Supplementary materials

Materials and methods

Pharmacokinetics of HOEC in rats after oral and intravenous administration

Ten-week-old male rats, weighing 260 ± 20 g, were purchased from Slac Laboratory Animal (Shanghai, China). The rats were housed in a temperature ($22\pm1^{\circ}$ C) - and humidity (55%) - controlled room with a 12-hour light/dark cycle. Water and food were provided ad libitum. The experimental procedures involved in this study conformed to animal ethics and the guidelines of Care and Use of Laboratory Animals of China for animal experimentation.

Rats were divided into two treatment groups: IV (1 mg/kg) and PO (10 mg/kg), 3 rats per group. Before the experiment, rats fasted for 12 hours but could have water. Blood (0.2 mL) was drawn via jugular catheter from each rat at the following time points: 0, 5 min, 15 min, 30 min, 1 h, 2 h, 4 h, 6 h, 8 h, and 24 h, and anticoagulant heparin sodium was added. Blood samples were centrifuged at $1000 \times g$, $4^{\circ}C$ for 15 min to prepare plasma for detection. 50 μ L plasma sample was pipetted to the centrifuge tube and 250 μ L internal standard (200 ng/mL tolbutami methanol solution) was added. The mixture was then mixed thoroughly and centrifuged at 14000 rpm for 5 min. Calibration standard (STD) sample (1000, 750, 500, 100, 50, 10, 5 ng/mL) and quality control (QC) sample (800, 200, 8 ng/mL) of HOEC and caffeic acid were prepared.

A Shimadzu HPLC system (UFLC) (Shimadzu, Columbia, MD, USA), consisting of a LC-20AD pump, a DGU-20A3 degasser, a SIL-20A autosampler, a CBM-20Atemperature control chamber and a CTO-20A column oven, were used for all chromatography. An Applied Biosystems 4000 QTRAP hybrid linear ion trap-triple quadrupole instrument (Applied Biosystems, Inc., US) was connected. Chromatographic separations were acquired on a Waters XTerra MS C18 5 μ (50 mm \times 2.10 mm) eluted with 15-85% gradient solvent B (0.1% formic acid in ACN) insolvent A (aqueous 0.1% formic acid) at a flow rate of 1 mL/min for 0.9-1.8 min.

Results

Pharmacokinetic data

Since HOEC is very unstable in vivo, we only detected the main metabolite of HOEC, i.e. caffeic acid. The pharmacokinetic parameters (mean \pm SD) of caffeic acid, a metabolite of 1 mg/kg HOEC given intravenously in rats as follows, $T_{max}=0.139\pm0.096$ hr, $C_{max}=70.83\pm43.51$ ng/mL, $t_{1/2}=0.13$ hr, $AUC_{(0-t)}=13.59\pm6.89$ ng/mL*hr, $AUC_{(0-\infty)}=19.04$ ng/mL*hr. The pharmacokinetic parameters (mean \pm SD) of the metabolites of caffeic acid, a metabolite of 10 mg/kg HOEC given orally in rats as follows, $T_{max}=0.194\pm0.096$ hr, $C_{max}=360.27\pm175.01$ ng/mL, $t_{1/2}=0.32\sim0.54$ hr, $AUC_{(0-t)}=213.81\pm34.21$ ng/mL*hr, $AUC_{(0-\infty)}=233.30\pm27.98$ ng/mL*hr. The pharmacokinetic data of caffeic acid is shown in following tables.

