction on magne-
sium binding. These issues help explain why the fit is worse
when applying the magnesium correction globally (main text),
even though the correction works with well curated data (e.g.
adenylate kinase reaction). Therefore, we proceed by omitting
the global magnesium binding correction from our procedure.

Optimization of ion binding constants using the
Levenberg-Marquardt algorithm

For selected reactions with compound magnesium binding
constants to optimize, we first collected K′ data measured
at different magnesium concentrations. We then formulated
equations that correct the standard transformed Gibbs energy
of reaction (∆rG

′◦) (calculated from K′) to ∆rG
◦, where mag-

nesium binding constants are variables in the equations. We
allowed ± 0.5 (unitless) variation for each ion binding constant
from its original value, consistent with reported error in these
parameters (11, 12). We optimized the binding constants using
an iterative Levenberg-Marquardt algorithm with decreasing
step sizes for the gradient approximation parameter. At each
iteration, we input the optimized values from the previous
iteration into the transformation equations and calculated the
squared distance from the average inferred ∆rG

◦ values. The
termination criterion for the optimization was a fractional
difference in the sum of squares between two consecutive it-
erations below 0.00001 (unitless). The Levenberg-Marquardt
algorithm was performed using python package lmfit 0.9.2
(13).

Considering p number of equations of the same reaction
and q number of pKMg values to optimize, the optimization
program is as follows

min
pKMg1 ,...,pKMgq

p∑
i=1

(∆rG
◦
i (pKMg1 , ..., pKMgq )−∆rG

◦
avg)2

[18]

pKMgj,data − 0.5 ≤ pKMgj ≤ pKMgj,data + 0.5 (j = 1, 2, ..., q)
[19]

where ∆rG
◦
i (pKMg1 , ...,pKMgq) is the standard transformed

Gibbs energy of reaction as a function of pKMg1 , ...,pKMgq

and ∆rG
◦
avg =

∑p

i=1
∆rG◦i

p
. If there are multiple reactions

used together to optimize the set of pKMg values, we apply
the same procedures except that the residual of each equation
is with respect to the ∆rG

◦
avg of its corresponding reaction.

The optimized pKMg values are then applied on those reaction
data to check the consistency of optimized values in reducing
variation of ∆rG

◦ values in different reactions.
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Fig. S1. (A) Order of magnitude comparison between maximum variation of CP across temperature vs. CPr at 298.15 K for 399 compounds (3). (B) The ratio of CPr
coefficient to ∆fS

◦
Tr coefficient as a function of temperature. The temperature range is based on the distribution of temperatures for measured equilibrium constants in

TECRdb. (C) The distribution of CPr/∆fS
◦
Tr of the same aqueous species from a total 370 aqueous species collected. (D) Distribution of temperature for all measured

equilibrium constants in TECRdb.
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Fig. S2. (A) Training and testing errors of nested 10-fold cross validation on magnesium (Mg) binding data using the ridge regression, lasso regression, elastic net regularization,
random forests, extra trees and gradient boosting. We repeated cross-validation 5 times by splitting all Mg binding data into different subdivisions. We included a total of 140 Mg
binding data points and 128 features including metal binding groups, the partial charge, and molecular properties from ChemAxon and RDKit. (B) Relative standard deviation
(RSD) for parameters in linear regression models used for Mg binding fitting. We calculated the mean and standard deviation of parameters selected by the inner loops of
nested cross validation (repeated 5 different times). We used RSD (standard deviation/mean) to assess the relative variability of the parameters and model stability in Mg
binding fitting. (C-K) Case studies on corrected ∆rG

◦ values of different reactions calculated from equilibrium constants (K′) measured at different Mg concentrations. We
applied different corrections to transform ∆rG

′◦ (calculated from K′) to ∆rG
◦ values: no correction on Mg concentrations (red Xs) and correction on Mg concentrations

using collected binding constants (blue squares). The reaction whose ∆rG
′◦ data are used to optimize the binding constants can be found in Table S12. Panels with yellow

background are cases where applying Mg binding constants reduces the variation in ∆rG
◦, while those with gray background are cases that did not help. (J) Summary of Mg

correction case studies shown in different Figure panels (x axis label). We calculated the log10 value of the ratio between slope of ∆rG
◦ values after correction and that of

∆rG
◦ values before correction with respect to Mg concentrations. A negative log10 ratio corresponds to the case where Mg correction helps reduce the variation in ∆rG

◦

values. pKMg: magnesium binding constant.
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Fig. S3. (A) Corrected ∆rG
◦ values of hexokinase reaction calculated from equilibrium constants (K′) measured at different Mg concentrations. We applied different

corrections to transform ∆rG
′◦ (calculated from K′) to ∆rG

◦ values: no correction on Mg concentrations (red Xs), correction on Mg concentrations using collected binding
constants (blue squares), correction on Mg concentrations using optimized binding constants (green stars). Ideally, the difference between standard ∆rG

◦ values after
correction is 0. The optimized binding constants are obtained by minimizing the least-squares errors on ∆rG

◦ values of hexokinase and adenylate kinase reactions. (B)
Corrected ∆rG

◦ values of adenylate kinase reaction calculated from equilibrium constants (K′) measured at different Mg concentrations. The labels of ∆rG
◦ values are the

same as panel A, so do the optimized binding constants used. (C) Corrected ∆rG
◦ values of arginine kinase reaction calculated from equilibrium constants (K′) measured at

different Mg concentrations. The labels of ∆rG
◦ values are the same as panel A, so do the optimized binding constants used. (D-F) Case studies on corrected ∆rG

◦ values
of aconitase reaction calculated from K′ measured at different Mg concentrations. The different panels represent data from different literature sources. We found that using
pKMg data or optimized pKMg values helped reduce the variation in standard ∆rG

◦ values (green stars and blue squares) for panel D and E. However, in panel F, the
variation in ∆rG

◦ values is still considerably large, whether using pKMg data or optimized values to correct on Mg concentration.
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Fig. S4. (A) Comparison of absolute residuals on estimating ∆rG
◦ for 432 reactions with various modifications on data and methods. We applied modifications on data

or method one at a time sequentially and evaluated the change of median absolute residual from 10-fold cross-validation repeated 100 times. First, we used the extended
Debye-Hückel (DH) equation (as used in Noor et al (8)) and updated media conditions, obtaining a median absolute residual of 6.21 kJ/mol. Removing the data with high ionic
strength (> 0.5 M), we obtained an error of 5.95 kJ/mol. Next using the Davies equation, the error is 5.94 kJ/mol. We next included new compound groups in current work
(5.82 kJ/mol), next with temperature correction in current work (5.71 kJ/mol) and finally with metal correction in current work (6.47 kJ/mol). We also compared the different
equations to correct for the effect of ionic strength side by side (updated media condition data with ionic strength≤ 0.5M) and showed that using DH limiting law results in
higher error than the other two. The median absolute residual is 6.18 kJ/mol using DH limiting law, while 5.95 kJ/mol using extended DH equation and 5.94 kJ/mol using the
Davies equation. (B) Comparison of absolute residuals on estimating 185 new reactions in the current method. We calculated ∆rG

◦ for 185 new reactions by constructing
the group contribution model using ∆rG

◦ values of 432 overlapping reactions from the previous method and the current method. We then calculated the absolute residual
between estimated ∆rG

◦ and ∆rG
◦ data for those 185 reactions. (C) Comparison of group coverage between 432 reactions in the previous group contribution method and

185 new reactions added in the current method. DH: Debye-Hückel.
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Fig. S5. (A-D) Case studies on corrected standard ∆rG
◦ values of reactions calculated from equilibrium constants (K′) measured at different ionic strength. We calculated

∆rG
◦ at standard state using the extended Debye-Hückel equation (blue squares) and the Davies equation (green stars) to correct for varying ionic strength. We also showed

the maximum differences in corrected standard ∆rG
◦ values using different equations to correct for ionic strength. Ideally, the difference between standard ∆rG

◦ values after
correction is 0. We found that generally applying the Davies equation to correct for ionic strength results in smaller variations in ∆rG

◦ values compared to using the extended
Debye-Hückel equation.
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Fig. S6. (A-B) Repeated 10-fold cross-validation using ridge regression for estimation of ∆fS
◦ and pKMg. We selected the variables with the largest absolute coefficients

from the final ∆fS
◦ and pKMg lasso regression models (Figure 2D and 4A). We used those variables as features for the ridge regression model and performed repeated

10-fold cross-validation (100 times) on different L2 α values. We found that the resulting lowest errors are similar to those in the final lasso regression models. For ∆fS
◦ lasso

regression model, we selected variables with nonzero coefficients greater than 0.01, thus 55 out of 121 variables. For pKMg lasso regression model, we selected variables
with nonzero coefficients greater than 0.1, thus 18 out of 35 variables.
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