 Table 1. Calibration standard sample and quality control sample

			Caffeic Acid			
Sample Name	Analyte Concentration (ng/mL)	Analyte Peak Area (counts)	Area Ratio	IS Peak Area (counts)	Calculated Concentration (ng/mL)	Accuracy (%)
Blank	0	0.00E+00	-7.00E+00	0.00E+00	NA	NA
Blank+IS	0	0.00E+00	0.00E+00	1.35E+06	NA	NA
STD-1	5	5.72E+03	4.29E-03	1.33E+06	4.94352	98.8704
STD-2	10	8.22E+03	6.19E-03	1.33E+06	10.1262	101.262
STD-3	50	3.44E+04	2.59E-02	1.33E+06	63.8868	127.774
STD-4	100	5.59E+04	4.33E-02	1.29E+06	111.442	111.442
STD-5	500	2.40E+05	1.83E-01	1.31E+06	493.889	98.7778
STD-6	750	3.23E+05	2.61E-01	1.24E+06	706.722	94.2295
STD-7	1000	4.57E+05	3.52E-01	1.30E+06	954.184	95.4184
QCL	8	7.44E+03	5.50E-03	1.35E+06	8.25185	103.148
QCM	200	1.05E+05	7.90E-02	1.33E+06	209.095	104.547
QCH	800	3.64E+05	2.68E-01	1.36E+06	725.847	90.7309
QCL	8	6.19E+03	5.11E-03	1.21E+06	7.19061	89.8827
QCM	200	1.00E+05	8.16E-02	1.23E+06	216.318	108.159
QCH	800	3.50E+05	2.83E-01	1.24E+06	765.382	95.6728
QCL	8	7.05E+03	5.47E-03	1.29E+06	8.17799	102.225
QCM	200	9.90E+04	7.77E-02	1.27E+06	205.63	102.815
QCH	800	3.51E+05	2.64E-01	1.33E+06	715.572	89.4465

NA: None.

Table 2. Plasma concentrations of caffeic acid after oral and intravenous administration of HOEC

and intravenede darininetration of free							
	IV-1 mg/kg						
Time (hr)	Plasma Concentration (ng/mL)						
	101	102	103	Mean	SD		
Pre-dose	BLQ	BLQ	BLQ	NA	NA		
0.083	8.89	100.50	91.11	66.83	50.40		
0.25	20.88	28.86	10.05	19.93	9.44		
0.5	6.74	11.52	7.55	8.60	2.56		
1	BLQ	BLQ	BLQ	NA	NA		
2	BLQ	BLQ	BLQ	NA	NA		
4	BLQ	BLQ	BLQ	NA	NA		
6	BLQ	BLQ	BLQ	NA	NA		
8	BLQ	BLQ	BLQ	NA	NA		
24	BLQ	BLQ	BLQ	NA	NA		
	PO-10 mg/kg						
Time (hr)	Plasma Concentration (ng/mL)						

Arachidonic acid metabolic flux regulation in CIA rats

6	BLQ	BLQ	BLQ	NA	NA
8	BLQ	BLQ	BLQ	NA	NA
24	BLQ	BLQ	BLO	NA	NA

NA: None. BLQ: Below the lowest quantifiable measure.

 $\begin{tabular}{ll} \textbf{Table 3.} PK parameters for caffeic acid after oral and intravenous administration of HOEC \\ \end{tabular}$

Rat No.	t _{1/2}	T_{\max}	\mathbf{C}_{\max}	AUC _(0-t)	$AUC_{(O\text{-}\infty)}$	MRT _(0-∞)	
nacivo.	hr	hr	ng/mL	ng/mL*hr	ng/mL*hr	hr	
IV-1 mg/kg							
1	NA	0.25	20.88	6.31	NA	NA	
2	0.14	0.08	100.50	20.02	22.29	0.22	
3	0.12	0.08	91.11	14.43	15.78	0.18	
Mean	0.13	0.14	70.83	13.59	19.04	0.20	
S.D.	NA	0.10	43.51	6.89	NA	NA	
PO-10 mg/kg							
4	0.36	0.08	533.22	207.40	243.56	0.51	
5	0.32	0.25	364.32	250.77	254.70	0.52	
6	0.54	0.25	183.28	183.25	201.64	0.86	
Mean	0.41	0.19	360.27	213.81	233.30	0.63	
SD	0.12	0.10	175.01	34.21	27.98	0.20	